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The phase behaviour of the restricted primitive model (RPM) is studied us-
ing a microscopic approach recently developed for the description of phase
transitions in binary fluid mixtures. For the model we obtain the explicit ex-
pression for the functional of the grand partition function. Based on the
functional we calculate the phase diagram of the RPM in the high tem-
perature approximation (HTA) and then we do this calculation taking into
account the terms of the higher orders in the effective Hamiltonian. In both
cases the phase diagrams demonstrate the gas-liquid (GL) and charge
ordering phase instabilities. In the latter case, the obtained value for the
GL critical temperature is in good agreement with the MC simulation data
whereas the critical density is underestimated.
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1. Introduction

In recent years, much attention has been focused on an issue of the critical and
phase behaviour of ionic fluids. For reviews of the experimental and theoretical
situation see [1–7].

The simplest model capable of capturing the main features of ionic systems is
the restricted primitive model (RPM) [3,5]. Early studies [8] established that the
model has a gas-liquid (GL) phase transition. A reasonable theoretical description
of the GL critical point in the RPM was accomplished at a mean-field (MF) level
using integral equation methods [5,9] and Debye-Hückel theory [10].

For the last decade the GL critical point of the RPM has been much studied by
computer simulation methods [11–19]. The recent results for the critical parameters
obtained by different groups are as follows: T ∗

c = 0.0492±0.0003, ρ∗c = 0.062±0.005
[16], T ∗

c = 0.0489 ± 0.0003, ρ∗c = 0.076 ± 0.003 [17], T ∗
c = 0.04917 ± 0.00002, ρ∗c =
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0.08 ± 0.005 [18], T ∗
c = 0.05069(2), ρ∗c = 0.0790(25) [19] and they are in reasonable

agreement with each other with respect to the estimated critical temperature and
density.

The universality class of criticality in the RPM has also been a subject of active
research [20–24]. Very recent simulation studies have found strong evidence for Ising
universal class [19,25].

The one more relevant issue concerns the full phase diagram of the RPM. The
stability analysis shows that another phase transition occurs in the continuum RPM
between the disordered and charge-ordered phases along a λ-line [7,26,27]. But no
λ-line was found so far in computer simulations for this model.

In this paper we address the issue of the critical and phase behaviour of the
RPM using the theoretical approach proposed in [29,30] for the binary mixture.
The theory has its origin in the approach based on a functional representation of
a partition function by means of the collective variables (CV) method [31,32]. Its
particular feature is a choice of the phase space in which the system is considered.
This phase space is formed by a set of CV and contains a variable connected with the
order parameter. The approach allows one to determine, on microscopic grounds, the
explicit form of the effective Ginzburg-Landau-Wilson (GLW) Hamiltonian and then
to integrate the partition function in the neighborhood of the phase transition point
using the non-perturbative renormalization group method [33]. As a result, non-
classical critical exponents and analytical expressions for thermodynamic functions
were obtained [33,34]. More recently this theory was developed for a binary fluid
mixture [29,30,35–38].

The paper consists of two parts. In the first part we obtain the functional of
the grand partition function of the RPM given in terms of the CV ck (connected
with charge density fluctuation modes) and in terms of the variables γk and hk=0

conjugate to the CV ck and ρk=0, respectively (ρk=0 is connected with the k = 0
mode of total number density fluctuations). Restricting our consideration to the
second powers of γk (taking into account the higher powers of hk=0) we derive the
equation for the chemical potential. Based on the chemical potential obtained from
the linearized equation we calculate the spinodal curve. Its run suggests that two
types of phase instabilities can occur in the RPM. One part of the spinodal is of the
gas-liquid (GL) type while another one looks like a λ-line. We obtain the following
values of the GL critical point: T ∗

c = 0.084 and ηc = 0.005 which agrees with the
other MF theories [9] and we discuss the approximation used at this stage of our
study.

In order to study the nature of the criticality of the RPM as well as to get the
best estimates for its GL critical point we go beyond the above mentioned approxi-
mation taking into account the terms of higher orders in the effective Hamiltonian.
The second part of the paper is devoted to this end. First, we consider the Gaussian
approximation of the functional of the grand partition function. It yields the equa-
tion for the boundary of stability with respect to the charge density fluctuations.
Then, applying the procedure proposed in [29,30] we obtain the expression for the
grand thermodynamic potential in the vicinity of the GL critical point as a power
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series in the field h̃k=0 (up to h̃4) conjugate to the order parameter. The expression
obtained has the form of the Landau free energy. We also calculate the phase dia-
gram demonstrating both GL and charge ordering phase instabilities. The data for
the GL critical point are found to be T ∗

c = 0.0502 and ηc = 0.022.

