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An angle dependent site-renormalized theory for the
conformations of n-butane in a simple fluid
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The angular dependent site-renormalized integral equation theory is developed to compute the dihedral con-
formation distribution and intermolecular pair distributions of n-butane at infinite dilution in a Lennard-Jones
solvent. The equations take advantage of the topological diagrammatic expansion of the full angular depen-
dent molecular system by resumming the series in conjunction with the intramolecular degree of freedom. To
first order in an angular basis set, the numerical results of these site-renormalized equations are a system-
atic quantitative improvement over previous methods. In particular, the thermodynamics and conformational
distribution of the solute are essentially indistinguishable from simulation.
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1. Introduction

In contrast to the study of simple liquids, a significant challenge in the study of the statistical
mechanics of molecular liquids is the intricate multidimensional coupling of the pair distribution
functions of molecules. For single-center molecular models based upon familiar multipole methods,
analytic methods for accounting for the translation plus angular dimensions of the pair distribution
functions of rigid molecules have been formally realized for quite some time. Utilitarian concerns
have limited our understanding of the equivalent functions for multi-center site-site molecular model
fluids. In most cases we have only the study of the radially symmetric pair distribution functions.
The most well known example of this class of theories of the structure and thermodynamics of site-
site model fluids is the Reference Interaction Site Model (RISM) theory [1]. Another case is the dia-
grammatically proper interaction site model (PISM) formalism of Chandler, Silbey, and Ladanyi [2]

However, with ever-increasing computational resources available, as well as continued interest
for understanding the detailed solvation and conformations of large, biologically active molecules,
a welcome and increasingly useful trend in recent studies has developed, in which many methods
are being developed for studying higher dimension projections, or averages, of the pair functions
of site-site model fluids. In particular, as demonstrated especially by a significant body of work by
Professor Hirata and his co-workers, the so-called 3D-RISM theories [3], which are a straightforward
conceptual extension [4] of the RISM equations to the 3 spatial dimensions of the orientation-
dependent pair functions for a single, arbitrarily shaped solute, have been used in many diverse
and challenging application areas, including self-consistent solvation models for electronic structure
calculations [5], molecular recognition [6], ionic solvation and transport [7].

A related question is that of the intramolecular conformations and the structure of molecules
in solution. Again, the internal dimensionality of most molecules, especially polymers and bi-
omolecules, delineates the range of the methods developed and available to study the effects of
solvation on systems of interest. Here, as well, the RISM class of theories, and extensions to it,
have been the modern tool of choice for investigating site-site model systems yielding the popular
mean field electrostatics such as Poisson-Boltzmann as the zeroth order term in the expansion.
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While there are conceptually many such extensions, examples include the methods of Pratt [8],
Karplus [9] and Rossky [10], which have been found to be especially useful as a tool for use in
compliment to simulation studies, as well as the methods developed by Eu [11] for the broad study
of the conformations of polymers.

The increasing use of 3D-RISM methods, as well as our own continuing interests in improving
the quantitative predictions and understanding of the theory of liquids, have recently led us to re-
examine the integral equation methods for site-site model systems in some detail [12]. An especially
encouraging recent development [13] was, through means of topological resummation or renormali-
zation for each site in the diagrammatic expansion of the pair functions, the derivation of an exact
set of integral equations for site-site models which is formally equivalent to the rotational invariant
methods of Blum and Torruella [14] for single-center molecular models. The method retains the
general topological form of the PISM formalism of Chandler, Silbey, and Ladanyi [2]. Thus, we
have an exact generalization of the diagrammatically proper site-site interaction site model theory
which includes the full angular dimensional details of arbitrary site-site rigid molecules. In addition
to the formal development, for diatomic models, the quantitative predictions of the theory using
a minimal, isotropic basis, were a significant improvement over existing methods, and, since full
molecular dimensionality is intrinsic to the theory, the 3D structural projections (as well as higher
order projections) are a natural feature of the theory.

