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Abstract. An analysis of interaction between drifting electrons and optical phonons in 
semiconductors is presented. Three physical systems are studied: three-dimensional 
electron gas (3DEG) in bulk material; two-dimensional electron gas (2DEG) in a 
quantum well, and two-dimensional electron gas in a quantum well under a metal 
electrode. The Euler and Poisson equations are used for studying the electron subsystem. 
Interaction between electrons and polar optical phonons are taken into consideration 
using a frequency dependence of the dielectric permittivity. As a result, the dispersion 
equations that describe self-consistent collective oscillations of plasmons and optical 
phonons are deduced. We found that interaction between electrons and optical phonons 
leads to instability of the electron subsystem. The considered physical systems are 
capable to be used as a generator or amplifier of the electromagnetic radiation in the 10 
THz frequency range. The effect of instability is suppressed if damping of optical 
phonons and plasma oscillations is essentially strong.  
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1. Introduction 

High-frequency properties of electron gas induced by 
plasma and optical phonon oscillations in different 
semiconductor structures were studied in theoretical [1-
9] and experimental [10-12] works. 

When electrons are accelerated by an electric field 
in such a manner that their drift velocity exceeds the 
sound velocity in semiconductor, a large number of 
acoustic phonons can be emitted coherently. This so-
called “Cherenkov acoustoelectrical effect” was pre-
dicted and demonstrated in the 1960s in semiconductors 
[1, 2, 10, 11]. A similar effect for optical phonons was 
also predicted in bulk materials and experimentally 
proven in [10] and [11]. Typical frequencies of optical 
oscillations of the crystal lattice for polar semicon-
ductors are of the order of 10 THz. Thus, that makes 
such systems interesting for high-frequency applications. 

2. Theory 

For our purposes, it is sufficient to analyze the high-
frequency properties of systems with drifting electrons 

and polar optical phonons using the simple hydro-
dynamical model. 

Let ),,( tyxn , ),,( tyxν
r

 and ),,,( tzyxϕ  be the 
volume concentration, velocity of electrons and 
electrostatic potential, respectively. Then, we can write 
Euler and continuity equations [3] as follows: 

( ) ϕ∇−=
τ
ν−ν

+ν∇ν+
∂
ν∂

∗

rrr
rrr
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( ) 0div =ν+
∂
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n
t
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where ∗me,  are the charge and effective mass of the 
electron, respectively; 0ν

r
 denotes the stationary drift 

velocity of electrons. The term 
τ
ν−ν 0
rr

 describes 

scattering of the electrons by crystal defects, τ denotes 
the relaxation time. 

The Poisson equation [4] can be written as 
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where κ  and Dn3  is the dielectric permittivity and 
stationary bulk density of electrons.  

Presence of optical phonons in polar semi-
conductors leads to dispersion of the dielectric 
permittivity )(ωκ . The dielectric permittivity as a 
function of frequency can be found using the following 
method. A relation between dielectric permittivity κ  
and polarizability α  can be written as: 

( )πα+=κ 41 .  (4) 

There are two contributions in the polarizability α : 
the atomic polarizability as well as the polarizability 
bound with the dipole momentum, arising due to lattice 
distortion [13]. Let +ur  and −ur  be displacements of two 
oppositely charged ion sublattices. The respective dipole 
momentum is: 

( )−+ −= uueWe rrr
.   (5) 

With the model of harmonic oscillator, the equation 
for the vector W

r
 is 

E
m
eWWW tog
rrrr

=ω+γ+ 2 ,   (6) 

where gγ  is responsible for damping of the optical 

vibrations, toω  denotes frequency of transverse optical 
vibrations of the lattice. 

Using (4), (5), and (6), we get 

ωγ−ω−ω

ωγ−ω−ω
κ=ωκ ∞

gto

glo

i

i
22

22

)( ,   (7) 

where 
∞κ
κ

ω=ω 0
tolo  is the frequency of longitudinal 

optical vibrations of the crystal lattice; ∞κ  and 0κ  
denote the optical and static dielectric constants, 
respectively. Note that dispersion of optical phonons is 
ignored in this paper. 