2. Functional representation of the grand partition function of
the RPM

The RPM consists of N = N++N− hard spheres of diameter σ with N+ carrying
charges +q and N− (= N+) charges −q, in a medium of dielectric constant D. The
interaction potential of the RPM has the form

Uγδ(r) =

{

∞, r < σ
(qγqδ)/Dr, r > σ

, qi = ±q. (1)

We split the potential Uγδ(r) into short- and long-range parts

Uγδ(r) = ψγδ(r) + Φγδ(r),

using the Weeks-Chandler-Andersen partition [39]. As a result, we have

ψγδ(r) =

{

∞, r 6 σ
0, r > σ

,

Φγδ(r) =

{

(qγqδ)/Dσ, r 6 σ
(qγqδ)/Dr, r > σ

.

This simple form for Φγδ(r) inside the hard core changes the behaviour of the
Fourier transform for large k from usual Coulombic k−2 to k−3 decay. As was shown
[40], this choice of Φγδ(r) for r < σ produces rapid convergence of the series of the
perturbation theory for the free energy. The Fourier transform of Φγδ(r) = q2/Dr =
ΦC(r) has the form

βρΦ̃C(x) = 24β∗η
sin x

x3
, (2)

where β∗ = (βq2)/Dσ, β = 1/(kBT ), η = π/6ρσ3 is fraction density, x = kσ.
We start with the grand partition function for a two-component system (γ, δ =

+,−):

Ξ =
∑

N+>0

∑

N
−

>0

∏

γ=+,−

z
Nγ
γ

Nγ!

∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

Uγδ(rij)

]

,

where (dΓ) =
∏

γ dΓNγ , dΓNγ = drγ
1dr

γ
2 . . .dr

γ
Nγ

(γ = +,−) is an element of the
configurational space of the γth species; zγ is the fugacity of the γth species:

zγ = exp(βµ′
γ), µ′

γ = µγ + β−1 ln[(2πmγβ
−1)3/2/h3],
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µγ is the chemical potential of the γth species. The second term in this expression
is obtained as a result of integration over the momenta. mγ is the mass of the γth
species, h is the Planck constant. µ′

γ is determined from the equation

∂ ln Ξ

∂βµ′
γ

= 〈Nγ〉,

where 〈Nγ〉 is the average number of the γth species in the grand canonical ensemble.
The correlation effects of different scales are connected with the potentials ψγδ(r)

and Φγδ(r): the potential ψγδ(r) describes the behaviour of the particles at very short
distances and provides their mutual impenetrability. The potential Φγδ(r), on the
contrary, describes an attraction between the particles which takes place at long
distances. These effects are proportional to different parameters. In order to study
them simultaneously it is necessary to consider the system successively in two phase
spaces. First we write the grand partition function and the correlation functions of
the RS in the phase space of the Cartesian coordinates. Here the pair interaction
is described by the potential ψγδ(r). The thermodynamic and structural properties
of the RS are assumed to be known. Then the grand partition function of the full
system is constructed in the phase space of the collective variables (CV) by means
of the functions of the RS.

We introduce the grand partition function of the RS

Ξ0 =
∑

N+>0

∑

N
−

>0

∏

γ=+,−

exp (βµ0,γNγ)

Nγ!

∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

ψγδ(rij)

]

,

where µ0,γ is the chemical potential of the γth species in the RS.
Now we rewrite the attractive potential in the Fourier space

1

2

∑

γδ

∑

ij

Φγδ(rij) =
1

2

∑

γδ

∑

k

Φ̃γδ(k)(ρ̂Nγ (k)ρ̂Nδ
(−k) −Nγδγδ),

where Φ̃γδ(k) is the Fourier transform of Φγδ(r). ρ̂Nγ (k) is the Fourier transform of
the operator of the particle number density for the γth species

ρ̂Nγ (k) =

Nγ
∑

j=1

exp(−ikr
γ
j ), γ = +,−.