This confluence of interests, together with this special tribute to Fumio Hirata, suggests an
extension to intramolecular degrees of freedom. We derive and apply the method to a simple test
case with ample theoretic background and simulation results, and for which the geometry of the
system is simple yet illustrative. In particular, we extend the site-renormalized methods to the
study of n-butane at infinite dilution in the Lennard-Jones fluid. Below, we detail the extension of
the angle dependent site-renormalized theory to n-butane in the Lennard-Jones fluid, a formally
exact method for self-consistently calculating the conformation distribution of the solute, numerical
results, and conclusions.

2. Theory and methods

2.1. A general Ornstein-Zernike method and self-consisten t S bonds

Here and throughout, we study a model system of n-butane at infinite dilution in a Lennard-
Jones solvent [8,10,15,16]. Our discussion assumes throughout that n-butane is represented by four
unique Lennard-Jones sites, and all intramolecular degrees of freedom are assumed rigid except for
the dihedral angle. Thus, the total solute-solvent pair potential has 4 intermolecular terms, plus
the dihedral angle-dependent interaction implicit in the geometry. At infinite dilution, the solvent
distributions are decoupled and uniquely determined by the standard integral equation methods
for a single component fluid [17]. The solvent pair distribution functions are determined by the
familiar Ornstein-Zernike(OZ) equation,

hvv(r) = cvv(r) +

∫

cvv(r13)ρvhvv(r23)dr3 , (1)

where the vv subscript denotes solvent-solvent tags, ρv is the number density of the solvent,
hvv(r) = gvv(r) − 1 is the total correlation function, gvv(r) is the radial distribution function,
and cvv(r), the total correlation function, is defined by equation (1). The solvent closure equation
used here is

cvv(r) = exp(−βuvv(r) + tvv(r) + D(2)
vv (r)) − tvv(r) − 1, (2)

where uvv(r) is the pair potential between solvent atoms, β−1 = k bT , k b is the Boltzmann constant,

T is the absolute temperature, D
(2)
vv (r) is the 4-point, h-bonded bridge diagram, and tvv(r) =

hvv(r)− cvv(r) is the indirect correlation function. This approximation scheme, labeled previously
as the HNCH2 approximation, is formally exact to order ρ2, and has been found to be a useful
compromise between formal exactness and numerical complexity for the Lennard-Jones system [18].
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In order to proceed, we must first detail the angular conventions used throughout. Consider
the interaction between the 4-site n-butane solute and the spherical Lennard-Jones solvent. If we
choose a spherical polar coordinate system relative to the solute and fixed between an arbitrary
site within the solute and the atomic solvent, there are 3 unique angles in the system, the polar
and azimuthal angles of the solvent atom, and the dihedral angle of the solute. Thus, the solute-
solvent functions are, e.g., functions of the set (r, φ b) = (r, θ, φ, φ b), where r is the scalar distance
between the origin site in the solute molecule and the solvent atom, and we label the dihedral
angle φ b and reserve φ as the standard azimuthal angle for the solvent. Since there are 4 sites in
the solute molecule, there are 4 simple choices of origin, and thus 4 unique site-site solute-solvent
distributions. These site-wise solute-solvent pair functions are determined by a simple extension of
the standard molecular conventions [19], with the OZ equations for each site origin defined as

hiv(r, φ b) = civ(r, φ b) +

∫

civ(r13, φ b)ρvhvv(r23)dr3, (3)

where the iv subscripts label a given site i on the solute and v for the solvent. Because we are
at infinite dilution, and since the solvent atom is spherically symmetric, the typical orientation
average associated with the 3rd molecule in the OZ equation does not appear here, though the
orientation dependence is still coupled through the vector dependence of r in civ(r, φ b).

