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Abstract. The main purpose of this overview is to make an effort at joining the widely 
spread practical tendency of “damping the noise” with the non-apparent but presumably 
perspective thesis “using the noise” through the realization of “information properties of 
noise”. The paper deals with physical peculiarities of the equilibrium thermal radiation, 
which have been considered within the black body model for the case of ultimate 
restrained photon flows inside an ideal (“lossless”) optical communication channel. 
Restrictions connected with the uncertainty relations have been used to determine critical 
interrelations between the thermal radiation parameters and the sizes of the thermal 
radiator and the ideal photodetector. The conception of the “intrinsic micro-amounts of 
chaos” has been proposed, and its usefulness was discussed. Principle feasibility has been 
considered for a distant identification of a small-sized thermal radiator by means of 
detecting its thermal radiation. A single small-size radiator has been phenomenologically 
treated within the black body model. It has been shown that it is possible to obtain a 
quantitative evaluation of the temperature and the size of a small-size radiator through 
measurement of the thermal radiation fluctuations in case when the optical image of the 
radiator is unavailable.  
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1. Introduction 

Nowadays, the fluctuation diagnostics can be considered 
as one of the most promising methods to reveal hidden 
defects in functional systems (starting from the 
mechanical up to biological ones, including highly 
organized systems). The early diagnostics of undesirable 
changes in operation of functional systems can be 
reached using the spectrum of fluctuations (noise) in 
their working parameters. The major advantage of these 
fluctuation methods lies in the fact that defects in 
functional blocks can be revealed not by finding the 
defect itself but using the permanent registration of 
changes in fluctuation spectra of respective parameters 
inherent to these weak functional blocks. In this way, the 
virtual defect can be marked much earlier than it begins 
to act as a direct “danger in a real time-scale”. 

Well known are critical situations arising in 
operation of modern electronic structures, which take 
place as a result of aging and fatigue in crystalline 

materials, crystallization of amorphous materials and 
structural changes in compounds, adhesives and many 
other constructive materials. 

Modern electronic equipment based on VLSIC is 
also dependent on “tyranny of quantities”, and, naturally, 
every electronic microelement cannot be controlled 
directly. 

From the viewpoint of these considerations, a 
specific interest is related with distant “noise” 
identification of small objects, sizes of which can be 
changed with time (objects wear or degrade). So, for 
example, information capability of thermal radiation 
(TR) noise related to the size of the cavity for the 
absolutely black body (ABB) can be confirmed by TR 
energy distributions E(λ) as well as its fluctuations 
within the ABB cavity 〈∆E2〉1/2 for various sizes of the 
cavity. 

The dependences are drawn in accordance with the 
Einstein formula [1] for 〈E(λ)〉 and its dispersion 〈∆E2〉 
with dimension correction [2i)]. It can be seen that in the 
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cavities with the linear dimension Rcav > 70 µm the 
intrinsic fluctuations of TR (〈∆E2〉1/2 within the definite 
wavelength range around the peak of the TR spectrum 
do not exceed the mean value 〈E(λ)〉. However, there are 
crosspoints 〈E(λ)〉 and 〈∆E(λ)2〉1/2 both in the range of 
short (λsw) and long (λlw) waves. So, for Rcav = 200 µm 
λsw = 4.95 µm, λlw = 105.8 µm; for Rcav = 100 µm (not 
shown in Fig. 1) λsw = 7.56 µm, λlw = 42.58 µm. For 
Rcav = 70 µm, there is one tangent point λtg = 16 µm.                 

In cavities with linear dimensions < 70 µm, TR 
fluctuations 〈∆E(λ)2〉1/2 can exceed 〈E(λ)〉 quite 
considerably (see, for instance I(λ) and i(λ) for Rcav = 
20 µm). These facts can be used to verify specific 
calculations of TR for small objects. To measure 
adequate statistical data (mean values and dispersions) 
for multi-element objects or stochastic systems (e.g., 
VLSIC or stochastic ensemble of small objects), one 
should, first of all, estimate the principle optical-and-
physical limitations for obtained optical information. 

Optimistic conclusions [3] (see Chapter 3) as to the 
application of remote diagnostic methods are not 
absolutely obtainable in practice; they require further 
investigation based on fundamental positions. The 
general aspects of ABB TR physics solved long ago do 
not comprise, however, the set of problems arising as a 
consequence of growing interest in TR. We mean the 
above mentioned remote “noise” identification of 
radiators with small sizes (RSS) [3] that, in definite 
conditions, can be used to control the correspondence of 
RSS to the factors of their reliability [4]. The main 
physical differences between TR of RSS and TR of ABB 
are determined by the size limitations in the number of 
TR modes within the RSS cavity [2ii]. Peculiarities of 
RSS TR behavior in various physical conditions 
providing transfer of optical information are determined 
not only by the size of the RSS cavity but also by the 
respective fundamental limitations [1, 6-10] related to 
the smallness of RSS and/or photodetector (PD) 
operating as an element of an ideal (“without losses”) 
optical information channel (OIC). 
 

