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Strongly correlated electron systems require the development of new the-
oretical schemes in order to describe their unusual and unexpected prop-
erties. The usual perturbation schemes are inadequate and new concepts
must be introduced. In our scheme of calculations, the Composite Oper-
ator Method is possible to recover through a self-consistent calculation, a
series of fundamental symmetries by choosing a suitable Hilbert space.
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The discovery of new materials with a large variety of unusual and unexpected
properties [1] has opened a new era in the physics of Condensed Matter; new
theoretical schemes must be developed [2]. The most important characteristic of
these new systems is a strong correlation among the electrons that makes classical
schemes based on the band picture inapplicable. It is necessary to pass from single-
electron physics to many-electron physics where the dominant part will be the
correlations among the electrons. Usual perturbation schemes are inadequate and
new concepts must be introduced.

Let us consider a certain Hamiltonian

H=Hlpi(x),...,on(®)], (1)

where set {¢;} denotes band-electron fields. Due to strong correlation effects the
properties of the original electrons {y;} are drastically changed; new excitation
modes will appear and determine most of the observed properties of the system.
It is natural to identify a new set of elementary excitations {¢;} as the basis for
perturbative schemes. These excitations, constructed from the original electron set
(in this sense we call them composite fields), are created by interactions among
the electrons; therefore, their properties will be determined by the dynamics, the
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symmetries of the model, the boundary conditions and must be computed in a self-
consistent way [3]. This aspect enriches the theory and will allow us to realize the
dynamics in the proper Hilbert space where the physical symmetries are conserved.
On the other hand, we know from experiments that highly correlated systems
exhibit an incredible variety of behaviours. It would be very hard to describe such
a complexity using the original fields, unless the exact solution of the model is
available. The presence of new excitations and composite fields introduces into
the theory the possibility to accommodate the multifariousness of experimental
properties.

A theory built on the basis of new excitation modes is, by construction, a self-
consistent theory, and the procedure must be fixed. In particular, we must consider
the following list of questions:

1. The identification of the fundamental set;

2. The statistics and the properties of the new fields;

3. The symmetry and the dynamics in terms of the new fields;
4. The representation where the new fields are realized.

We will now try to formulate a scheme of calculations in which the answers
to the above questions can be found. Then, by considering a particular model, we
will present a practical realization of the theoretical scheme.

The new fields {¢;} are generated by interactions among the bare fields; then, it
is naturally to choose a new set which naturally appears through the equations of
motion. The evolution of the original fields is described by the Heisenberg equation

0

i, 0ilw) = lpi(2), H] = Jip(2)]. (2)
Such an equation generates new fields {J;[¢(x)]} constructed as combinations

of the bare fields. By starting from these fields and by considering new Heisenberg

equations 5
15, %i() = [Yi(2), H] (3)

we generate an infinite hierarchy of composite fields. It is naturally impossible
to solve the infinite system of equations and some truncation procedure must be
adopted. Let us consider an n-component field

1
b= : (4)
Un
and let us choose the first n — 1 fields such as
P i+1
i Vile) = [i(z), H] = Z;%j(—iv) ¥ () I1<j<n—1 (5)
=
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The nth-field v, (x) is determined by the field equation 1, _1(x). The matrix
v(—=iV) is completely determined by the dynamics. Then, we linearize the Heisen-
berg equation by writing

0 .

i5¥(@) = e(=iV) ¥(2), (6)
where the eigenvalue or energy matrix ¢ is self-consistently calculated by means
of the equation

e(=iVo) ({0 (. 1), 0 (y, 1) }) = ({[ (. 0), H] . ¥ (y, 1) }) . (7)

Symbol (---) denotes the thermal average. Derivative operators A\(—iV) are
defined through the relation

A(—iV) f(z) = / Iy Nz, y) f(y). (8)

The rank of the energy matrix is equal to n, the number of components of
vector 1(x). When there is translational invariance, we can invert equation (7)
and it is easy to see that

~1
e = ({ws@), 1,0l }) ({w@.wlw)}) =
1<i<n—1, 1<j<n. (9)

This approximation corresponds to the n-pole expansion of the Green function
where finite life-time contributions are neglected. It has been proved [4] that in this
approximation the choice (5) of the composite operators leads to the conservation
of spectral moments. In particular, the first 2(n — i + 1) spectral moments for the
field ;|1 < i < n—1] are conserved. This is an important property when we recall
that the spectral moments are related to the spectral density function of single-
particle propagators. Also, as shown in Ref. [4], choice (5) leads to an equivalence
between the n-pole approximation and the spectral density approach [5], although
very different results are obtained when different procedures for self-consistency
are used [6].