In order to define the closure for this system, it is first necessary to choose a normalization
convention for the intramolecular potential contribution to the system. We must first define how we
will include the intramolecular conformational distribution, s(φ b). There are at least two distinct
ways of conceptualizing the problem. First, we may choose to assign the intramolecular potential
exclusively to single-particle properties, akin to the separation typically invoked in inhomogeneous
fluids. That is, we could separate the problem such that the 2-particle density function is defined by

ρ
(2)
iv (r, φ b) ≡ ρ

(1)
i (φ b)g(r, φ b)ρv, with the single particle densities in turn defined self-consistently

as ρ
(1)
i (φ b) ≡ ρis(φ b), where ρi is the solute density. In this case, the closure does not include the

dihedral potential directly, and we would have, for the hypernetted-chain (HNC) approximation,

civ(r, φ b) = exp(−βU ′
iv(r, φ b) + tiv(r, φ b)) − tiv(r, φ b) − 1, (4)

where U ′
iv(r, φ b) is the total intermolecular potential between all 4 sites and the solvent atom

in the iv coordinate system, excluding the dihedral contribution. In this convention, the Ω−1

normalization in the usual site-site radial pair functions,

giv(r) =

〈

giv(r, φ b)

〉

θ,φ,φ b

= Ω−1

∫ π

0

∫ 2π

0

∫ 2π

0

giv(r, φ b) sin θdθdφdφ b, (5)

is an extension of the standard case for rigid molecules, with Ω =
∫ π

0

∫ 2π

0

∫ 2π

0
sin θdθdφdφ b. How-

ever, we may also include the intramolecular potential directly into the closure, so that

civ(r, φ b) = s(φ b) exp(−βU ′
iv(r, φ b) + tiv(r, φ b)) − tiv(r, φ b) − 1. (6)

In this case, the normalization convention is now

Ω ≡

∫ π

0

∫ 2π

0

∫ 2π

0

exp(−βu(φ b) + δw(φ b)) sin θdθdφdφ b, (7)

where u(φ b) is the dihedral potential, and δw(φ b) is the excess potential of mean force on the
dihedral. This construction for Ω would be necessary to avoid over counting the intramolecular con-
tribution to the pair functions in equation (6). It would be equivalent to choosing the 2-body density

to be ρ
(2)
iv (r, φ b) = ρig(r, φ b)ρv. These distinctions between normalization are a useful, alternate

description of the correspondence [20] between the Stell [21] [equations (4) and (5)] and Wertheim
[22,23] [equations (6) and (7)) conventions in reactive fluids. At infinite dilution, since the OZ equa-
tion is independent of the particular choice, we use the first convention of equations (4) and (5).
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To proceed, we require a self-consistent definition for s(φ b). As with the related problems of
inhomogeneous and reactive fluids, there are several equivalent means to determine s(φ b). Here,
we use a topological identity which may be derived by either the functional integration methods
used by Morita and Hiroike [24], or, more directly, by the equivalent method of Rushbrooke and
Scoins [25] used in demonstrating the term by term equivalence of the pressure integral of g(r) to
the virial series. Consider the definition [17],

ρ
(1)
i (φ b) = ρis(φ b) = ρiA exp(−βu(φ b) + c

(1)
i (φ b)), (8)

where A is an arbitrary constant, and c
(1)
i (φ b) is the solute single particle equivalent of the total

direct correlation function defined by the functional derivative with respect to the density of the
solvent,

civ(r, φ b) =
δc

(1)
i (φ b)

δρ
(1)
v (r2)

. (9)

Following Rushbrooke and Scoins, we recognize that the diagrammatic expansion of c
(1)
i (φ b) is

simply related to the pair distribution function in the solute-solvent system

c
(1)
i (φ b) =

ρv

2

∫

exp

(

−βU ′
iv(r, φ b) + tiv(r, φ b)

)

(

r · ∇rβU ′
iv(r, φ b)

)

dr

=
ρv

2

∫

giv(r, φ b)
(

r · ∇rβU ′
iv(r, φ b)

)

dr, (10)

where ∇r is the gradient operator. The arbitrary constant A is determined by the requirement
that

∫

s(φ b)dφ b ≡ 1, and we have that

s(φ b) = ω−1 exp

(

−βu(φ b) +
ρv

2

∫

giv(r, φ b)
(

r · ∇rβU ′
iv(r, φ b)

)

dr

)

. (11)

The normalization constant, ω, is defined

ω =

∫ 2π

0

dφ b exp

(

−βu(φ b) +
ρv

2

∫

giv(r, φ b)
(

r · ∇rβU ′(r, φ b)
)

dr

)

. (12)