 
Fig. 1. Spectral distributions 〈E(λ)〉 and 〈∆E(λ)2〉1/2 within the 
ABB cavity of finite sizes (α(λ), ϕ(λ) Rcav = 200; γ(λ), ψ(λ) 
Rcav = 70; I(λ), i(λ) Rcav = 20 µm). 

2. Fundamental limitations of TR 

It is suggested that ABB keeps its physical model for 
RSS and allows to determine the differences between TR 
from RSS and ABB. In what follows, we shall use the 
conventional characteristics of photons [6-10]: 

photon energy – 
hν =  hс / λ    (1.1) 
(с – light velocity; h = 6.62⋅10–27 erg⋅s; π= 2/hh ),   

photon momentum – 

kM
r

h
r
= ; λ= /hM

r
,  (1.2)  

as well as uncertainty relations between  
the energy E and time t: 

2/htE ≥∆⋅∆ ;   (1.3) 

the momentum М and coordinate x:  

2/hxM ≥∆⋅∆
r

;  (1.4) 

the number of photons N  and photon phase ϕ:  

2/1≥ϕ∆⋅∆N .  (1.5) 

The equilibrium ABB TR is determined by the 
Bose-Einstein statistics; the mean number of photons in 
the mode with the frequency ν at the temperature Т(К) is 
calculated using the Planck formula 

( )[ ] 11/exp −−ν= kThn . (1.6) 

The TR energy density in the ABB cavity with the 
dimension correction [2i)] in the square brackets of the 
formula (1.7) 
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where 〈R〉 is the linear dimension of the ABB cavity that, 
for simplicity, is suggested to be of a cubic form. 

2.1 Radiator and PD in the scheme OIC  
“without losses” 

To find the conditions for the realization of an ideal 
(“without losses”) OIC that contains RSS and an ideal 
PD, we use the expressions (1.1) to (1.5).  

It seems obvious that in the case of an open OIC 
the greater the distance between the radiator and the PD, 
the more profitable to form of the most narrow beam. It 
provides a minimum in power losses of TR transferring 
information. Taking into account that photons do not 
interact between each other in a free space [7], the 
minimal angular dimension of the light beam θmin , when 
the mode population 〈n〉 of TR is low, can be determined 
through the uncertainty of the photon momentum ∆М1  
as θmin = ∆М1 / М1. It follows from the inequality (1.4) 
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that using a definite TR wavelength λ and the radiator 
dimension R ≅ ∆x we cannot obtain the beam angular 
dimension less than 
θmin≥ λ / 2 R .               (1.1.1) 

Also, it seems obvious that the linear dimension of 
PD – D and the maximal trace length – Lmax for the ideal 
OIC are related geometrically; within the range of small 
angles it is 
θmin  ≅ D / 2Lmax  (1.1.2)  
(the case is schematically shown in Fig. 2: the dimension 
D exactly covers the open side of the angle θmin). 

When setting the values, for example, λ = 10 µm, 
R = 1 cm and D = 10 cm, the maximal trace length for 
OIC “without losses” will only be Lmax = R⋅D / λ = 
100 m. This trivial estimate shows that these principal 
limitations for optical information transfer in the visible 
(0.4 to 0.7 µm) and near infrared (1 to 10 µm) ranges of 
the spectrum are valid in real space scales, and they 
should be taken into account. 

Starting from the principle of reversibility for 
optical rays [8], when detecting TR, and taking into 
account the relation (1.4), it is easy to obtain the 
conditions that limit PD dimensions in dependence of 
essential λ and ∆λ: 
Dmin ⋅(∆λ/λ)  ≥  λ / 2 . (1.1.3) 

Dmin corresponds to the minimal PD dimension that 
is capable of keeping the condition of OIC ideality. The 
inequalities (1.1.1)-(1.1.3) are the analogs of diffraction 
limitations [9i)]. A departure from (1.1.3) lowers the 
probability for a photon hitting the PD area (SPD = π⋅D2), 
which results in losses of received TR. Thus, accounting 
for the expressions (1.1.1)-(1.1.3) the PD dimension 
should be defined by the following inequality 

Dmin ≥ λ Lmax / R . (1.1.4) 

Inverting the inequality sign in (1.1.4), we obtain 
the condition which allows us to observe interferential 
fringes in the classical Young experiment [8-10]. As a 
result, one can draw the conclusion that the minimal 
linear dimension of PD Dmin in an ideal OIC should 
exceed some “interferential length” Lint. The latter 
corresponds to the distance between the slits in the first 
screen within the framework of the Young experiment. It 
means that the minimal PD dimension should be larger 
than the length of coherency for detected radiation Lcoh .  

 
Fig. 2. On the problem of the critical limitation of the angular 
parameters of the light beam. 

Using the second power of (1.1.4), one can obtain 
the inequality  

22 λ≥Ω⋅D  (1.1.5) 

that is equivalent to the Sigman antenna theorem [11] 
regarding light detection by using the method of optical 
heterodyne.  

Thus, as it follows from (1.1.1), (1.1.4), (1.1.5) 
these two criteria of maximal efficiency both for direct 
detecting in OIC “without losses” and for limiting 
efficient optical heterodyning are reduced to the problem 
of “parallelizing” the radiation beams. 