We introduce collective variables ρk,γ

ρk,γ = ρc
k,γ − iρs

k,γ

by means of the relations [32,36]

ρ̂c
Nγ

(k) =

∫ +∞

−∞

ρc
k,γδ(ρ

c
k,γ − ρ̂c

Nγ
(k))dρc

k,γ ,

ρ̂s
Nγ

(k) =

∫ +∞

−∞

ρs
k,γδ(ρ

s
k,γ − ρ̂s

Nγ
(k))dρs

k,γ ,

ρ̂Nγ (0) =

∫ +∞

−∞

ρ0,γδ(ρ0,γ − ρ̂Nγ (0))dρ0,γ ,
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where

ρ̂c
Nγ

(k) =

Nγ
∑

j=1

cos(kr
γ
j ), ρ̂s

Nγ
(k) =

Nγ
∑

j=1

sin(kr
γ
j ).

Here the indices c and s denote the real part and the coefficient of the imaginary
part of both ρ̂Nγ (k) and ρk,γ; δ(· · ·) is the Dirac delta function.

Now we present Ξ in the following form:

Ξ = Ξ0Ξ1,

where Ξ0 is the grand partition function of the RS. Then Ξ1 can be written in the
form of the functional integral [36]

Ξ1 =

∫

(dρ) exp[β
∑

γ

µ1,γρ0,γ −
β

2V

∑

γδ

∑

k

Φ̃γδ(k)ρk,γρ−k,δ]J(ρ+, ρ−). (3)

Here ρk,+ (ρk,−) is the collective variable. Each ρk,+ (ρk,−) describes the value of the
k-th fluctuation mode of the number of γ-th species particles and (dρ) is a volume
element of the CV phase space:

(dρ) =
∏

γ

dρ0,γ

∏

k6=0

′
dρc

k,γdρ
s
k,γ.

The prime means that the product over k is performed in the upper semi-space. µ1,γ

is a part of the chemical potential of the γth species

µ1,γ = µ′
γ − µ0,γ +

1

2V

∑

k

Φ̃γγ(k), (4)

which is determined from the equation

∂ ln Ξ1

∂βµ1,γ
= 〈Nγ〉. (5)

J(ρ) = J(ρ+, ρ−) is the Jacobian of the transition to CV averaged on the RS:

J(ρ) =
1

Ξ0

∑

N+>0

∑

N
−

>0

∏

γ=+,−

exp (βµ0,γNγ)

Nγ!

∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

ψγδ(rij)

]

×
∏

γ=+,−

δ(ρ0,γ − ρ̂Nγ (0))
∏

k6=0

′
δ(ρk,γ − ρ̂Nγ (k)).

Substituting the explicit forms for delta functions into the expression for J(ρ), we
obtain

J(ρ) =

∫

J(ν)
∏

γ

exp(i2π
∑

k

νk,γρk,γ)(dν),
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where the variables νk,γ are conjugate to the CV ρk,γ and have the form

νk,γ =
1

2
(νc

k,γ + iνs
k,γ), k 6= 0,

and (dν) is a volume element of the phase space of the variables νk,γ

(dν) =
∏

γ

dν0,γ

∏

k6=0

′
dνc

k,γdν
s
k,γ .

J(ν) has the form:

J(ν) =
1

Ξ0

∑

N+>0

∑

N
−>0

∏

γ=+,−

exp (βµ0,γNγ)

Nγ!

∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

ψγδ(rij)

]

×
∏

γ,k

exp(−i2πνk,γ ρ̂Nγ (k)).

We present J(ν) in the form of the cumulant expansion

J(ν) = exp

[

∑

n>1

(−i2π)n

n!

∑

γ1...γn

∑

k1...kn

Mγ1...γn(k1, . . . ,kn)νk1,γ1 . . . νkn,γn

]

,

γ1, γ2, . . . , γn = +,−.

Here Mγ1...γn is the nth cumulant which is determined from the formula

Mγ1...γn(k1, . . . ,kn) =
∂n ln J(ν)

∂νk1,γ1∂νk2 ,γ2 . . . ∂νkn ,γn

∣

∣

∣

∣

νki,γi
=0

and is connected with Sγ1...γn(k1, . . . , kn), the n-particle partial structure factor of
the RS, by means of the relation

Mγ1...γn(k1, . . . ,kn) = n
√

Nγ1 . . . NγnSγ1...γn(k1, . . . , kn)δk1+···+kn ,

where δk1+···+kn is the Kronecker symbol.
Now we pass in these formulas to new variables ρk and ck (according to ωk and

γk) by means of the orthogonal linear transformations

ρk =

√
2

2
(ρk,+ + ρk,−), ck =

√
2

2
(ρk,+ − ρk,−),

ωk =

√
2

2
(νk,+ + νk,−), γk =

√
2

2
(νk,+ − νk,−).