In general, the composite fields will not satisfy canonical anticommutation
relations and their algebra must be calculated starting from the canonical algebra
of the electron fields. Owing to this fact, the Wick theorem and the standard
perturbation schemes cannot be applied. Examples of the new algebra will be
presented further in this article.

The properties of the new fields are fixed by a series of parameters which
must be self-consistently calculated. These parameters are expressed as expectation
values of composite fields. When the composite fields belong to the set they can
be expressed in terms of a single-particle Green function and calculated by a series
of coupled self-consistent equations.

However, it may happen that some of the parameters are expressed as expecta-
tion values of higher-order composite fields that do not belong to the basic set. In
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this case, owing to the approximation considered, the parameters are not strictly
bound by the dynamics and there is a freedom in the procedure to fix them. At
this level the powerfulness of the scheme manifests itself: one can use this freedom
to choose the right representation. In the construction of a physical theory we
must distinguish two levels. On the one hand, we have a microscopic level where
we are concerned with particles. The basic ingredients are the Heisenberg fields
which together with the canonical commutation relations describe the dynamics.
The physical laws (the equations of motion, the conservation laws, the symmetry
principles) are expressed as relations among the operators. On the other hand,
we have the macroscopic world where we are concerned with the average values
of operators. At the level of observation the physical laws manifest themselves as
relations among matrix elements, and a suitable choice of the Hilbert space must
be made. When some approximation is introduced, the states are not the exact
eigenstates of the Hamiltonian; the expectation values are also not the exact ones.
As a consequence, the relations among the operators are generally not conserved
when the expectation values are calculated. A striking example of this is the viola-
tion of the Pauli principle. A convenient way to take care of it is to operate in the
representation of the second quantization where the Pauli principle manifests itself
through the algebra. It is known [7] that in most of the approximation schemes
this symmetry is violated when matrix elements are considered. Other examples
of symmetries will be considered later.

The point of view adopted in this approach is that we can use the freedom
in the procedure of fixing the self-consistent parameters in order to recover the
symmetries violated by the approximation. In general, the model exhibits many
different symmetries and there will be a relation between the number of composite
fields and the number of symmetries that can be recovered. On the physical ground
one must choose which symmetries are the most important to be satisfied. In a
physics dominated by strong electron correlations the Pauli principle plays a crucial
role, and it is extremely relevant that the related symmetries be treated in a correct
way. Therefore, in our scheme the attention is firstly paid to the Pauli principle;
once this is done, the attention is devoted to other symmetries.

As an illustration of the scheme we shall now consider the Hubbard model [8].
In the standard notation this model is described by the following Hamiltonian:

H = Z (ti; — pi5) € (4) (i) + UZ"T(Z') ny (i), (10)

c(4), c'(4) are annihilation and creation operators for electrons at site i in the spinor
notation

i =(00) = (dadn), i

ne = ¢! (i) c,(7) is the number operator of electrons with spin o = (1,]) at the
it" site, p is the chemical potential and is introduced in order to control the band
filling n. For a two-dimensional squared lattice and by restricting the analysis to
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first nearest neighbours, the hopping matrix ¢;; has the form:
1 ik-(Ri—R;
tij = —4¢ Q5 = —4tﬁ ZG (Ri—R;) Oé(k), (12)

alk) = % [cos(kya) + cos(kya)], (13)

a being the lattice constant. In addition to the band term, the model contains an
interaction term which approximates the interaction among the electrons. In the
simplest form of the Hubbard model, the interaction is between electrons of the
opposite spin on the same lattice site; the strength of the interaction is described
by parameter U.

The electron field (i) satisfies the Heisenberg equation

z%c(z) = —pc(i) — 4t (1) + Un(i), (14)

where

(i) = Z aij () (15)

is an electron field on the nearest neighbour sites. We see that the dynamics has
generated the composite field

n(i) = c(i) n(i). (16)

The Heisenberg equation for this field will generate a new higher-order composite
field. The process does not stop and an infinite number of composite fields will be
generated. By following the procedure mentioned above, we close the hierarchy by
considering n fields and construct a vector composite field as described by Eqgs. (4)
and (5). For the specific case, we consider the three-component field

Y1(1)
Y(i) = | ¥20) |, (17)
Y3(i)

where

i(i) = &) = (i) [1 —n(i)],
(i) = (i) = (@) n(2), (18)

Usli) = i) = 50" m(i) (i) + eli) e (i) (o),

n,(i) = c'(i) o, c(i) is the charge (u = 0) and spin (u = 1,2,3) density operator
for c-electrons. We are using the following notation o, = (1,0), o = (-1,0),
o being the Pauli matrices. The composite fields (17) do not satisfy a canonical
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algebra. For example, for the first two fields

(€80} = 0|1 3o ni].

