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The solution of the associative mean-spherical approximation for ion- dipolar system is reinvestigated and
expressed in terms of only five parameters. Three of them have counterparts in the case without association,
and the other two are the monomer fractions of ions and dipoles. The explicit expressions for the thermo-
dynamic quantities are represented in a simpler form. Numerical results for thermodynamic properties and
phase equilibria are presented.
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1. Introduction

It is our pleasure to dedicate this article to F. Hirata whose fundamental work in liquid physics
yielded a considerable progress in the molecular theory of solvation for many real complex systems
and phenomena [1]. Molecular theory of solvation is also important for the development of the
microscopic theory of electrolyte solutions which has to be grounded on the explicit consideration
of ion-molecular and intermolecular interactions besides the ion-ion ones in continium model case.
In the work of Hirata’s groups the solvent was treated in the framework of numerical solution of
RISM and 3D RISM theory.

The simplest model for electrolyte solution within ion-molecular approach is the ion-dipole
model consisting of charged hard spheres (ions) and hard spheres possessing dipole moments (sol-
vent molecules). This model is just rougher than the site-site model used by Hirata groups. How-
ever, this model can be analiticaly treated in the framework of the mean spherical approximation
(MSA), which may be important for different applications. The simplest ion-dipole model is the
mixture of particles of equal sizes. This model has been solved analytically in the MSA by Blum
[2,3] and independently by Adelman and Deutch [4]. The analytical expressions for the correlation
functions and thermodynamics for this model were obtained and analysed in [5-10]. For a more
general case of multicomponent ion-dipolar system with arbitrary sizes of particles and arbitrary
valences of ions the MSA solution has been considered in [11-14].

Most recently the ion-dipole model was expanded by association concept [15,16]. As a result,
the possibilities of explicit consideration of the effects of ion association, ion solvation and solvent
hydrogen bonding have appeared. The description of ion association with an extension MSA has
been proposed for pure ionic systems and the associative mean spherical approximation (AMSA)
was formulated [17]. In our previous paper [18] we have solved AMSA for the restricted ion-dipole
model with only ion association and equal size hard spheres for ions and dipoles. In our next
paper [18] this solution was generalized to the case of unequal size of ions and dipoles and for the
presented of ion-dipole and dipole-dipole association besides ionic ones. The explicit expressions for
thermodynamic properties and dielectric constant have been also presented therein. Unfortunately
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this solution is rather complicated. In this paper we reinvestigate our previous solution and the
present results for thermodynamics in a simpler form, which includes only five parameters. Three
of them are of the same sense as in the case without association and two of them are the monomer
fractions of ions and dipoles. We also present the numerical investigation of the effect of ion
associations on the thermodynamic properties of electrolyte solution.

2. Summary of our previous results

The considered model is a three-component mixture of charged hard spheres density p; and
hard spheres with embedded point dipoles density ps. We consider that ions and solvent molecules
are characterized by diameters R; and Ry correspondly. The model is given by the potentials

{OO7 r< R,

U,i(r) = 702
1]( ) ZiZje ’ T>Ri,

0, r < Ri,
Zipe (7p), 1> Ry,

Us(1,2) = {

Ua(1,2) 00, r < R, )
ss\4s = 2 S S ~ A~

% B(fp1)(7p2) — (ip2)], > R,
where Z, = —Z_ =1, e is elementary charge, ps is the value of dipole moment of solvent molecule,

Ris = (Ri + Ry)/2; 7, p are the unit vectors of 712 and the dipole moment, respectively.

The model considered can be supplemented by association between cations and anions and
clusterisation between solvent molecules and between ions and solvent molecules which can disribe
the formation chains or network due to hydrogen bonds between solvent molecules and the forma-
tion of specific solvation clusters around the ions. For the sake of simplicity we focus here on the
dimerisation case characterized by the Mayer function of ion-ion, ion-solvent and solvent-solvent
associative interactions

% (r) = Byio(r — Ry), = f25(r) = Bisd(r — Ris), s (1) = Bss6(r — Rs).  (2)

In AMSA theory, such dimerization is characterized by the system of two mass action law (MAL)
for fraction a; and «y of free ions and solvent molecules respectively:

. 3
11—y s

R
= 112 iBii 00 Ri 524 s Bis ‘O~0 Ris
a; @ n g+7( ) + o n Rgs Gis ( )7
1—as R}
- % — w24m; 7 Bisgil) (Ris) + 0241 Busgll (Ry), (3)
s i

3, are packing fraction for ions and solvent molecules g°(R;)
9P (Ris) and g2 (Rs) are the contact value of ion-ion, ion-solvent and solvent-solvent pair distribu-
tion functions of unbonded particles averaged about orientations of molecules.