Note that, as with other sum rules, there is a required agreement between all iv coordinate systems,
i.e. s(φ b) must be the same regardless of the site-site coordinate system chosen to perform the
integrals. This is easily satisfied formally by using the usual site-site representation

ρv

2

∫

giv(r, φ b)
(

r · ∇rβU ′(r, φ b)
)

dr =
∑

i

2πρv

3

∫ ∞

0

r3 ∂βuiv(r)

∂r
giv(r)dr, (13)

where uiv(r) is the potential between site i and the solvent atom when site i is at the origin. The
site-site representation for this integral is exact in this case, due to the fact that the integrals must
be independent of the choice of origin. For now, we will leave to later work a more general derivation
and investigation of these equations, which should be generally applicable wherever the inhomo-
geneity, or, equivalently, the intramolecular potential, is a functional form sufficiently localized that
the origin is freely chosen. Below, in combination with a site-renormalized approach to the self-
consistent generation of the giv(r, φ b) functions, we will investigate the numerical consequences of
equation (11) in combination with equations (3) and (4).

2.2. A site-renormalized method for n-butane in LJ fluids

In our previous work, we demonstrated for molecular fluids that the exact molecular OZ and
closure relationships may be easily related to the PISM formalism, which itself provides a subset
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of correct terms. For the purpose at hand, the chief advantage of so doing is that, if we expand the
molecular site-site pair functions in a spherical basis set, then the first, isotropic basis approxima-
tion in the renormalized equations is a significant quantitative and qualitative improvement over
the RISM and PISM methods. Since we consider here a molecular solute at infinite dilution in
an atomic solvent, the diagrammatic complexity is sufficiently reduced so that a brief, illustrative
derivation is easy to present. As mentioned above, we consider n-butane as the united atom limit,
with 4 Lennard-Jones sites. In this system, we label the solvent atom as particle 2, the two interior
methylene sites of the n-butane molecule as 1 and 3, and the exterior methyl sites as 4 and 5. This
system has two unique site-site solute-solvent coordinate systems. In the first system we place the
origin coincident with site 1, with r ≡ r12, fix the z-axis along the 1-3 bond, and fix the 1-4 bond
in space at φ14 = 0. In this case, the dihedral reduces to φ b = φ5, and the total potential is defined

U1v(r, φ b = u(φ5) + u12(r) + u23(|r − l3|) + u24(|r − l4) − u25(|r − l5|), (14)

where l3 and l4 are fixed, while l5 is fixed along θ5 but rotates through the dihedral angle, φ5,
and, where necessary, U ′

1v = U1v − u(φ5). Thus, the 3 unique angles in this system are (θ, φ, φb) =
(θ2, φ2, φ5). The second unique site-site coordinate system is coincident with one of the exterior
methyl group sites of the molecule. Given the coordinate system above for the interior sites, then,
keeping the methyl site labeled 4 fixed in orientation, then for any angle φ5 the exterior site-site
coordinate system is given by simply translating site 4 to the origin, and similarly translating sites
1,3, and 5.

Using the interior coordinate system as an example, we recognize that the potential separates
naturally into 2 contributions, such that

U ′
1v(r, φ b) = uo

1v(r) + ul
1v(r, φ b),

uo
1v(r) = u12(r),

ul
1v(r, φ b) = u23(|r − l3|) + u24(|r − l4) − u25(|r − l5|), (15)

and we again use the labeling of Chandler, Silbey, and Ladanyi in recognition of the fact that the o,
or none, functions depend upon only r, while the l, or left, functions depend upon both r and φ b.

