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We propose a simple model to analyze stability of the free surface of horizontally unbound ferrofluid in a 
vertical magnetic field. With respect to the well known Rosensweig instability (see e.g., R.E.Rosensweig, Ferro 
hydrodynamics, Cambridge University Press, Cambridge (1993) and references therein) we go one step further 
to include into consideration coupling of surface displacements to non-magnetic degree of freedoms. We show 
that the coupling can lead to a considerable reduction of the critical magnetic field and as well yields to non-
trivial depletion layering near the surface. 

PACS: 47.20.Mа Interfacial instabilities; 
75.50.Mm Magnetic liquids. 
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Fluids with ferromagnetic properties (termed tradition-

ally as ferrofluids) are formed by a colloidal suspension of 
solid magnetic particles in a parent fluid. When a layer of 
such a liquid is subjected to a vertically oriented and uni-
form magnetic field, above a critical value of the field 
strength a pattern of periodic peaks appears on the surface 
of the liquid. This is the classical Rosensweig instability 
observed long ago by Cowley and Rosensweig [1]. Physics 
behind the Rosensweig instability is related to a feed back 
from the ferrofluid to the applied magnetic field. This feed 
back modifies the magnetization drastically and establishes 
a new equilibrium state of the fluid. This is a typical sym-
metry breaking phenomenon omnipresent in the realm of 
phase transitions. Therefore the theoretical tools developed 
for thermodynamic phase transitions can be utilized to de-
scribe the Rosensweig instability. Note in passing that it is 
not the case for some other instabilities also known in liq-
uids. For instance Rayleigh–Taylor or Kelvin–Helmholtz 
instabilities occurring as results of acceleration or shearing 
of liquid interfaces, are basically dynamic in their nature. 

The arrangement of peaks resulting from the Rosens-
weig instability is a particular example of pattern forma-
tion in physical systems [2]. For these phenomena, at least 
as the first step, Landau phenomenological theory is an 
appropriate theoretical tool. Because we are dealing with a 
sort of instability occurring at a finite wave vector, we util-
ize so-called weak crystallization Landau theory [3,4]. The 
instability threshold itself can be obtained easily from a 
harmonic part of the surface energy. It includes two contri-

butions stabilizing the flat surface, namely the surface ten-
sion term 2( )h∝ σ ∇  and gravitation energy 2g hρ  (σ  is 
surface tension, ρ  is ferrofluid mass density, g  is the 
Earth gravitation acceleration, and h  is the vertical dis-
placement with respect to the planar on average surface). 
On the contrary the vertical magnetic field B  destabilizes 
the flat surface contributing to the energy density as 

2 | |,B h∝ −χ ∇  where χ  is ferrofluid magnetic susceptibi-
lity. Combining all terms together and transforming to 
Fourier space (q is the wave vector within the surface 
which we assume on average stretched along X Y−  axis) 
we arrive at the following harmonic energy density (i.e., 
the surface energy per unit area)  

 ( )2 2 2( ) = | ( ) | .a q q g B q h qσ +ρ −χ  (1) 

From the (1) we find the instability threshold cB  
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and the optimal wave vector 0q  
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surprisingly independent of ferrofluid magnetic characte-
ristics. 

The Fourier component 0( )h q  plays the role of the 
Landau theory order parameter ψ  for the Rosensweig 
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instability. If one is interested not only in the threshold cB  
but also in various pattern selection, the non-linear terms 
have to be added to the Eq. (1). Then the standard Landau 
functional for the order parameter ψ , borrowed from the 
weak crystallization theory, can be written as 
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The functional gives the energy of the surface bending fluc-
tuations with wave vectors near 0q  (it determines the pat-
tern period 02 / qπ ). The first term in the Eq. (4), as usually 
within Landau theory, reads as a B B∝ − , where B  is 
close to the critical magnetic field cB  (but does not coincide 
with it, since in a general case we have to deal with the first 
order phase transition). The second term has its minimum at 

0q q=  and guarantees that only fluctuations with wave vec-
tors close to 0q  are relevant. The last terms in the Eq. (4) 
are usual cubic and fourth-order terms in the Landau expan-
sion relevant near the critical field. This energy (4) treats the 
Rosensweig ''condensed ripple'' formation as a pure static 
(thermodynamic) phase transition. 