As ω→∞, we obtain Liddane-Sachs-Teller relation 
[13]: 

2
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

=
κ
κ

∞ to
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The interval of frequencies [ ]loto ωω=ω ,  is called 
in [13] as a residual radiation zone (Reststrahlung). 

Using (1), (2), (3), and taking into account (7), we 
receive a system of the partial differential equations. 

We study the referred system of the partial 
differential equations using the methods of the theory of 
instability [16, 18]. Namely, we consider an unlimited 
homogeneous dielectric medium and an electron gas 
characterized by the certain set of magnitudes U0 (in this 
article, this is the equilibrium concentration and drift 

velocity). At a certain moment ( ) ( )trUUtrU ,, 0
rr ′+= , 

where the magnitudes with primes characterize 
deviations from the respective steady-state values. 
Assuming sinusoidal variations for all perturbed 
quantities U ′ ∝ tirkie ω−

rr

, where k
r

 is the wave vector, rr  
is the radius-vector; ω  and t denote the frequency and 
time respectively. Thus, we suppose that the perturbation 
is the wave packet with a limit size, and plane waves are 
its separate Fourier components. Due propagation, the 
package “spreads”, and its amplitude (in unstable system 
with ( ) 0Im >ω ) grows up. At the same time, as it is 
inherent each wave packet, it will move in space [18]. 
The main problem of the theory of instability is to study 
exploration of the package behavior in some fixed 
region. 

According to the theory of instability [16], it is 
necessary and sufficient be aware of connection between 
the frequency and wave vector to characterize behavior 
of the wave packet. Thus, all problem is reduced to 
determination and investigation of the dispersion 
relations. If the dispersion equation suppose some 
complex solutions, then this physical system is capable 
to amplify oscillations [16]. That is the properties that 
make such systems interesting for high-frequency 
applications. 

In the next section, we shall study interaction 
between drifting electrons and optical phonons in three 
different physical systems. The main differences among 
them will be given in the next sections. Using methods 
of the theory of instability, we shall prove that these 
physical systems are capable to generate electromagnetic 
radiation in the 10 THz frequency range. 

3. An analysis of the dispersion equations 

In this section, we have represented the results without 
taking into account an electron scattering on the crystal 
defects (i.e. τ→∞). An analysis of scattering contribution 
to the increment of instability (the imaginary part of 
frequency) will be given in Section 4. 

3.1. Interactions between three-dimensional electron gas 
and optical phonons 

Let us assume that 3DEG is in bulk polar semiconductor, 
and has the unperturbed carrier density Dn3  and drift 
velocity 0ν . There is also the electrostatic potential 

),,,( tzyxϕ defined everywhere inside the structure. 
After substitution of perturbations in the system of 

partial differential equations, the problem is reduced to 
solution of a homogeneous system of algebraic 
equations. Setting the determinant of these equations to 
zero yields the dispersion relation 

( )
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where it is designated: 
loω
ω

=Ω , 
lo

k
K

ω
ν

= 0 , 
lo

to

ω
ω

=γ , 

lo

pl
pl ω

ω
=Ω , 

∗
∞κ

π
=ω

m
ne D

pl
3

2
2 4

. The value plω  is called as 

the plasma frequency. 
The equation (9) is quadratic to wave vector K, so 

it is simple to find two radicals: 

ΓΩ−Ω−

ΓΩ−Ω−γ
Ω±Ω=

i
iK pl 2

22

2,1 1
. (10) 

It is obvious that in the certain interval of 
frequencies the imaginary part of the wave vector 
becomes nonzero. If Γ → 0, then this interval of 
frequencies coincides with the residual radiation zone. 

The dispersion equation (9) is solved numerically, 
and we find the frequency as a function of the wave 
vector. The corresponding plots are presented in Fig. 1. 
It is seen that the function )(KΩ  has a positive 
imaginary part, which leads to instability. The hatched 
line displays the Cherenkov criterion ( K<Ω  in our 
labels). According to that criterion, systems, of which 
wave vectors and frequencies are under the hatched line, 
are capable to amplify oscillations. 