Given this separation of U ′
iv for any of the site-site coordinate systems, the closure equations

also separate naturally into o, l pairs,

co
iv(r) = exp(−βuo

iv(r) + toiv(r)) − toiv(r) − 1,

cl
iv(r, φ b) = exp(−βuo

iv(r) + toiv(r)) ·

(

exp(−βul
iv(r, φ b) + tliv(r, φ b)) − 1

)

− tliv(r, φ b), (16)

and a similar separation holds for the molecular OZ, equation (3). A site-renormalized form of
these equations is determined by recognizing that tliv(r, φ b) in turn has a unique topological rep-
resentation, such that these terms may be separated sitewise,

tliv(r, φ b) = τ l
iv(r, φ b) +

∑

j 6=i

tojv(|r − lj |). (17)

That is, the subset of terms in
∑

j 6=i tojv(|r − lj |) are those diagrams in tliv which are simple coor-
dinate transforms of tojv, and thus depend only upon the position of the j 6= i site. Further, these
diagrams are simply those which, in the isotropic basis, are generated by the S-bond convoluti-
ons in the PISM equations, by definition. The τ l

iv(r, φ b) diagrams are then those which depend
simultaneously upon the position of more than one of the j 6= i sites in the solute. Recognizing
this diagrammatic distinction, we re-sum the left closure and OZ equations (in the isotropic basis)
with respect to to,

c̄l;000
iv (r) = exp (−βuo

iv(r) + toiv(r))

〈

exp(−βūl
iv(r, φ b) + τ l;000(r)) − 1

〉

θφφ b

− τ l;000(r),

h̃o
iv(k) = c̃o

iv(k) + c̃o
iv(k)ρh̃v(k),

h̃l;000
iv (k) = c̃l;000

iv (k) +

[

c̃l;000
iv (k) +

′
∑

j

s̃ij(k)c̃o
jv(k)

]

ρh̃v(k), (18)
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where the prime on the sum in the definition of h̃l;000(k) means that the s45 term is not included,

cl;000
iv (r) = c̄l;000(r) − Φl;000(r),

τ l,000
iv (r) = hl,000(r) − c̄l,000(r),

ūl
iv(r, φ b) = ul

iv(r, φ b) −
∑

j 6=i

tojv(|r − lj |), (19)

the renormalization functions are defined by

Φl
iv =

∑

j 6=i

(

exp(−βul(r, φ b) + to(|r − lj |)) − 1)

)

if i 6= 4, 5

and

Φl
iv =

′
∑

j 6=i

(

exp(−βul(r, φ b) + to(|r − lj |)) − 1)

)

+ to(|r − l5|) for i = 4, 5,

Φl;000
iv (r) = 〈Φl

iv(r, φ b)〉θφφ b
. (20)

Again, the ij = 45 term is not included in the primed sum. The c̃(k), h̃(k) are the usual zeroth
order Hankel transforms of their respective r-space functions. The sij(k) are the intramolecular
site-site distribution functions, with the usual rigid constraint definition

s̃ij(k) =
sin(klij)

klij
(21)

for all i, j pairs in the solute except for the s45(k) pair, the terminus site-site intramolecular di-
stributions. We exclude the s45(r) functions from the renormalized OZ equation, and thus use a
different definition of the Φ functions in reference to the different generating topologies. This is
for the simple fact that, as discussed by Pratt and Chandler [8], the coordinate transformation
s(φ b) → s45(r) is dependent upon integrating over φ b numerically in any case. Thus, unlike the
rigid bonds, there is no numerical advantage to directly pulling these terms through the molecular
equations. As such, we simply integrate φ b in r-space and keep the renormalization terms, Φl

iv, in
the form appropriate. This has the additional property that all φ b terms are chirality-preserving.
We further note that in the case that the φ b angle is kept fixed, and all intramolecular degrees of
freedom held rigid, then s45(r) is uniquely defined, can be included in the OZ equations, and Φl

4v

and Φl
5v have the same form as for the interior Φl

iv terms.

3. Results

The potential model used here is the standard 4-site Lennard-Jones model system used by
several other groups [10,16]. In combination with the standard Lorentz-Berthelot mixing rules
[17], the Lennard-Jones parameters used here for CCl4 are εCCl4/k b = 373.2 K, where K is units
Kelvin, and σCCl4 = 5.27 Å, while the unique sites (Ci the interior, or methylene groups, and Ce

the exterior or methyl groups) for the n-butane model are given by εi/k b = 57.51 K, σi = 3.983 Å,
εe/k b = 91.19 K, and σe = 3.861 Å. For the dihedral potential of the n-butane model, we use the
Scheraga parameters [16] for the potential form