In AMSA approach the pair correlation functions hg‘f (12) = ggf — 0y 08, satisfy the Wertheim
version of the Ornstein-Zernike (WOZ) equations [20,21]. The superscript o = 0 shows that the
corresponding particle is free and the superscript a@ = 1 shows that it is bonded. Similarly to the
usual MSA case, the pair correlation functions can be presented in the form [2-14]

where 1, = TR}, 0y = §mpsR2

ha(r) = () = he (1)
W) = (hes(r) + Ry (1),
his(12) = A (r) + hO (r) (D),
hes(12) = B (1) + L (1) (1) + WL (r)(3(7p1 ) (Ppa) — (P1pa))- (4)
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Due to the symmetry of the model considered, the WOZ equation decouples into an electrostatic
and nonelectrostatic parts. The nonelectrostatic part has the form of WOZ equation for two-
component dimerizing mixture [22] in the case considered or dimerizing-chain or network forming
mixture with a more correct treatment of hydrogen-bonding effects between solvent molecules. The
electrostatic part reduces to the WOZ equation in which the dimerization takes place only between
ions. Using the Wertheim-Baxter factorisation technique [23-25] the solution of electrostatic part
of WOZ equations was performed in terms of energy parameters

Ja

27TpiRi/ rdr > hi’(r), ¢ = 27\ /pipsRiRs \f/ drh?'h(r),
0

/3

by = 2mpRI— / —drhl}?(r) (5)
connected with the ion and dipole parameters
22 2 2 4 2
ki Ry = dwe fpiRy, 3ys = gﬂﬁpsps, d=Rs/R;. (6)

The system of equations for parameter (5) should be considered together with equations (3) for
fraction «; and a.

Out of the parameters (5), only three of them create the system of coupled nonlinear equations
which can be represented in the following form

(a?)? + 2a%al 4 a? = KZRZ, (7)
af (K + K3) + al K + as(Kys — 1) = miRi\/3ys , (8)
(K3)? +2KQ K + (Ko — 1)% = 3ys + 53 /512, 9)
where
K9 = o (Aa? 1)), (10)
Ky = % (Aaf + b1 + priziidy) , (11)
Kis—-1 = % Aag — Qﬂg) , (12)
o = [0k - g5t 00 01 580 3+ 308 bl — 28 (13
al = é{pl Zi(1+ Jo) + 1] B2 — (bo-i-b)plznb + b1) s

1 02— 1) - 01) 04+ b0 = 0t) ) (14)
- 261D {Jo(bo 1)y + 12 By + B2 4 b Eéb?(b(f 4251 4+ By + 556] } . (15)
A = B+ Zb?(b? +2b7), (16)
A = J1b0+(1+Jo+%556)(b‘1)+b}), (17)

D = %(1 + Jo)(1+ Jo + 2J1)32 + i5(bO +b1) [(BY +b1) (1 + Jo) + b2 1] s
+ é [(1+ Jo)b} — 00 ]" — @5%0(1;0 +01)%(0 + 207), (18)
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B3.0n = 1+ (_31# , (19)
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+OOR2(080 + ) + (1+ o080 + o) (0 + )
X (556 + 0+ 7 (5p1 Zz(09)%(2 — 5))1 : (20)
bl {blplzu { (69)%(2 — 6) + 686(2 + Jo) +ﬂg(1+J0)]}
| gt @82 6) 4 5 + 651 - 1)
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As a result we have shown that the solution of AMSA for ion-dipole model reduces to the system of
nonlinear equations for five parameters Jp, b, b2, a; and . This system can be solved numerically,
for example, using Newton-Raphson method. For ilustration the dependence of these parameters on
ion concentration ¢; = —2— is presented in figure 1. Parameters of the model considered correspond

pitps

R I R L R L R L R | 0,0 L ) 1 ) 1 ) 1 ) 1 ) 1
0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0

Figure 1. Concentration dependence of the parameters of analytical solution of AMSA for ion
dipole model. Solid lines correspond to the model with association parameters By = 10, Bis =
Bss = 0. Nonassociative case is presented by dotted lines.

to the solution of NaCl in methanol: the dielectric permetivity of pure methanol ¢ = 32.5, ionic
diameters R; = 2.79 A, the diameter of molecules Ry = 4.7 A, the parameter of ion association
Bj; = 10 and the parameters Bj; = Bss = 0. For comparison, the results for the case B;; = 0 are

400



lon-dipole model for electrolyte solutions

also presented by dotted line. We can see the importance of ion association for all parameters Jy,
by and b,.