 
 
 

 

 
Fig. 1. Real (a) and imaginary (b) parts of the frequency as a 
function of the wave vector for 3DEG (at fixed parameters 
Γ = 0.01, γ = 0.9, τ→∞ and Ωpl = 1). 

Thus, according to common criterion of instability 
and amplification of oscillations [16], it is possible to 
state that the effect of amplification/generation of optical 
oscillations is presented in the considered physical 
system. 

This amplification of optical oscillations by drifting 
3DEG has been considered in papers [1] and [2]. 
Authors used another approaches to solve this problem. 
They specified a possibility of optical phonons ampli-
fication by drift of charge carriers in three-dimensional 
polar semiconductors. 

3.2. Interaction between two-dimensional electron gas 
and optical phonons 

The 2DEG lies in the plane z = 0, is infinitely extended 
parallel to the x axis in both directions, and has an 
unperturbed two-dimensional carrier density (carriers 
per unit area) 0n  and drift velocity 0ν . There is also an 
electrostatic potential ),,( tzxϕ  defined everywhere 
inside the structure, whereas the density and velocity are 
confined to the plane z = 0 and are functions only of x 
and t.  

Two-dimensional electron gas is studied similarly 
to 3DEG. There is )()( 0 znn δ−  instead of ( )Dnn 3−  in 
the Poisson equation (3), where )(zδ  is the Dirac delta-
function. That is the main mathematical difference 
among 3D and 2D situations. 

Substituting ),( txν , ),( txn , ),,( tzxϕ  for  

⎪
⎩

⎪
⎨

⎧

ϕ=ϕ
+=
ν+ν=ν

ω−

ω−

ω−

tiikx

tiikx

tiikx

eztzx
enntxn
etx

)(),,(
,),(
,),(

1

10

10

       (11) 

in the system of partial differential equations, we get 

( )
( )

⎪
⎪
⎪

⎩
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δ
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π
=ϕ−
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4)()(
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It is necessary to introduce two boundary 
conditions to solve the set of equations. The first of them 
is the requirement of continuity of the potential at the 
point z = 0. The second one describes the field jump at 
the point z = 0. Besides, the potential must decrease as 
z → ∞. Hence, we can find a potential at the point z = 0: 

( ) ( ) ( )kk
nez

Φωκ
π

=ϕ 1
0

2
. (13) 

By definition, put 

1, Re( ) 0,
( ) ( ) ( ) 1

1, Re( ) 0,
k

k k k
k

≥⎧
Φ = Φ Φ =⎨− <⎩

. (14) 
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Fig. 2. Real (a) and imaginary (b) parts of the frequency as a 
function of the wave vector for 2DEG (at fixed parameters 
Γ = 0.01, γ = 0.9, τ→∞ and ν = 1). 
 
 
 

Then, the potential is substituted in the first of 
equations (12). Setting the determinant of the 
homogeneous system of algebraic equations (12) to zero 
yields the following dispersion relation: 

( ) ( )KK
i
iK Φ
ΓΩ−Ω−

ΓΩ−Ω−γ
ν=−Ω 2

22
2

1
2 , (15) 

where all the magnitudes designated by the same 
notations as in equation (9), ν denotes the term 

lom
ne
ωνκ

π
∗

∞ 0

0
2

. 

The equation (15) is quadratic to the wave vector 
K. Taking (14) into account, it is simple to find four 
analytical solutions for K: 
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i
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i
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 (17) 
It is possible to show that in the certain interval of 

frequencies the imaginary part of the wave vector is not 
equal to zero. Solutions of the dispersion equation are 
represented in Fig. 2. It is obvious that the function 
( )KΩ  has the positive imaginary part (instability). The 

hatched line maps the Cherenkov effect. 

3.3. Interaction between two-dimensional electron gas 
and optical phonons under the metal electrode 

Let us assume that 2DEG lies in the plane z = 0, is 
infinitely extended parallel to the x axes in both 
directions, and has the unperturbed two-dimensional 
carrier density 0n  and drift velocity 0ν . The electro-
static potential ),,( tzxϕ  is defined everywhere inside the 
structure, whereas the density and velocity are confined 
to the plane z = 0 and are functions only of x and t. The 
symbol h denotes the distance between the electrode and 
2DEG. 