A simple combination of the expressions (1.1.1) 
and (1.1.2) with (1.1.3) gives a “total” inequality that 
defines possible relations both between sizes R, D and 
parameters of TR – λ, ∆λ, and geometry of OIC – θmin 
(or Lmax ):  

3

max

2

min2 λ≥
λ∆⋅⋅

=λ∆⋅⋅θ
L
DRDR . (1.1.6) 

Thus, the set of parameters that defines the 
“extremely efficient” properties of optical information 
systems is limited by the photon volume λ3. Note that 
the widely used inequalities (1.1.1)-(1.1.5) were 
obtained in [5] using the shortest of the known ways 
based on only two theses: 

i) applicability of the uncertainty relations and 
ii) conception of the ideal optical channel “without 

losses”, physical definition of which is reduced to two 
inequalities following from (1.1.1), (1.1.2) and (1.1.3): 

L
D

R 22min ≅
λ

≥θ . 

The process of measuring the physical efficiency of the 
ideal optical channel “without losses” assumes that the 
condition of constancy, for example in the case of the 
ratio D/λ , is valid. 

2.2. Information content of TR 

The statistical analysis [12] shows that the maximum 
efficiency of optical transfer of information can be 
obtained providing the way of light modulation which 
endue it with statistical properties of TR. It is this 
circumstance that forces us to consider here these 
aspects of principle for the limitation of the amount of 
information transferred by the ideal OIC, the information 
carrier in which being only the TR photon flows from 
the radiator to the PD input. Below, we shall consider 
the cases when information is coded only by the 
amplitude of the TR pulse tFN D ∆⋅=imp  (∆t is 

pulse duration). The average information amount within 
the single light pulse (designated as impT ) may be 

approximately expressed by the Shennon formula 
[13, 14] 
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T D . (1.2.1) 

Here, ∆Nthr is the differential threshold for single pulse 
amplitudes as to the number of photons in the pulse.   

2.3. Information efficiency of OIC without losses 

Below, we consider the cases relating to the so-called 
regime of detection limited by noises of the signal itself 
(SNL [15]). It is this situation that allows us to estimate 
extreme limitations of the efficiency of TR in OIC. So, 
the uncertainty relation (2.4) results in limitations in the 
space angle ΩD (1.1.1), which “provides” the condition 
of absent losses in OIC  

222
max

2
min // RLD λ= .  (1.3.1) 

Thus, fixing both physical (λ/D) and aperture (ΩD) 
parameters of OIC without losses and measuring the 
resultant TR spectrum, one can obtain information about 
the physical properties of TR in OIC. Let us illustrate 
two cases. 

1. Signal is not limited in principle; ∆Nthr is set by the 
uncertainty “number of photons – phase” (1.5) 
The distinction for this extreme limitation is the fact that 
∆Nthr is formed by fluctuations of photon phases ∆ϕ 
during the time equal to the duration of the TR pulse 
carrying information. Using the quadratic form of the 
relation (1.3) [16], one can deduce the condition 
adequate to the relation (1.5) 

( )
2
12/12 ≥∆⋅ν⋅∆ tFD . (1.3.2) 

In this case, the extremely low differential 
threshold for TR pulses can be defined through the pulse 
duration ∆t as ∆Nthr = 〈∆FD

2〉1/2 = (2ν⋅∆t)–1, which allows 
us to change the value ∆Nthr in (1.3.1) with the inverse 
phase uncertainty (2ν⋅∆t)–1. With these assumptions, one 
can obtain 

( )

( ) .
42

4
1/81log

2
2

2

2

2
4

21

⎥
⎦

⎤
∆⋅⋅⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅⎟

⎠
⎞

⎜
⎝
⎛
λ
λ∆

×

⎢
⎢
⎣

⎡
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ
−⋅λπ+=

t
L

DAcn

R
cT

  (1.3.3) 

2. The photon flux is limited by inequalities (1.4), 
(1.1.1); ∆Nthr is set by the uncertainty “number of 
photons – phase” (1.5) 

For this doubly limited signal (i.e., both (1.1.1) and 
(1.3.2) are valid), it follows that 
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Fig. 3. Spectral distributions for the information amount within 
the TR pulse for single (1) and doubly (2) limited photon 
fluxes.  

 
Fig. 3 demonstrates both spectra, namely: 

1impT  

and 
2impT . 

The regime of double limitation (formula (1.3.4)) at 
the long-wave range (λ > 20 µm) appears to be more 
informative than the single-limited one (formula (1.3.3)). 
This result begets the hypothesis that the TR photon flux 
limited both spatially (θ ≥ λ / 2R) and in time 
(∆t ≥ (2 ∆N⋅ν)–1) is, to some extent, ”protected on 
noise”.  

The result concerning the spectra 
1impT  and 

2impT  (Fig. 3) can be obtained using the uncertainty 

relations, both (1.3) and (1.5), that is assuming the 
differential threshold for pulses ∆Nthr = 〈∆ND

2〉1/2∆t = 
(2ν⋅∆t)–1. It is indicative of the principal possibility to 
realizing a “noise-proof” regime. But it practical 
realization is not yet obvious. 