The variables ρk and ck are CV connected with total density fluctuation modes and
charge density fluctuation modes, respectively.
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As a result, we can present the functional of the grand partition function of the
RPM in the form:

Ξ = Ξ0

∫

(dρ)(dc) exp

(

βµ1ρ0 −
β

V

∑

k

Φ̃C(k)ckc−k

)

J(ρ, c). (6)

In the case of the RPM, the RS is a one-component hard-sphere system with the
diameter σ (potential ψγδ(r) = ψ(r)). For µ1 we have (µ1,+ = µ1,−):

µ1 = (µ1,+ + µ1,−)/
√

2 =
√

2µ1,+ =
√

2µ1,− (7)

and equation (5) is rewritten as

∂ ln Ξ1

∂βµ1
=

〈N〉√
2
. (8)

For the RPM J(ρ, c) has the same form as that for the symmetrical binary fluid
with µa = µb [30]:

J(ρ, c) =

∫

(dγ)(dω) exp

{

i2π
∑

k

(ωkρk + γkck) − i2π
1√
2

∑

k

M
(0)
1 ωkδk

+
(−i2π)2

2!

1
√

2
2

∑

k

(M
(0)
2 ωkω−k + M

(2)
2 γkγ−k)

+
(−i2π)3

3!

1
√

2
3

∑

k1,k2,k3

(M
(0)
3 ωk1ωk2ωk3 + 3M

(2)
3 ωk1γk2γk3)δk1+k2+k3

+
(−i2π)4

4!

1
√

2
4

∑

k1,...,k4

(M
(0)
4 ωk1ωk2ωk3ωk4 + 6M

(2)
4 ωk1ωk2γk3γk4

+ M
(4)
4 γk1γk2γk3γk4)δk1+...+k4

+
(−i2π)5

5!

1
√

2
5

∑

k1,...,k5

(M
(0)
5 ωk1ωk2ωk3ωk4ωk5 + 10M

(2)
5 ωk1ωk2ωk3γk4γk5

+ 5M
(4)
5 ωk1γk2γk3γk4γk5)δk1+...+k5

+
(−i2π)6

6!

1
√

2
6

∑

k1,...,k6

(M
(0)
6 ωk1ωk2ωk3ωk4ωk5ωk6 + 15M

(2)
6 ωk1ωk2ωk3ωk4γk5γk6

+ 15M
(4)
6 ωk1ωk2γk3γk4γk5γk6)δk1+...+k6 + . . .

}

. (9)

In (9) the cumulants M
(in)
n with in = 0 are connected with the nth structure

factors of the RS [36]:
M

(0)
n = 〈N〉Sn.
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Structure factors Sn(0) with n > 2 can be obtained from S2(0) by means of a chain
of equations for correlation functions [41]. Cumulants with in 6= 0 can be expressed

in terms of M
(0)
n (see also formulae (4.8) in [36]):

M
(2)
n = M

(0)
n−1, M

(4)
n = 3M

(0)
n−2 − 2M

(0)
n−3,

M
(6)
n = 15M

(0)
n−3 − 30M

(0)
n−4 + 16M

(0)
n−5. (10)

First we integrate in (6) over CV ρk. This integration leads to the delta-functions
∏

k
δ(ωk + βµ1

i2π
δk). As the result of integration over ωk we obtain

Ξ = Ξ0 exp

(

∑

n>1

M
(0)
n

n!
hn

0

)

∫

(dc) exp

(

− β

V

∑

k

Φ̃C(k)ckc−k

)

J(c, h0), (11)

where

J(c, h0) =

∫

(dγ) exp

(

i2π
∑

k

γkck +
(−i2π)2

2!

1
√

2
2

∑

k

γkγ−k

∑

n>0

M
(2)
n+2

hn
0

n!

+
(−i2π)4

4!

1
√

2
4

∑

k1,...,k4

γk1γk2γk3γk4δk1+...+k4

∑

n>0

M
(4)
n+4

hn
0

n!