V (φ b) = γ0 + γ1 cos(φ b) + γ2 cos2(φ b) + γ3 cos3(φ b) + γ4 cos4(φ b) + γ5(φ b), (22)

with torsional parameters

γ0/k b = 1115.6 K, γ1/k b = −1462.0 K,

γ2/k b = −1577.8 K, γ3/k b = 368.02 K,

γ4/k b = 3155.6 K, γ5/k b = 3787.5 K. (23)
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The solvent phase point typically investigated for this system is at T = 298 K and ρCCl4 =
0.0063 Molecules/ Å3. In reduced units, this corresponds to a Lennard-Jones liquid at T ∗ =
k bT/ε = 0.796 and ρ∗ = ρσ3 = 0.922. For a useful contrast, both numerically and physically,
we also calculate the results of using solvent parameters corresponding to methane, where we take
the simple approximation that εCH4

/k b = 91.19 K and σCH4
= 3.861, i.e. that to a first approxima-

tion solvent methane is equivalent to the methyl groups of the solute. For this choice of parameters,
the same Lennard-Jones liquid in reduced units is equivalent to ρCH4

= 0.016 Molecules/ Å3 and
T = 72.6 K. We note that quantum effects for this phase point, especially with respect to the
dihedral rotation, may be discernible, but, with that caveat, the choice of methane should still be
reasonably illustrative for the model. Finally, in order to compare the results for the intermolecular
pair functions, we ran 2 molecular dynamics simulations for the CCl4 solvent with the solute fixed
in the cis and trans conformations, using standard simulation methods [26] and 1536 solvent atoms.
Numerical results for the integral equations were calculated using standard methods on a radial
grid of 2048 points and spacing dr = 0.0514 Å. The angular integrations were all calculated using
a regular trapezoid rule method, and satisfactory numerical convergence for all angular integrals
investigated was found using (θ, φ, φ b) = (16, 32, 256) points.

Table 1. Various thermodynamic quantities calculated in this work.

Simulation This work
βUex/N

Solute-Solvent –18.6 ([15]) (–18.0(cis),–17.4(trans)) –18.56
Rotational 1.08 ([15]) 1.12

xg/xt (the dihedral Keq) 0.8 ([16]) 0.83

Our numerical results are summarized in table 1 and below. We report here only the solute-
solvent and solute thermodynamic results. The results using the HNCH2 approximation for the
solvent are discussed in previous work [18]. The excess solute-solvent internal energy, βUex/N , is
calculated from the usual molecular expression, though we take advantage of the fact that the
site-site definitions

βUex/N = 4πρCCl4

∫ ∞

0

〈U(r, φ b)g(r, φ b)〉φ b
r2dr = 4πρCCl4

∑

i

∫ ∞

0

uiv(r)giv(r)r2dr (24)

are exact here by construction. Note, the factor of 2 here for the solute-solvent energy, since there
are 2 equivalent solute-solvent terms in the total excess energy for the mixture. In table 1, the cis

and trans labels refer to the results from our own simulations with the solute fixed in the cis and
trans conformations, respectively. The excess rotational energy of the dihedral angle is, similarly,

βUd
ex/N =

∫ 2π

0

V (φ b)s(φ b)dφ b . (25)

Finally, the equilibrium constant for the dihedral rotation, or, equivalently, the ratio of gauche to
trans conformers for the system, xg/xt, is defined

xg/xt = 2

∫ 2π/3

0
S(φ)dφ

∫ 4π/3

2π/3
S(φ)dφ

. (26)

We note that, in all cases, the thermodynamic results for the present theory are numerically within
the error of the simulation results. The intermolecular distribution functions given below show that
this result is predominately due to the very close agreement of the predicted intermolecular pair
functions to the simulation results outside the first solvation shell.