3. Information model for the reliability of an 
“organized structure” 

Offered in [4] is the model for determining the a priori-
probabilistic reliability of an “organized structure”, for 
example semiconductor electronic device or its element 
(p-n junction, quantum well, etc.), which is based on the 
opportunity to determine the initial value of the 
information entropy (negentropy [13, 14]). It can serve 
as an initial condition when solving the equation for 
negentropy production, which is analogous to the 
equation for the thermodynamical entropy production. 

The initial conceptions of the work are as follows. 
Every unit can be presented in a single way by a definite 
sequence of Numbers set by technical requirements, 
drawings and technological charts. The given number 
can be realized only with a definite probability, 
therefore, in the initial technical documents the number 
is set with an acceptable departure from the mean value, 
i.e., with the allowance = ±∆Number. The main 
assumption is as follows: the allowance is given in the 
form ±∆N and, consequently it (at least, in a formal way) 
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can be approximately expressed through the dispersion 
of N as 
 〈[∆(Number)]2〉1/2 ≅ ±∆N.  (2.1) 

When operating or storing, such processes as 
wearing or aging destroy the unit and distort the 
allowances of the given Number sequence, which is 
accompanied by an inevitable growth of entropy. 
Consequently, every unit has its negentropy that gives 
way to the calculations. 

The major definitions of the subject under 
discussion in terms of calculus of probability do not 
rearrange the currently developed methods of a priori 
(APR) or a posteriori (APO) estimation of the reliability 
[17, 18]. Here, we offer only a possible information 
model of the problem. 

The idea for the offered model is based on the 
following probabilistic hypotheses: 

A – Rigorously determined sequence of Numbers, 
which is set by technical requirements, drawings and 
technological charts, is an information model of the 
organized structure (OS) that has respective negentropy 
as mentioned above. 

B – Every Number from this sequence is given 
with an accessible departure from its mean value 
〈Number〉, i.e., its allowance = ± ∆N. In the course of 
manufacturing OS, the Number and its allowance are 
realized with a definite probability P(J). 

C – Dispersion for each Number is equal to 
〈[∆(Number)]2〉 and can be expressed via its allowance 
defined by a designer as well as realized by a 
technologist. 

D – Technological operation (TO) is set by a 
complex of conditions ℜ [19], with realization of which 
the event A takes place, i.e., realization of 〈Number〉 
within the allowance ±∆N. There exists some 
distribution of the probability for realization of each 
acceptable departure set for the given technological 
operation.  

E – The total probability for OS to be performed in 
accord with the departures ±∆N set in drawings for their 
mean value can be calculated using the a priori estimate 
of the Bayes method [17]. The total conditional 
probability by Bayes defines the probabilistic space for 
existing OS parameters set by the given construction 
(device) in the adopted technology (i.e., the sequence of 
technological operations) of OS production. 

The negentropy value corresponding to the total 
conditional probability indicating that OS is performed 
in accord with the set departures (±∆N) = 
〈[∆(Number)]2〉 can be used as an initial condition for a 
numeric solution of the entropy production equation [20] 
that expresses evolution of separate OS parameters 
caused by exploitation of OS or its storage (aging). 

In the case of semiconductor technologies 
(growing, doping, preparation of p-n junctions, 
structures, etc.), the thermodynamic approach should be 
used when considering the process of entropy production 

(for example, diffusion and so on). Entropy production 
in thermodynamics [20-22] is related to the presence of 
spatial non-homogeneity in the distribution of 
temperature, partial chemical potentials µi and velocity 
of convective transfer U0. For instance, non-
homogeneity in µi is caused by non-homogeneous 
distributions of component concentrations Ci and/or 
temperature.  

When solving a specific task, it is necessary to 
develop a mathematical (probabilistic) model for the 
process of OS defect generation as a result of testing (or 
exploitation), i.e., a specific mechanism for 
thermodynamic entropy production. This specific 
mechanism can be modeled using the same Baye 
methods for statistical estimation. 

It follows from the posed above: 
1. If in the process of storage or exploitation the 

real allowances lose their relation with the allowances 
set in the technical documentation, then OS cannot 
correspond to the requirements of reliability. 

2. It seems indisputable that OS (semiconductor 
device) can be represented in a unique way by a definite 
sequence of Numbers that contain specific parameters of 
this OS in themselves. Any produced OS is allotted with 
the respective informational (negative) entropy.  

3. The initial value of this informational entropy 
can be calculated to solve the negentropy production 
equation by using physical-and-chemical and other 
numerical data of properties inherent to various elements 
(structures) of the OS.  

4. Considering critical values of the negentropy 
changing in time, it is natural to include them into the 
list of technical requirements as parameters allowing to 
calculate a priori quantitative characteristics of the 
device reliability. 

It is known from practice that whatever complex 
the device would be its regular (standard) breakdown is 
caused by failure of the so-called “weak elements”, but 
not of all the elements of the device in the whole. In 
relation to this, the method offered here can be applied 
only to weak elements, which essentially constricts the 
area for researching the specific mechanisms of 
thermodynamic entropy production and, using the 
respective computer software, will aid processing of the 
data of negentropy production. 