High-frequency properties of two-dimensional 
electron gas under the metal electrode are studied similar 
to the case with 2DEG (without any electrode). The 
difference consists in boundary conditions. Now, it is 
necessary to consider the presence of the metal 
electrode. The first boundary condition is an equality to 
zero of the potential at the point z = h, which is cased by 
the equipotential surface of the metal. The second of 
them is the requirement of continuity of the potential at 
the point z = 0. The third condition is presence of the 
field jump at the point z = 0. In addition, the potential 
must decrease as z → –∞. Thus, we can find a potential 
at the point z = 0: 

( ) ( )
( )( )khken

kk
e

z
Φ−−

Φωκ
π

=ϕ
=

2
1 12

0
. (18) 

Then, the potential is substituted into the first of 
equations (12). Setting the determinant of the homo-
geneous system of algebraic equations (12) to zero 
yields the following dispersion equation: 

( ) ( ) ( )KKe
i
iK KSK Φ−
ΓΩ−Ω−

ΓΩ−Ω−γ
ν=−Ω Φ− )(

2

22
2 1

1
4 , 

 (19) 

where 
0

2
ν
ω

= loh
S . 

It is possible to recreate the dispersion equation 
(15) as h → ∞ (as 1>>KS ), because 

( )KSKe )(1 Φ−− 1≅ . This can be understood as follows. 
If the metal electrode is sufficiently far from the 
transport channel, then the 2DEG influence is not 
appreciable.  
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Fig. 3. Real (a) and imaginary (b) parts of the frequency as a 
function of the wave vector for 2DEG under the metal 
electrode (at fixed parameters Γ = 0.01, γ = 0.9, τ→∞, S = 0.2 
and ν = 1). 
 
 

As 1<<KS , we get 

( ) 2
2

22
2

1
4 K

i
iSK
ΓΩ−Ω−

ΓΩ−Ω−γ
ν=−Ω . (20) 

The dispersion equations (19) and (20) contain 
complex solutions (the numerical solutions of the equation 
(20) are represented in Fig. 3), therefore this device is 
capable to be used as a generator or amplifier of electro-
magnetic radiation in the 10 THz frequency range. 
Changing the distance between 2DEG and the electrode, it 
is possible to manipulate these dispersion curves. 

4. A dissipative processes and an increment  
of instability 

An analysis of scattering contribution to the increment of 
instability (an imaginary part of the frequency) has been 
made for all the cases considered in this paper. It has 
been shown that dissipative processes influence on 
dispersion curves and are analogous for all the 
considered cases. Therefore, it is sufficient to see any of 
three physical systems. The second of them (2DEG 
without a metal electrode) is presented in this section. 

Tacking scattering on crystal defects into account, 
we obtain the dispersion equation: 

( ) ( ) ( )KK
i
iKiTK Φ
ΓΩ−Ω−

ΓΩ−Ω−γ
ν=−Ω+−Ω 2

22
2

1
2 , 

 (21) 

where T = 
loωτ

1
. If we put T = 0, then the dispersion 

relation becomes the same as (15). 
The numerical solutions of the equation (21) are 

illustrated in Fig. 4. As we can see in Fig. 4, dissipative 
processes lead to a shift of the imaginary part of the 
frequency and/or decreases the increment of instability. 
For the comparison of cases (a) and (b) it is seen: if 
Γ = T, then the imaginary part of the frequency has a 
shift, but curves do not split. 

Thus, changing the parameters γ, ν, Γ, and T 
reduces to variation of the increment of instability 

( )( )KΩIm . In particular, at certain fixed values of these 
parameters, it is possible to realize the situation shown in 
Fig. 5a, i.e. maximum of the ( )( )KΩIm  is equal to zero. 
If ( )( ) 0Im ≤Ω K , then the effects of amplification and 
generation of optical vibrations are absent. Therefore, it 
is necessary to analyze this situation. 