)

, (12)

hk=0 = h0 =
βµ1√

2
(13)

and condition (8) has the form:

∂ ln Ξ1

∂h0
= 〈N〉. (14)

Expressions (11)–(12) do not include the “field” variable hk with k 6= 0. As one can
see below, this fact will give rise to the Landau type free energy of the RPM in the
vicinity of the GL critical point.

Formulas (11)–(14) are the initial formulas in our study of the phase behaviour
of the RPM.

3. Phase diagram of the RPM in the high temperature approxi-
mation (HTA)

Restricting our consideration in (12) to the second power of γk and assuming

M
(2)
n+2

hn
0

n!
> 0, we first integrate in (11)–(12) over γk and then over ck. As a result,

we obtain for Ξ1

Ξ1 =
∏

k

[

1 +
β

V
Φ̃C(k)

∂F(h0)

∂h0

]−1/2

exp (F(h0)) , (15)
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where the following notations are introduced:

F(h0) =
∑

n>1

M
(0)
n

n!
hn

0 ,
∂F(h0)

∂h0
=
∑

n>1

M
(0)
n

(n− 1)!
hn−1

0 , (16)

and formulas (10) are used for M
(in)
n .

Using (14) and (15) we can obtain the following equation for the chemical po-
tential

1

2

∑

k

β
V

Φ̃C(k)

1 + β
V

Φ̃C(k)∂F(h0)
∂h0

=

∂F(h0)
∂h0

− M
(0)
1

∂2F(h0)
∂h2

0

= h0

(

1 − 1

2

M
(0)
3

M
(0)
2

h0 + . . .

)

, (17)

where
∂2F(h0)

∂h2
0

=
∑

n>2

M
(0)
n

(n− 2)!
hn−2

0 . (18)

Phase diagram in the HTA. We solve equation (17) in the simplest approxima-
tion. Neglecting terms h2

0, h
3
0 etc. in the right hand side of (17) and setting

∂F(h0)

∂h0

= M
(0)
1 (19)

in the left hand side of (17) we obtain for µ1,+ (= µ1,−)

µ1,+ = − 1

2β
ã(β), (20)

where

ã(β) = −
∑

k

β
V

Φ̃C(k)

1 + β
V

Φ̃C(k)M
(0)
1

. (21)

On the other hand, we can get the same result for µ1,+ taking into account the

terms proportional to γ2 and γ2h0 in the exponent of (12) and setting M
(2)
3 ≡ 0 in

the final result (M
(2)
3 is the coefficient of γ2h0). To this end we neglect in (11)–(12)

the terms proportional to h3
0, h

4
0, γkγ−kh

2
0, γk1

γk2
γk3

γk4
, etc.. In this case Ξ1 has

the form:

Ξ1 = exp

(

∑

n62

M
(0)
n

n!
hn

0

)

∫

(dc)(dγ) exp

{

− β

V

∑

k

Φ̃C(k)ckc−k

+ i2π
∑

k

γkck +
(−i2π)2

2!

1
√

2
2

∑

k

γkγ−kM
(2)
2 +

(−i2π)2

2!

1
√

2
2

∑

k

γkγ−kh0M
(2)
3

}

.

(22)

Integrating in (22) over γk and then over ck we obtain

Ξ1 = exp

(

M
(0)
1 h0 +

M
(0)
2

2!
h2

0

)

∏

k

[

1 +
β

V
Φ̃C(k)(M

(2)
2 + M

(2)
3 h0)

]−1/2

. (23)
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Figure 1. The phase diagram of the RPM calculated from (25) (see the text for
explanation).

Then the equations (23) and (14) yield

h0 =
1

2

∑

k

β
V

Φ̃C(k)

1 + β
V

Φ̃C(k)(M
(0)
1 + M

(0)
2 h0)

, (24)

where the equalities M
(2)
2 = M

(0)
1 (M

(0)
1 = 〈N〉) and M

(2)
3 = M

(0)
2 (see (10)) are

used. Setting M
(0)
2 = 0 in (24) and taking into account (7) and (13) we again arrive

at the result (20)–(21). Since (21) does not include the coefficients M
(in)
n with n > 2

we may say that µ1,+ given by (20)–(21) is obtained in the HTA.
The full chemical potential µ+ is equal to (see (4)):

µ+ = µ0,+ + µ1,+ − 1

2V

∑

k

Φ̃C(k),

where µ0,+ (= µ0,−) is the chemical potential of a one-component hard sphere system.