Note in summary that if the Number allowances 
setting the design and technological content of OS to 
relate in a definite approximation with dispersions in 
respective probabilistic distributions 
(Dispersion)1/2  ≅ ±(Allowance), 
then one can obtain access to APR estimation of the OS 
reliability, and then compare it with the initial technical 
documentation. 

It seems natural to perform the “inverse operation”, 
i.e., to estimate the opportunity to determine stability of 
±(Allowance) through remote measuring of the statistic 
characteristics (Dispersion) of system parameters. 
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Especially attractive is the possibility to remotely 
control the physical state of multi-element both 
organized and stochastic structures via their thermal or 
scattered radiation.    

With the aim to ascertain the possibility of the 
“inverse operation”, it is expedient to estimate the 
opportunity for remote metric analysis of TR emitted by 
a stochastic ensemble of radiators with small sizes. 

4. Remote identification of a stochastic  
ensemble of RSS 

If the remote measurements of physical parameters 
inherent to the RSS system are performed using the detec-
tion of TR, then attention should be focused at providing 
the ideal conditions (without reactive losses within the 
trace) and at the possibility of measuring respective photo-
currents at the PD output. The principal opportunity to 
identify a single RSS through its TR has been considered 
in [23] using the relations between the dispersion 〈∆F2〉 of 
a random value F and its mean value 〈F〉  

F

F
qF

2∆
=  .  (3.1) 

Thermodynamic adequacy of the value (3.1) was 
grounded in [24, 25] being based on established 
literature data [1, 6, 15, 26, 29-32] and others. The value 
qF is clearly defined from the physical viewpoint. When 
the thermodynamic conditions (P, V, T) are set, qF 
behaves in chaos like to some “non-changible” basic 
parameter (by another words, as an “eigen-parameter”). 
Below, we have given several expressions for q(F) [3, 
23-25] that can be applied to TR within the cavity of 
ABB: 
intrinsic energy of TR in one mode  

q(m) = 〈E(ν)〉 /Z(ν)⋅∆ν = 〈n〉 ⋅hν, (3.2)           

intrinsic number of photons in the field of TR  

q(n) = (1 + 〈n〉), (3.3) 

intrinsic photon flux within the frequency band ∆νq 

q(f) = (1 + 〈n〉)⋅∆νq,     (3.4) 

intrinsic energy in the field of TR 

q(E) = (1 + 〈n〉)⋅hν, (3.5) 

intrinsic density of energy in the field of TR 

q(ε) = (1 + 〈n〉)⋅hν/V,  (3.6) 

intrinsic TR power within the frequency band ∆νq 

q(P) = (1 + 〈n〉)⋅hν⋅∆νq. (3.7) 

Here, 
1
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function; other notations are common. 
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3

28
c

VZ
ν∆ν⋅π

⋅=ν∆⋅ν  is the number of spatial TR 

modes inside the ABB cavity of V = R3 volume; density 
of TR energy inside the ABB cavity  
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8 ; (3.8) 

ν is the frequency of observed TR, which corresponds to 
the center of the observation band ∆ν; ∆νq is the 
“intrinsic band” of frequencies, one of the variants of 
which can be defined via identical rewriting the ordinary 

formula for TR power [6, 15] PAΩ = ε(λ)⋅ ⎟
⎠
⎞

⎜
⎝
⎛

2
c

⋅A⋅Ω. It 

allows to separate the band ∆νq = c / 2R with a 
phenomenologicaly clear role of the temporal factor that 
determines the TR power in one mode: 
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×≡
  

Applicability of ( )n
V
hq +⋅
ν

=ε 1  (3.6) to 

determine the fluctuations of TR energy 
( ) ( )νε⋅=ν VE  inside the ABB cavity with the volume 

〈V〉 can be confirmed in the following manner: when the 
size of the cavity is constant, in accord with statistical 
rules [19], the TR energy dispersion  ( )[ ]2ν∆E  can be 
written through the dispersion of the TR energy density 
as follows: ( )[ ] ( )[ ]222 νε∆⋅=ν∆ VE . In terms of 

(3.1) and (3.6) this expression becomes  

( )[ ] ( )

( ) ( ) ( ) ,11

22

nhEn

V
hVE

+⋅ν⋅ν=+×

×
ν

⋅νε∆⋅=ν∆
  

which is in full accordance with the conventional 
formulae [1, 26-32]. 

It is this aspect that provides formulation of the 
problem for the remote identification of a stochastic 
ensemble (“cloud”) of radiators with small sizes [2i)], 
but the optical image of separate RSS is absent, which is 
a result of principal optical limitations. This aspect of 
TR photodetection is not yet reflected in the literature.  