3. Thermodynamics

Using the Hoye-Stell scheme [26] for the calculation of thermodynamics in MSA extended by
Kalyuzhnyi and Holovko [27] to the AMSA case, the thermodynamic properties of ion-dipolar
system in AMSA approach can be calculated [19]. The excess internal energy of the system is
equal to

1
5

el 1 1
ﬁV = - K2R (Jo + J1) —2niRig\/3yS(b‘f+b%) — 6ysbs

(23)

The pressure, the chemical potentials and free energy contain three different contributions: the hard
sphere contributions (HS), the contributions from the mass action law (MAL) and electrostatic
contribution (el).

For example, the total free energy is equal to

% _ 6AHS ﬂAMAL BAel

. 24
\%4 % + \%4 + v (24)
The chemical potentials can be found according to the relation
0 (BA HS MAL el
L e . 25
Bra = 5 - ( 7 ) B + Bra "+ Bug (25)

where a =7 or s.
The expression for the pressure can be found according to the relation

A
Bp =5 Patta — 67 = Bp"™ + Bp™MAt + pp©l, (26)

For the hard sphere contribution we can use expressions for thermodynamics of mixed hard sphere
fluids obtained in the Percus-Yevick approximation [28]
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= —p(m-&) - - , 27
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paS = ( + + ; 29
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where &, is given by
™ n
=5 > peol (30)
The MAL contribution for the free energy can be presented in the form [20]
AMAL 1 1
B = {Pi Ino; + §pi(1 - ai)} + {ps In oy + ips(l — as)} . (31)
The electrostatic part of the chemical potentials for ions and dipoles is expressed as
1 1
Bus' = e, [’@?R?Jo — Rilti5/3ys 5(1)} ) (32)
1 KiRi 1
o = g [ 5 V/3us (b1 +b1) + 536ysb2] : (33)
S
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Electrostatic part for the pressure is given by

Bt = T4 > pappR2,Sp [hav(Rab) b e (Rab)wa] + }/J?Zan ohg(r) R
3 a,b ‘ 371 or —R
where zs =1,
11
e ( 10 ) (35)
7 1 2 p2 1 0 1 1
J = [FE(Jo+ 1) 4mRig\/ﬂ (b9 +b1) — 18ysba g5 | - (36)

hat(Rap) are the contact values of the corresponding harmonics of the electrostatic part of corre-
lation functions
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For gS_O_ (R;) in accordance with Bernard-Blum exponential approximation we use the exponen-
tial form [29].

9L (Ri) = g5(Ri) exp(—hi (Ri)) (41)
gs(R) is the contact value for hard-sphere mixture. For illustration, figure 2 presents the dependence

of the ion-ion, ion-solvent and solvent-solvent parts of internal energy and of the total internal
energy of ion-dipole systems on ion concentration ¢; for the parameters

pr=pR +p R =06, y=RJ/Ri=1 By=1,
e? p?
i — = 2007 s — S
b kTR A kTR3

= 563 Bis = Bss =0. (42)

For comparison, the results for the nonassociative case (Bj; = 0) are also presented by the dotted
lines. As we can see the ion association leads to the increase of ion-ion and ion-solvent parts of
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Figure 2. Concentration dependence of the internal energy for ion-dipole model. Solid lines
correspond to the model with association parameters B;; = 1, Bis = Bss = 0. Nonassociative
case is presented by dotted lines.

internal energy and to the decrease of solvent-solvent part of internal energy. As a result, the
changes of the total internal energy are not very significant.

Similar concentrational dependence of pressure, free energy and chemical potentials is illustrated
in figure 3. Since the electrostatic part of pressure is negative, the pressure decreases with the
increase of ion concentration. The ion association makes this tendency wearker. The free energy
also decreases with ion concentration but the effect of ion association has the opposite tendency
compaired with the pressure. At the presence of ion association, the free energy is lower than at
nonassociative case. The chemical potential of solvent molecules decreases with the increase of ion
concentration and the association makes this tendency wearker. The chemical potential for ions
has a nonmonotonic concentration dependence showing the maximum at some concentration. It
means that for higher concentrations, the electrolyte is nonhomogeneous and separates into two
phases with different ion concentrations. The problem of phase equlibria in ion-dipole systems is
considered in the next section. Here we only note that the ion association essentially decreases the
value of ionic chemical potential.