The equation βρ∂µ+

∂ρ
= 0, where ρ is the total number density, gives the spinodal

of the RPM in the approximation considered. Using (2) for Φ̃C(k) and the Percus-
Yevick approximation for the RS, the equation for the spinodal curve can be written
as

∫ ∞

0

x2(sin x)2dx

(x3T ∗ + 24η sin x)2
=

π

24η

(1 + 2η)2

(1 − η)4
. (25)

The phase diagram calculated from (25) is shown in figure 1. The obtained data
for the GL critical point are T ∗

c ' 0.084 (T ∗
c = 1/β∗

c ) and ηc ' 0.005. It is evident
that in the considered approximation we get the overestimated value for the GL
critical temperature and the underestimated value for the critical density. But, in
contrast to the previous results, the spinodal curve changes its run (at η ' 0.047) and
then it directs to the higher temperature. The second positive slope of the spinodal
indicates another type of the phase instability appearing in the RPM (similarly to
the λ-line in a symmetrical binary fluid). Below, we shall calculate the phase diagram
of the RPM taking into account in (12) the terms of the higher orders.
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4. Phase diagram of the RPM: beyond the HTA

As was shown above, the spinodal (25) can be obtained as the result of the
trick, namely: the integration in (12) was accomplished taking into account the
term proportional to γ2h0 and in the final result the coefficient at γ2h0 was set
equal to zero. Below we will sequentially take into consideration in (12) the terms
of the higher order.

Now let us rewrite (11)–(12) as

Ξ1 = exp (F(h0))

∫

(dc) exp

(

− β

V

∑

k

Φ̃C(k)ckc−k

)

×
∫

(dγ) exp

{

i2π
∑

k

γkck +
(−i2π)2

2!

∑

k

γkγ−k

∂F(h0)

∂h0

+
(−i2π)4

4!

1
√

2
4

∑

k1,...,k4

γk1γk2γk3γk4

(

3
∂2F(h0)

∂h2
0

− 2
∂F(h0)

∂h0

)

δk1+...+k4

}

, (26)

and the notations are the same as those in previous section.

Charge ordering phase instability. First, we restrict ourselves to the Gaus-
sian approximation which corresponds to neglecting the terms proportional to h3

0,
γkγ−kh0, γkγ−kh

2
0, h

4
0, etc. in the exponent of (26). After integration in (26) over γk

we obtain

Ξ1 = exp (F(h0))
∏

k

(

πM
(0)
1

)−1/2

×
∫

(dc) exp

{

−
∑

k

ckc−k

M
(0)
1

(

1 +
β

V
Φ̃C(k)M

(0)
1

)

}

. (27)

As is seen from (27), the equality

1 +
β

V
Φ̃C(k)M

(0)
1 = 0 (28)

holds at some values of the wave-vector k, temperature and density. Equation (28)
determines the boundary of stability connected with the charge fluctuations (the
field variable γk is conjugate to the CV ck):

T ∗ = −24η
sin x

x3
, T ∗ =

1

β∗
, (29)

or

T ∗
c (x∗, η) = −8η

cos x∗

x∗2
, (30)

where x∗ is determined from the condition

tanx∗ =
x∗

3
, (31)
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which yields x∗ ' 4.0783. Substituting x∗ in (27) we obtain the boundary of stability
with respect to fluctuations of the local charge density

T ∗
c (x = x∗) ' 0.285η. (32)

A similar result (for another choice of interaction inside the hard core) was obtained
in [7,26] within the framework of the field-theoretical approach. The possibility of the
charge-ordering transition in the continuous-space RPM model was also discussed
in [27,28].

It is worth noting that the RPM does not demonstrate the GL phase transition
in the approximation given by (27). In order to obtain the GL spinodal curve we
should take into consideration the terms of the order higher than the second one
(γ2h, γ2h2, etc.).

GL phase instability. We restrict our consideration in (26) to the terms of the
fourth order. In this case Ξ has the form:

Ξ = Ξ0 exp (F(h0))

∫

(dc) exp

(

− β

V

∑

k

Φ̃C(k)ckc−k

)

×
∫

(dγ) exp

{

i2π
∑

k

γkck +
(−i2π)2

2!
√

2
2

∑

k

γkγ−k

(

M
(0)
1 + h0M

(0)
2 + h2

0M
(0)
3

)

+
(−i2π)4

4!
√

2
4

∑

k1,...,k4

γk1γk2γk3γk4

(

3M
(0)
2 − 2M

(0)
1

)

δk1+...+k4

}

, (33)

where the summation in (16) over n is restricted to 4.
Now we follow the programme proposed in [29,36] for a two-component fluid

system. First, we separate the two types of variables: the essential variables (which
include the variable connected with the order parameter) and the non-essential vari-
ables. Then, integrating over the non-essential variables with the Gaussian density
measure, we construct the basic density measure (the GLW Hamiltonian) with re-
spect to the essential variables.