4.1. Model for possible identification  
of the RSS “cloud” [3] 

Model (Fig. 4) can be represented as follows: the PD 
aperture allows to observe a part of the RSS “cloud” of 
the area Sobs, within the boundaries of which there is a 
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random number of RSS with the random size Si ≈ 
Ri

2 cm2 distributed over the surface Sobs in a random 
manner with the density χ cm−2, that is 〈N〉 = 〈χ〉⋅Sobs. 
The task is in measuring the current dispersion at the PD 
output. It is assumed that the dispersion 2

NDP∆  of the 
TR power at the input of PD (PND) is formed by TR 
energy density fluctuations εi(λ) inside the RSS cavity, 
by fluctuations of the number 〈∆N 2〉 and sizes 〈∆Sij

2〉 of 
RSS; it means that all three parameters determining the 
TR in the field of Sobs fluctuate. In this situation, it is 
convenient to represent the fluctuating (emitting this TR) 

part of Sobs as a random value ∑
=

=
N

j
ijSS

1
ran . The thermal 

background is created by the “cloud” itself; the external 
background is absent; the optical setup corresponding to 
this approach is illustrated by Fig. 4. 

4.2. Fluctuations of TR and respective photocurrents  
at the PD output 

Within the framework of the above model, the TR power 
flux orthogonal to the emitting surface Sran takes the 
following form at the PD input 

.
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 (3.2.1) 

The values εi(λ), Sij, and N (or χ), from the 
statistical viewpoint, are absolutely independent of each 
other. To define the respective dispersions, let us try to 
use the known statistical relations [19, 30, 31] as well as 
the dispersion theorem [28] for the case when 

∑
=

=
N

j
ijSS

1
rad  and (in our case) both Si and  N  fluctuate, 

and the following relations 22
ii SS = , 

iSNS ⋅=ran  take place. Then, the dispersion of 
the “cloud” emitting area can be expressed as follows  

222
ran ii SNNSSVar ∆⋅+∆⋅= .  

For the dispersion of the TR power, one can obtain 
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(3.2.2) 
The dispersion of the TR density inside the RSS 

cavity can be written   

ii q ε=ε∆ ε
2 ,            (3.2.3) 

where the value qε, by its definition (3.6), is  

( )i
i

n
V

hcq +⋅
λ

=ε 1 .   (3.2.3*)  

Then, assuming that the number N within the limits 
of the observed part of the cloud surface obeys the 
Poisson distribution, i.e., 〈∆N 2〉 = 1⋅〈N〉 [19], after some 
obvious algebraic transformations to deduce the mean 
value of TR power, one can find the general expression 
for the RSS TR power dispersion at the PD input: 
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 (3.2.4)  

Assuming that the ratio 
2

2
ii SS ∆∆  << 1, i.e., 

the RSS sizes are characterized with moderate random 
scattering, and 〈N〉 >> 1, and noting that the product of 
parameters outside the brackets in the formula (3.2.4), 

i.e., NSc
iD ⋅⋅⎟

⎠
⎞

⎜
⎝
⎛ Ω⋅⋅ε

2
 is nothing but the mean 

value of TR power phNP  (3.2.1), we obtain a possible 

working version for the expression of TR power 
dispersion at the PD input: 

( ){ } ,

2

ph

2
ph
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ScP

⋅⋅+ε+×

×⎟
⎠
⎞
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εε

 (3.2.5) 

that contains three unknowns (temperature T, number N, 
and size Si of radiating particles), which should be 
determined from the measurements of the mean power 
value and TR dispersion inherent to the stochastic 
ensemble of RSS. It is also worth emphasizing that within 
the framework of weak approaches 122 <<∆ ii SS  

Fig. 4. Optical model to observe the RSS “cloud”. 
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and 〈∆N 2〉 = 〈N〉 accepted above the power dispersion 
(3.2.5) can be expressed via the mean values of 
fluctuating amounts (〈ε(λ)〉, 〈Si〉, 〈N〉) as well as through 
the intrinsic internal parameter of RSS qε (3.2.3*).  

4.3. Photocurrents at the PD output 

The aforementioned relates to thecharacteristic values of 
RSS TR at the PD input. To proceed to possible realized 
calculations of the “cloud” TR parameters, it seems 
reasonable first to estimate respective photocurrents at 
the output of an ideal PD. Here, we assume that the total 
photocurrent IΣ  consist of three components: 

1) the mean stationary photocurrent phNI  that is in 
proportional to the total stationary mean TR power at the 
PD input (3.2.3):  

,
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 (3.3.1) 

where the value η is the quantum efficiency of PD [15] 
that can be set as equal to unity; e – electron charge. 

2) the shot noise 2
snI  at the PD output, which is 

proportional to the current phNI  [15, 28]: 

ph
2 2 Nsn IfeI ⋅∆⋅=     (3.3.2) 

(here and below ∆f  is the frequency band of the PD 
electronic circuit). 