The most intriguing result of this work is the intramolecular distribution function, s(φ b).
The ratio xg/xt indicates that the structural results for this function are in strong quantitative
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agreement with the simulation results of Rebertus, et. al. [16] This is confirmed in figure 1. The
distribution function is essentially indistinguishable from the simulation results, and is a signif-
icant improvement over the results from the XRISM theory. We note that the construction of
equation (11) is, in an important sense, an exact definition of the basic results of the theory of
Pratt and Chandler [8], in that the packing forces of all solvent atoms in the system on the solute
molecule are aggregated in their effect upon the conformational distribution. The close agreement
of the theory presented here, given the form of the integrand in equation (11), indicates that the
intermediate and long-range structure of the fluid, in aggregate, is an essential part of the force
influencing the conformational distribution of the molecule. We further illuminate the effects of
the solvent through changing the solvent to methane, the results for which are plotted in figure 2.
The effect of the smaller solvent molecule is essentially negligible, and is dominated mostly by the
temperature change, though there is still a qualitative solvent effect.

Figure 1. S(φ b), the intramolecular distri-
bution function for the dihedral angle of n-
butane in CCl4. The solid line is the simula-
tion result of Rebertus, et. al. [16], the dashed
line is the result for this work, the dotted line
is the ideal gas result, and the dot-dashed line
is the XRISM result.

Figure 2. S(φ b), the intramolecular distri-
bution function for the dihedral angle of n-
butane in methane. The solid line is the ideal
gas distribution, the dashed line is the integral
equation result for this work.

To investigate the intermolecular pair functions, we follow Pratt and Chandler [8] and calculate
the site-site solute-solvent radial projections as a function of the dihedral angle, g(r, φ b), defined as

giv(r, φ b) =
1

4π

∫ π

0

∫ 2π

0

giv(r, φ b) sin θdθdφ. (27)

The complete functions for the interior methylene and exterior methyl groups, gi(r, φ b) and
ge(r, φ b), respectively, are given in figures 3 and 4. We compare these functions for g(r, φ b = 0, π)
against our simulation results for the fixed solutes in figures 5–8. There are two primary results
that we take from these plots. First, in the first solvation shell, the integral equation theory ap-
pears to overemphasize the solvent affect on the interior methylene groups of the butane, at the
expense of the solvation of the exterior methyl groups. Second, the secondary solvation structure
is extremely well-represented by the integral equation theory as constructed. In order to further
illustrate the situation, in figures 7 and 8, we show the results of holding the solute fixed in the cis

and trans conformations, respectively, in the integral equation theory. From this, we conclude that
the construction of the integral equations, in particular the choice of using only the linear terms
in the construction of the renormalization functions, overemphasizes the contribution of the inte-
rior methylene groups with respect to the solute-solvent interaction. Further, the sharp secondary
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Figure 3. gi(r, φ b), the solute-solvent aver-
aged radial distribution function as a function
of the n-butane dihedral angle, φ b, between
the interior methylene groups and the CCl4
solvent groups at ρ = 0.0063 molecules/Å3

and T = 298 K. The distances on the x, y axes
are in Å.

Figure 4. ge(r, φ b), the solute-solvent aver-
aged radial distribution function as a function
of the n-butane dihedral angle, φ b, between
the exterior methyl groups and the CCl4 sol-
vent groups at ρ = 0.0063 molecules/Å3 and
T = 298 K. The axes are as in figure 3.

Figure 5. gi(r, φ b = 0), the solute-solvent av-
eraged radial distribution function with the
solute angle in the cis conformation, between
the interior methylene groups and the CCl4
solvent group. The solid line is our simulation
with the solute fixed, and the dashed line is
the result of the integral equation theory.

Figure 6. gi(r, φ b = π), the solute-solvent
averaged radial distribution function for
the trans conformer, between the methylene
groups and the CCl4 solvent groups. The line
types are as in figure 5.

shoulder in the exterior distribution function is partially an artifact of holding the solute fixed,
since this feature is qualitatively reproduced in the theory by holding the solute fixed. The overall
effect of the theory as constructed appears to be to push the first solvation shell out some distance
from the exact result for the model.