For the RPM in the vicinity of the GL critical point the variable h0 (conjugate
to the CV ρ0) turns out to be the essential variable [30]. Thus, we can present (33)
as

Ξ1 =
∏

k

(

πM
(0)
1

)−1/2

exp (F(h0))

∫

(dc) exp

(

− β

V

∑

k

Φ̃C(k)ckc−k

)

×
(

1 + Â +
1

2!
Â2 + . . .

)

exp

(

−
∑

k

ckc−k/M
(0)
1

)

, (34)

where

Â =
(

h0M
(0)
2 + h2

0M
(0)
3

) ∂2

∂ckc−k

.
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After integration in (34) we get

Ξ1 =
∏

k

1
√

1 + β 〈N〉
V

Φ̃C(k)
exp

(

∑

n>1

Mn
hn

0

n!

)

, (35)

where
Mn = M

(0)
n + ∆Mn,

∆Mn are the corrections obtained as the result of integration over variables ck:

∆M1 =
1

2
M

(0)
2 ã(β), ∆M2 =

1

2
M

(0)
3 ã(β),

∆M3 ≡ 0, ∆M4 ≡ 0 (36)

and ã(β) is given by (21).
It is worth noting that the non-zero corrections ∆Mn (see (36)) are those which

include only one sum over k.
Next, the shift is carried out in order to eliminate the cubic term in (35)

h0 = h̃0 + ∆,

where ∆ = −M3/M4. Then (35) has the form

Ξ1 = C exp

(

∑

n>1

M̃n
h̃n

0

n!

)

, (37)

where

C =
∏

k

1
√

1 + β 〈N〉
V

Φ̃C(k)
exp



M
(0)
1 +

1

2

(

M
(0)
3

M
(0)
4

)2(

M
(0)
2 − (M

(0)
3 )2

4M
(0)
4

)

+
1

2
ã(β)

(

M
(0)
2 +

(M
(0)
3 )3

2(M
(0)
4 )2

)]

,

M̃1 = M
(0)
1 − M

(0)
3

M
(0)
4

(

M
(0)
2 − (M

(0)
3 )2

3M
(0)
4

)

+
1

2
ã(β)

(

M
(0)
2 − (M

(0)
3 )2

M
(0)
4

)

,

M̃2 = M
(0)
2 − (M

(0)
3 )2

2M
(0)
4

+
1

2
ã(β)M

(0)
3 , M̃4 = M

(0)
4 .

In (37) h̃0 is the field conjugate to the order parameter for the GL critical point (see
(1.8)–(1.10) in [34] and (15)–(20) in [30]).

Now we can obtain the grand thermodynamic potential of the RPM in the vicin-
ity of the GL critical point

Ω − Ω0 + kBT ln C = −kBT

(

∑

n>1

M̃n
h̃n

0

n!

)

. (38)
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Figure 2. The phase diagram of the RPM calculated from (37) (see the text for
explanation).

The right hand side in (38) has the form of the Landau free energy expressed in
terms of the field h̃0 conjugate to the order parameter. From the equation M̃2 = 0
we obtain the equation for the GL spinodal curve

ã(β) = −2
M

(0)
2

M
(0)
3

+
M

(0)
3

M
(0)
4

,

or
2

π

∫ ∞

0

x2 sin xdx

x3T ∗ + 24η sin x
= 2

S2(0)

S3(0)
− S3(0)

S4(0)
, (39)

where Sn(0) is the nth structure factor of the one-component hard-sphere system at
k = 0.