3) the stochastic component of photocurrent, which 
is caused by the intrinsic TR power fluctuations at the 
PD input [15] and is in proportion to the dispersion 

2
phNP∆  (3.2.5):  
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The factor (2∆f / ∆ν) in the formula (3.3.3), from 
the phenomenological viewpoint, is that fraction of the 
input TR power fluctuations what is registered indeed as 
a power of chaotic in time current at the PD output 
within the band ∆f  (frequency band for the PD 
electronic circuit). Thus, along with phNI  at the PD 
output we can observe the sum of two noise powers 
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 (3.3.4) 
Below, the PD quantum efficiency [15] will be 

assumed to be equal to unity. Then, using the formulae 
(3.3.1)-(3.3.4) for output noise currents measured at two 
wavelengths, λ1 and λ2, with account of (3.6) and (1.7), 
we obtain following two relations q1,2  corresponding to 
the formula (3.1):  
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 (3.3.5) 

Present in the expression (3.3.5) are three 
unknowns that should be determined. These are the same 
values: RSS temperature – T, RSS size – Ri and the 
number of RSS inside the area Sobs – N.  
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 (3.3.6) 

To solve the task, we used the following logic. As 
the “cloud” parameters, in particular 〈Ri〉, 〈N〉, and T 
values, remain unchanged at two different wavelengths, 
while the rest of the values (λ1,2, ∆λ/λ and Ωls) are set by 
experiment conditions, each of  the equations (3.3.6) 
being solved should result in the same value of Ri . It can 
be realized only on condition that the respective 
coefficients in both equations are equal, i.e., they can be 
equated correspondingly. Solving this new system of 
“coefficient” equations (but necessarily in 
combination!), we can find the temperature. For 
example, the equality of coefficients before Ri  
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         (3.3.6*) 
contains the only unknown – temperature T, however, it 
should be solved only in combination with the equality 
for absolute terms in the equation (3.3.6), namely: 
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i.e., by substitution of exp(hc/λ1kT), for instance from 
(3.3.6**) to (3.3.6*), which eventually gives 
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where 
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2,1  are the values 

corresponding to q1,2  measured in experiments at two 
wavelengths λ1,2.  
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Fig. 5. Spectral distributions (Т = 300 К; Sobs = 104 cm2; for 
three RSS sizes: curves ε and η – Ri = 5 µm; α and β –  Ri = 
10 µm; γ and δ – Ri = 20 µm): photocurrents (solid lines): from 

ABB: 
ABBph)( BIB =λ ; from RSS ε(λ), α(λ), 

( ) RSSphNI=λγ ; photocurrent fluctuations (dashed curves): 

from ABB TR 
ABB

2
ph)( BIb =λ ; from RSS η(λ), β(λ), 

RSS
2

ph)( NIb =λ . In doing so, to keep the possibility to 

juxtaposing the mean values with dispersions for various sizes 
〈Ri〉, we kept the condition 〈Ri〉⋅〈N〉 = Sobs = 104 cm2. 

 
The RSS temperature T = 300.17 K calculated 

using the formula (3.3.7) for Q1 (λ1 = 2 µm) = 5 and Q2 

(λ2 = 12 µm) = 30.5 is very close to the temperature T = 
300 K originally introduced into the calculation scheme. 
It allows to deem that the model and approaches used in 
the above calculation scheme do not contain, at least, 
any principal contradictions. 

In the same manner, using the values of stationary 
photocurrents 

2,1phNI , (3.3.1), measured at two wave-

lengths λ1,2 , with the known temperature (3.3.7) one can 
obtain the equation easily solved relatively to 〈Ri〉2:  
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       (3.3.8) 
which enables us to deduce the mean RSS size to the 
second power in the following form:  

Substitution of 〈Ri〉2 into either of the two (for λ1 
and λ2) expressions (3.3.5) allows the calculation of the 
mean RSS number 〈N〉 within the limits of the observed 
“cloud” surface Sobs.  

Along with the above illustrative calculation for the 
RSS “cloud” parameters, spectra phNI  and 

2
phNI∆  (formulae (3.3.1) and (3.3.3)) can be used at 

the intersection points to make the same calculations.  
Shown in Figs. 1 and 5 approximate calculations 

indicate that, from the numerical viewpoint, there are no 
principal problems with measuring the dispersion of the 
“cloud” TR power 

RSS
2

phNI . In relation to this, one 

can use the TR information value at the intersection 
points for the spectra of the mean values of measured 
amounts with the spectra of their dispersions. As a result 

of the comparison between phNI  and 2
phNI∆  at 

the wavelengths of intersection points (shortwave – λsw 
and longwave – λlw) there also arise two (for λsw and λlw) 
cubic equations relative to the RSS size 
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   (3.3.5) 

Both equations give the same value of Ri despite 
the considerable difference between λsw and λlw values. 
For example, the shown in Fig. 6 graphic solution of the 
equations (3.3.5) for Ri = 20 µm (T = 300 K), where 
λsw ≅ 4 µm and λlw ≅ 36 µm, confirms the existence of 
clear relation between the values λsw and λlw (from 
Fig. 5) and the value Ri: the zeroth ordinate values are 
reached for the same Ri (λsw) = Ri (λsl) = 20 µm.   

Thus, it seems possible to maintain that when using 
the relationship (3.1), at least in the ideal case (it means: 
ABB model, ideal PD, absence of supplementary 
fluctuations in TR flow within the trace the RSS “cloud” – 
PD), the task of remote identification of the RSS “cloud” 
components can be solved. Especially, if one has the 
possibility to measure the mean TR power value and the 
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Fig. 6. Graphic solution of the equations (3.3.5) for 
Ri = 20 µm (T = 300 K). 

dispersion of the intrinsic power fluctuations, when, in 
principle, the optical image of the separate small radiator 
is absent. It is obvious that this result can be reached only 
in those cases when the statistical character of chaos 
allows to allot the value qF in the formulae (3.1) and (3.6) 
with the same statistical properties. 