Since the Rosensweig instability we are investigating, is 
an athermal one, and characteristics scales (in real space) 
can be very large (up to 1 cm), fluctuations of the order 
parameter are practically irrelevant. Therefore we can re-
strict ourselves to the mean field treatment of the energy 
(4). In this approximation the phase diagram can be found 
easily by the straightforward minimization of the (4) and 
the results are well known, see e.g., [4], and the Fig. 1 

where for the case = constλ  and = constμ  the phase 
diagram is plotted on the plane /μ λ  and /α λ . This is the 
phase diagram when the both non-linear (interaction) terms 
coefficients μ  and λ  in the Landau energy (4) are con-
stant, independent of wave vectors. This describes the first 
instability with hexagonal pattern formation. However, 
experimentally upon further increase of the magnetic field 
above the threshold cB  gives rise to the transition from the 
hexagonal to square lattice of peaks [5]. Weak crystalliza-
tion Landau theory is equally suitable to describe this 
second instability. Indeed, as we already mentioned above, 
neglecting fluctuations is equivalent to fixing 0| | .q=q  In 
this case (i.e., in the mean field approximation) μ  indeed 
has to be considered as a constant. However λ  is allowed 
to be a function of a single angle θ  between the four wave 
vectors entering into the fourth order term. These wave 
vectors have to satisfy the conditions 

 
4

0
=1

| |= ; = 0,i i
i

q ∑q q  (5) 

and in the most general form it means that  

 0= (1 cos(2 )),k
k

kλ λ + λ θ∑  (6) 

where kλ  describe anisotropy of the fourth order interac-
tion. Keeping only 1 0λ ≠  we can obtain the phase dia-
gram (see Fig. 2) which includes also a tetragonal phase. 

However recent experimental observations [6] show 
that something is missing in this picture. This unknown 
something yields to a considerable reduction of the critical 
field, and as well produces non-trivial depletion layering 
near the surface. Reduction of the critical field means that 
there is another destabilizing factor promoting surface un-
dulations. Pure phenomenologically depletion and non-
uniform colloidal particle distribution can be bluntly 
lumped into an effective field φ  coupled to the surface 
curvature 2 2h∇ ≡ ∇ ψ . In a Fourier space  

 2
int = ( )( ( )).E q q qγφ ψ −  (7) 

In the spirit of the Landau theory the energy per unit area 
responsible for colloid composition variations, reads as 

Fig. 1. The mean field phase diagram on the plane /μ λ  and
/α λ . SA  stands for the flat surface, SB  for the hexagonal

structure, and in the mSA  phase one dimensional modulation
takes place. 
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Fig. 2. The phase diagram with anisotropic λ  with a tetragonal 
structure Te . 
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Within the mean field approximation minimizing 
comp int ( )E E a q+ +  over ( )qψ  we get  
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Then we find the effective free energy in terms of φ  with 
the quadratic over ( )qφ  term 2| ( ) |q qΓ φ  with  
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with its minimum at 2
0 0q ≠  if 2 2

0 0γ ≥ γ ≠ . Note that this 
instability might occur even at = 0B . In this simple model 
in a single mode approximation there are three equilibrium 
phases: 
– flat and symmetric phase ( = 0〈φ〉  and = 0〈ψ〉 ); 
– flat and asymmetric phase ( 0〈φ〉 ≠  and = 0〈ψ〉 ); 
– asymmetric and modulated phase ( 0〈φ〉 ≠ , and 0〈ψ〉 ≠ ). 

Our assumptions of the “weak crystallization» nature of 
the phase transition should be treated as a working hypo-
theses. Comparison of the predictions resulting from this 
hypothesis with experimental observations will show 
whether and when this hypothesis is justified. While the 

picture is still not completely clear we do believe that fur-
ther detailed studies of this transition, both from the expe-
rimental and theoretical sides, will increase our under-
standing of the mechanisms enabling ferrofluids to 
accommodate different structures and physical properties. 

I am very pleased to dedicate this article to V. Pe-
schanskii on the occasion of his 80-th birthday. He certain-
ly loves “Electron phenomena in conducting systems”, the 
topic of this special issue, but as well condensed matter 
physics in general, and discussions with him have been an 
inspiration for this paper. 
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