At some values of parameters γ, ν, Γ, and T, at the 
certain point 0K , the peak of the imaginary part of the 
frequency tends to zero value (as shown in Fig. 5a). If 
we know 0K  and fix parameters γ and ν, then it is 
possible to get three curves shown in Fig. 5b. These 
curves are built at the fixed parameter γ = 0.9, and have 
the following indexation. The curve 1 is built at the fixed 
parameter ν = 0.5; curve 2 is built at fixed ν = 1; curve 3 
is built at the fixed ν = 1.5 (the magnitude ν is 
continuous, so we can build the perpetual amount of 
these curves). Each of these curves is a geometrical 
place of points, and these points correspond to critical 
values of the parameters Γ and T. In addition, each of 
them is the boundary between the region of the pertur-
bation damping and region corresponding to 
amplification/generation of optical phonons. 

If γ and ν are fixed, then it is necessary to 
examine only one of displayed curves. If magnitudes Γ 
and T belong to the critical curve or lie above it, then 
corresponding perturbation has been damp. Suppose 
fixed parameters Γ and T are under the curve; then 
effects of amplification and generation of optical 
vibrations take place. It is clear that any pair of fixed 
values Γ and T create the certain point at the plane 
presented in Fig. 5b. The longer the distance between 
this point and the critical curve, the stronger 
contribution of damping effects (in the damping 
region), and greater increment of instability (in the 
amplification/generation region). In particular, if 
Γ = T = 0 (this indicates that the dissipative processes 
are absent in the system), then an increment of 
instability will be the greatest one. On the other hand, 
the stronger the dissipative processes, the faster 
perturbation will be damped. 
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Fig. 4. Increment of instability as a function of the wave vector 
for 2DEG (at fixed parameters Γ = 0.1, T = 0.2 (a) and Γ = 0.2, 
T = 0.2 (b)). 
 

 

 
Fig. 5. Increment of instability as a function of the wave vector 
for 2DEG (at fixed parameters Γ = 0.73, T = 0.73 (a)). The 
measure between the amplification/generation of the optical 
vibrations region and damping of the perturbations region (b). 

Using Fig. 5b, it is possible to make the following 
analysis. Even if electron scattering on crystal imper-
fections are inappreciable T → 0, but damping of optical 
phonons is essentially strong (Γ >> 1), then the effects of 
amplification and generation will be absent. Even if we 
could neglect the optical phonons damping Γ → 0, but 
there are many imperfections in the crystal, then 

( )( ) 0Im <Ω K , and this leads to damping of perturba-
tion. 

Let values of parameters Γ and T create the point at 
curve 2 in Fig. 5b. 

 If we increase the density of electrons (increase the 
parameter ν), then ( )( ) 0Im >Ω K , and this leads to 
instability. 

So, it is possible to make conclusions about the 
possibility of amplification/generation of optical oscilla-
tions in the considered physical system by using Fig. 5b.  

5. Conclusion 

In this paper, we have deduced and studied the 
dispersion equations that describe self-consistent collec-
tive oscillations of plasmons and optical phonons. 

Collective interaction between charge carriers and 
optical vibrations in the crystal lattice leads to reorga-
nization of dispersion curves in residual radiation zone 
and also depends on dimensions of the system. 

Our analysis of the dispersion curves for 3DEG and 
optical phonons is presented. A convective instability 
and amplification of optical oscillations by drifting 
electrons take place in this physical system. 

Examination of the dispersion law for 2DEG and 
optical phonons is performed. Instability and ampli-
fication of the optical phonons by drifting electrons take 
place in this system. 

Investigation of the dispersion equation for 2DEG 
under the metal electrode is presented. An instability and 
amplifications of optical vibrations of the crystal lattice 
by drifting electrons take place in this physical system. 
Changing the distance between 2DEG and electrode 
gives the possibility to manipulate dispersion curves. 

The dissipative processes lead to diminution of the 
instability increment in all the considered cases. The 
effect of instability is suppressed if damping of optical 
phonons and plasma oscillations is essentially strong. 

Thus, all the considered physical systems are 
capable to be used as a generator or amplifier of electro-
magnetic radiation in the 10 THz frequency range. 
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