It is seen from the discussion above that the way 
(rather simplified) to solve this complex problem is 
surmountable due to information capability of the power 
dispersion inherent to RSS TR, which is realized via the 
relation (3.1), that is through the “eigen-parameter” qε 
(3.2.2*) that contains information about the RSS cavity 
size. The fundamental basis of this approach lies in the 
mutual statistical independency between the values εi(λ), 
Sij, and N.  

An analogous problem, but more complex owing to 
the external thermal background, will be considered later. 

4. Conclusions 

1. In relation with the problem of registration of 
limited photon fluxes, it is important to emphasize the 
universal character of (λ / 2R) factor developing both in 
classical (limitation of the number of TR modes [2, 3] 
and in quantum (uncertainty relationships (1.3)-(1.5)) 
processes (1.2.1)-(1.2.4). 

 Limitation criteria can be connected both with 
sizes of RSS (Ri) and PD (D) and with physical 
parameters of TR flow. In the “total” composition of 
limitation parameters, the criterion is reduced to the 
“photon volume” = λ3 (1.2.4).  

2. It seems reasonable to make the spectral estimate 
of the information amount transferred by TR “without 
losses” in the regime of extreme limitation of beam 
angular sizes, in accord with (4.2.1). This way enables 
us to automatically realize the physical content of the 
information spectrum but not the “spectral losses” over 
the OIC trace. 

3. The result relating to the spectra 
1impT  and 

2impT  (Fig. 3) can be obtained based on uncertainty 

relations (1.3)-(1.5) (i.e., assuming ∆Nthr = 〈∆ND
2〉1/2∆t = 

(2ν⋅∆t)–1), which indicates the principal opportunity to 
realize the “noise-proof” regime. Consequently, it seems 

natural to use the hypothesis upon the possibility of 
remote controlling the correspondence of the acting 
organized system to the reliability parameters via its 
information model (i.e., growth of the negentropy).  

4. Fundamental basics of the OS reliability are 
described by the equations for the production of 
thermodynamic entropy [23, 24]. However, to solve 
these equations it is necessary to determine its initial 
value, and in the case of OS it is only the zeroth value. 
The information model of the OS allows to calculate the 
probable initial value of the negentropy by determining 
the total conditional probability in accordance with the 
Bayes formula. 

If in the course of storage or exploitation the real 
allowance loses the connection with allowances set by 
technical documentation, then this OS cannot correspond 
to requirements of reliability. 

5. If one connects the allowances for the Numbers 
that define the design-and-technological content of OS 
with the dispersions of corresponding probabilistic 
distributions as the approximate equality (dispersion)1/2 ≅ 
±(allowance), then Bayes formula gives a numeric 
characteristic of the fact that this OS is made in 
accordance with the requirements  of its initial 
parameters. Consequently, it allows calculating the 
initial value of its information entropy to solve the 
equation of negentropy production being based on 
physical-and-chemical and other numerical data about 
the properties of various elements (structures) of OS. 

6. It is known from practice that whatever complex 
is the device its regular (standard) breakdown is caused 
by failure of the so-called weak elements. Respectively, 
the offered method can be applied only to these weak 
elements, which can make it essentially easier to process 
data by using the corresponding software. 

7. Thus, it seems possible to maintain that when 
using the relationship (3.1), at least in the ideal case (it 
means: ABB model, ideal PD, absence of supplementary 
fluctuations in TR flow within the trace of the RSS 
“cloud” – PD), the task of remote identification of the 
RSS “cloud” components can be solved. Especially, if one 
has the possibility to measure the mean TR power value 
and the dispersion of the intrinsic power fluctuations, 
when, in principle, the optical image of the separate small 
radiator is fully absent. It is obvious that this result can be 
reached only in those cases when the statistical character 
of chaos allows to allot the value qF in the formulae (3.1) 
and (3.6) with the same statistical properties. 

8. The conception “intrinsic micro-amounts of 
chaos” [24, 25] in the above example of small radiators 
is described as ( )1

3
+

⋅λ
=ε n

iR

hCq , and its 

usefulness can be also seen in the following: 
– comparison of the value 〈∆F2〉exp obtained by 

integration of the noise spectrum SF(ω) or calculating the 
correlation function KF (0), with the value 〈∆F2〉q deduced 
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in accord with the formula (1) for a given (assumed) qF 
gives information on the adequacy of our conceptions of 
the fluctuation physical mechanism in the studied system; 

– in the case when the stochastic phenomenon is 
not studied sufficiently, computation of the value qF 
itself by using the formula (3.1) taking into account  the 
dispersion 〈∆F2〉exp obtained from experimentally 
measured SF(ω) and KF(0) gives quantitative information 
on the main micro-parameter of the fluctuating system. 
This parameter with its numeric value close to known 
physical (may be fundamental) values can be an initial 
element to build the physical model of the phenomenon 
under consideration. 
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