The phase diagram of the RPM is shown in figure 2. The curve with the maximum
is the GL spinodal calculated using (39). The Percus-Yevick approximation is used
for S2(0) (the expressions for S2(0), S3(0) and S4(0) are given in Appendix). The
straight line calculated by (32) (the Gaussian approximation) corresponds to the
charge ordering phase transition. The GL critical point (the maximum of the GL
spinodal) is located at T ∗

c = 0.0502 and ηc = 0.022. While the value for T ∗
c is in

good agreement with the recent data of computer simulations [15,18] (T ∗
c ' 0.05),

the critical density is underestimated (ρ∗c ' 0.04). The same phase diagram for the
RPM was obtained in [42] by means of the Hubburd-Schofield method [43].

We can also obtain from (38) (using (14)) the expression for µ+,1

µ+,1 = − 1

2β

M
(0)
2 ã(β) − 1

3

(M
(0)
3 )3

(M
(0)
4 )2

M
(0)
2 + 1

2
M

(0)
3 ã(β) − 1

2

(M
(0)
3 )2

M
(0)
4

. (40)

If we set M
(0)
3 = 0 the expression (40) reduces to (20).

It should be pointed out that the above described scheme of integration in the
vicinity of the GL critical point cannot be used in the region close to the line defined
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by (32) (dotted line in figure 2): the variables γk appear to be the essential variables
in this region.

5. Conclusions

We use the recently developed approach in the study of the phase behaviour of
ionic fluids. For the RPM we obtain the functional of the grand partition function
given in terms of the CV ck, which are connected with charge density fluctuation
modes, and in terms of the variables γk and hk=0 conjugate to the CV ck and ρk=0,
respectively (CV ρk=0 is connected with the k = 0 mode of total number density
fluctuations).

We conclude that within the framework of the same approach the following
results are obtained for the RPM:

• the phase diagram in the HTA which consists of two parts: the part corre-
sponding to the GL phase transition and another one looking like the λ-line,
the parameters of the GL critical point correlate with those obtained by other
MF theories;

• the explicit expression for the grand thermodynamic potential in the vicinity
of the GL critical point as an expansion in terms of the field h̃0 conjugate to
the order parameter (up to h̃4

0). The expression suggests the classical critical
behaviour which disagrees with the findings of the recent simulation studies
[19,25]. Thus within the framework of this approach the criticality in the RPM
needs further investigations.

• the GL spinodal in the approximation when the terms of the higher order (h0,
γkγ−kh0, γkγ−kh

2
0 and h4

0) are taken into account in the Hamiltonian, the value
obtained for the GL critical temperature agrees well with MC simulation data;

• the boundary of stability with respect to the charge density fluctuations (in
the Gaussian approximation of the functional integral). This result confirms
that obtained in [26]. As was discussed in [27,28], in continuous systems a
fluctuation-induced first-order order-disorder transition can occur when the
instability is associated with fluctuations characterized by k 6= 0.

It is worth noting that this approach can be applied to the case when both long-
range and short-range interactions are involved into the model simultaneously (the
RPM+SR model). This task will be considered elsewhere.

Appendix

S2(0) =
(1 − η)4

(1 + 2η)2
,
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S3(0) =
(1 − η)7(1 − 7η − 6η2)

(1 + 2η)5
,

S4(0) =
(1 − η)10(1 − 30η + 81η2 + 140η3 + 60η4)

(1 + 2η)8
.
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Фазова поведінка примітивної моделі електролітів

О.В.Пацаган

Інститут фізики конденсованих систем НАН України,
79011 Львів, вул. Свєнціцького, 1

Отримано 4 серпня 2003 р.

Фазова поведінка примітивної моделі електролітів вивчається, ви-
користовуючи мікроскопічний підхід недавно розвинутий для опису

фазових переходів у бінарних флюїдних сумішах. Для цієї моделі ми

отримуємо явний вираз для функціоналу великої статистичної суми.
На основі цього функціоналу ми обчислюємо фазову діаграму при-
мітивної моделі електролітів спочатку у високотемпературному на-
ближенні, а потім, беручи до уваги члени вищого порядку у ефектив-
ному гамільтоніані. В обох випадках фазові діаграми демонструють

нестабільності типу газ-рідина і типу зарядового впорядкування. В

останньому випадку отримане значення критичної температури газ-
рідина добре узгоджується з результатами комп’ютерного моделю-
вання методом Монте Карло, тоді як значення критичної густини є

занижене.

Ключові слова: примітивна модель електролітів, газ-рідина

критична точка, зарядове впорядкування, метод колективних

змінних

PACS: 05.70.Fh, 05.70.Jk, 02.70.Rr, 61.20.Qg, 64.70.Fx
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