4. Liquid-liquid coexistence

The problem of phase behaviour of electrolyte solutions has been the subject of considerable
effort for the last decade [30,31]. However, the majority of these works were done in the framework
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Figure 3. The concentration dependence of the pressure free energy and chemical potentials.
Solid lines correspond to the model with association parameters By = 1, Bis = Bss = 0.
Nonassociative case is presented by dotted lines.

of the restricted primitive model without explicit consideration of solvent molecules. We can select
only the papers [9,32] in which the ion-dipole model in MSA approach was used for the description
of phase behaviour of electrolyte solutions. The necessity of taking into account the effects of ion
association was noted in [33]. For this purpose we can use the analytical expressions for pressure
and chemical potentials obtained in the previous section. To calculate the liquid coexistance curve
we use the thermodynamical equilibrium condition

PI(T7 nI’CiI) _ PH(T7 ,’/)II’ciH)7
:U'iI = (Tv nIvCiI) = :ui(Tv 77HaCiH)a
pi = (T,n' ¢) = ps(Ton'" ), (43)
I I

where cf, cll, nt and n'! are the concentrations of ions and the total packing fractions n = n; + 75
in two different phases. The obtained results are presented in figure 4 which shows the effects
of ion pairing on liquid-liquid coexistance curve in the ion-dipole model as a function of the ion
concentration ¢; and reduced temperature T* = 1/+/03:3s. The solid line corresponds to the ion-
dipole model with the parameter of ion association Bj; = 10. The dashed line corresponds to the
ion-dipole model without ion association [9]. The results are presented for two ratios (;/0s = 40 and
60. As we can see from figure 4, due to the ion association, the critical temperature decreases and
the critical concentration increases similarly to the pure ion model in MSA and AMSA treatment
[33]. Due to the ion association the coexistance curve is narrower. The effect of ion association
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Figure 4. Liquid-liquid coexistance curves for ion-dipole model with fixed total density p*=0.6.
Solid lines corresponds the model with association parameters Bi; = 1, Bis = Bss = 0. Nonasso-
ciative case is presented by dotted lines.

is more important for a more polar solvent (the smaller value of the ratio (;/f3s). The explicit
consideration of solvent molecules leads to a different total density n in two different phases. The
total density 7 is higher in the phase with higher ion concentration compaired to the phase with
smaller ion concentration.

5. Conclusions

In this paper we have shown that the analytical solution of AMSA for ion-dipole model reduces
to the solution of the systems of nonlinear algebric equations for five parameters. Three of them
being similar to the nonassociative case Jy, bi, by, are internal energy parameters. Two other
parameters o; and g are monomer fractions of ions and dipole molecules. We have also obtained
the analytical expressions for the free energy, pressure and chemical potentials in a simple form.
Starting form this expressions the liquid-liquid coexistance is investigated. This result is presented
in figure 4. Similar to the van der Waals theory for simple fluids, the presented curves are assymetric
with parabolic behaviour in the vicinity of the critical point despite the MSA and AMSA results
are not simple mean-field results.

The presented numerical investigation demonstrates the importance of the effect of the asso-
ciations on the thermodynamical properties. Due to the ion pairing the coexistance curves are
narrower, the critical temperature decreases and the critical concentration increases. We have
shown that the total density is higher in the phase with higher ion concentration. Since this result
is obtained for the fixed total density of systems, further investigations are needed in order to
understand the total phase diagram of the model considered. Other aspects are connected with
the investigations of the effect of ion-solvent and solvent-solvent association on thermodynamic
properties.
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l[OHHO-AUNONBbHA MOAEsNIb PO34UHIB €1IEKTPOJIITIB. 3aCTOCYBaHHA
acouiaTMBHoOro cepegHboc$epu4yHoOro HabINXeHHs.

M.d.Tonoeko?, B.I.Kanko!?

1 IHCTUTYT di3nkm KoHaeHcoBaHMx cucteM HAH Ykpainm, Byn. CeeHuiubkoro 1, Jlbsis 79011, YkpaiHa
2 LleHTp 6ionoriyHoi §isnkun, Api3oHCbKNI AepxaBHUin yHiBepcuTteT, CLLIA

OtpumaHo 31 cepnHa 2007 p.

Po3B’a30k cepeaHbochepnyHOro HabnmxeHHs NpPeacTaBneHo Yepes N'aTb napamMeTpiB. Tpu 3 HUX aHano-
rivynHi gns 6esacouiaTMBHOIMO BMMaAKy, a ABa iHWMX € MOHOMEPHUMN dpakLUissMK iOHIB Ta AMMNoiB. TOYHI
BMpa3n Oas TePMOAMHAMIYHUX BENNYUH € NMPeACcTaBneHi B NpocTii dopmi. MpeacraBneHi YncensHi pe-
3ynbTaTv AN TEPMOAMHaMIYHUX PYHKLiN Ta pa3oBoi piBHOBaru.

Kno4oBi cnoBa: po3ymHu enekTpoiTiB, iOHHO-AUMNOIbHA MOAESb, acouiaLlis, AMSA, TepmoavHamika,
¢a3soBa piBHOBara

PACS: 61.20.Qg, 82.GO.Lf
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