It is useful to investigate whether these effects are a result of the theory, or whether the
combination of model and theory is to blame. We do this by changing the solvent relative to the
solute, making the solvent size and interaction equivalent to the exterior methyl groups, which
is basically equivalent to making the solvent equivalent to liquid methane. The results for these
calculations are shown in figures 9 and 10 for the cis and trans conformers, respectively. The key
feature here is that, even though the solute is not held fixed in these calculations, the relative size
change makes the solvation structure significantly more detailed, and the theory produces these
results for this system without modification. This indicates that the relative contribution of the
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Figure 7. ge(r, φ b = 0), the solute-solvent
averaged radial distribution function for the
cis conformer, between the exterior methyl
groups and the CCl4 solvent groups. The
solid and dashed lines are the simulation and
the integral equation theory, as in figure 5.
The dot-dashed line is the result from the
integral equation theory holding the solute
fixed in the cis conformation.

Figure 8. ge(r, φ b), the solute-solvent av-
eraged radial distribution function for the
trans conformer, between the exterior methyl
groups and the CCl4 solvent groups. The line
types are as in figure 6.

Figure 9. g(r, φ b), the solute-solvent averaged
radial distribution function for the cis con-
former, between the solute groups and the
methane solvent groups. The solid line here
is for the exterior methyl groups, the dashed
line is for the interior methylene groups.

Figure 10. g(r, φ b), the solute-solvent aver-
aged radial distribution function for the trans

conformer, between the solute groups and the
methane solvent groups. The line types are as
in figure 9.

renormalization functions in the theory is sensitive to the details of the system under investigation.
Given the structure of the theory, and the results here, it would seem that this particular choice
of renormalization function should be most useful for the study of solutes that are large compared
to the solvent constituents.
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4. Conclusions

In this work, we presented an angle dependent site-renormalized integral equation theory for
calculating the intramolecular and intermolecular pair distributions of n-butane at infinite dilution
in a Lennard-Jones solvent. The equations were derived from the diagrammatic expansion of the full
angular dependent molecular system of equations by resumming the series self-consistently. To first
order, the numerical results of these site-renormalized equations were shown to be a quantitative
method for predicting the intramolecular conformational distributions and solute thermodynamics.
The intermolecular pair distributions between the solute and the solvent molecules were qualitati-
vely reasonable.

We found that the thermodynamics and conformational distributions of the solute were es-
sentially indistinguishable from the simulation results. The intermolecular pair distributions were
also shown to be in qualitative agreement with simulation, but especially better with regard to
the intermediate and long-range solvation structure of the liquid. These results were for a simple
test case. Further work in this area will focus on developing the analysis of intramolecular distri-
butions for larger, more complex molecules, especially polar and charged systems, as well as the
contributions from higher order terms in the angular basis set expansions.
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Орiєнтацiйно-залежна вузол-перенормована теорiя
конформацiї n-бутану в простому флюїдi

К.Дiер1,2, Й.Перкiнс1, Б.Петiт1, Г.Стел2

1 Хiмiчний факультет, унiверситет Х’юстона, Х’юстон, штат Техас 77204–5003, США
2 Хiмiчний факультет, унiверситет Стонi Брук, Стонi Брук, США

Отримано 21 червня 2007 р.

Орiєнтацiйно-залежна вузол-перенормована теорiя iнтегральних рiвнянь розвинута для розрахунку
дегiдрильного конформацiйного розподiлу i мiжмолекулярних парних розподiлiв n-бутану при без-
межному розведеннi в розчиннику з взаємодiєю типу Леннарда-Джонса. Рiвняння отриманi на осно-
вi топологiчного дiаграмного розвинення для залежної вiд кутiв молекулярної системи шляхом пе-
ресумування рядiв з врахуванням внутрiшньомолекулярних ступенiв вiльностi. В першому порядку
по кутовому базису чисельнi результати, отриманi на основi вузол-перенормованої теорiї, ведуть до
систематичного кiлькiсного покращення результатiв, отриманих попереднiми методиками. Зокрема
термодинамiка i конформацiйний розподiл розчинюваної молекули майже не вiдрiзняються вiд ре-
зультатiв комп’ютерного моделювання.

Ключовi слова: структура рiдин, iнтегральнi рiвняння, ротаметричнi стани

PACS: 05.20.-y 05.70.-a 61.20.Gy
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