(@ ()} = ~dugo? mali)

{€@). ")} = {£0),€()} = {n(@).n(5)} = 0. (19)

This field satisfies the Heisenberg equation

) —pE() — 4t (i) — it (i)
i 0(1) = J(1) = (—p+ U)n(a) + 4t m(i) : (20)
—pm(i) + 4t k(i) — 4t 0(i) + U p(7)
where
K(0) = 0% eli) (i) 0, (i) — 5% (i) (1) 0 (),
i) = 5" myli) = (0) + () ¢(3) (i) — (i) e () () + (i) () ()
p(i) = 5ot n i) (D) + (i) €0 ). (21)

According to the method presented above, the equation of motion (20) is lin-
earized as 5

i (i) = (i, 4) (), (22)

J

where the energy matrix (i, j) is the 3 x 3 matrix given by

e(i, §) = ({T0), 0 () P e ({00, 01 (G) P (23)

The subscript E.T. indicates that the anticommutators are evaluated at equal
time.
The physical properties can be described in terms of the thermal retarded
Green function
ia®

S(i,j) = <R [1/}(2) wT(z)D _ i /Q A2k dw &' * (Ri—Rj)—iw(ti—t;) S(k,w), (24)

where R is the usual retarded operator and symbol (---) denotes the thermal
average. By means of the linearized Heisenberg equation (22) the Fourier transform
is given by
3
a"(k)
S(k,w) = 25
(k,w) ;M—En(k)+in’ (25)

where energy spectra F;(k) are the characteristic values of the matrix ¢(k), deter-
mined by the equation

(k) E™(K) = 0. (26)

vl
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The characteristic coefficients a;(k) are defined by the following relation:
an_1(k) = (=)"Try [e(E)] 0<k<3 (27)

where Tr; is the trace of the k™ order defined as a sum of determinants of all

1 matrices of order k£ x k which can be formed by intersecting any k rows

of ¢ with the same k columns. We note that Trsle] = Det[e] and the convention
Tro[e] = 1 is used. The spectral functions are given by

2

7 ) = i D ) N (k). (25)
where the \"(k) are 3 x 3 matrices:
Nk)= > an(k)e™ " (k) I(K) 0<n<2 (29)

and we put
ba(k) = ] [Bu(k) — En(K)]. (30)
m=1,m#n

By standard arguments, the correlation functions can be calculated from the
knowledge of the retarded Green function. By means of (25) we have

C(i,5) = (Vi) VI () = W >, / A2 B R En(R) (1) o7 (F) 1+ T, (k)
i (31)

T, (k) = tanh (;E]:é’;’}) (32)

We see that the calculation of the Green function requires the knowledge of
the normalization matrix

where we put

I(k) = F ({v0). 0" () g (33)

and of the m-matrix
m(k) = F ({J(@),¢"()})pr - (34)
where F indicates the Fourier transform.

These quantities are calculated in the appendix and depend on a series of
parameters that can be listed as follows:

1. External parameters, such as temperature 7" and electron density

n= <CT(i> c(z’)>;
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2. Model parameters U and t;

3. Self-consistent parameters that can be calculated in terms of elements of the
Green function, u and A;

4. Self-consistent parameters expressed as expectation values of composite fields
out of the basis (17), such as p, I35, I$, m3;, m$;.

For the latter, the procedure of self-consistency must be fixed. In the Composite
Operator Method (COM) we take advantage of this freedom and fix the parame-
ters in such a way that the Hilbert space has the right properties to conserve the
relations among matrix elements imposed by symmetry laws. In a physics dom-
inated by a high correlation among the electrons, the main attention should be
paid to the requirement that the approximation does not violate the symmetry
required by the Pauli principle. Let us consider the correlation matrix (31); when
we take equal points, the algebra leads to the following relations

(£@2) ?7T (@) = 0
(€0 7(0) = (@), (3)
(@) ='@) = —{(0) (@)
among the matrix elements of the Green function. These relations constitute a
set of coupled self-consistent equations which will be satisfied by an appropriate
choice of the parameters.
The recovery of the Pauli principle does not exhaust all the degrees of freedom
and we have place to accommodate other symmetries. An intrinsic symmetry of the
Hubbard model is the pseudospin SU(2) symmetry, which is nothing but invariance

under the particle-hole transformation. The generators of this transformation are
given by the total pseudospin operators:

Pro= Y () )l
P = Y (el a) (36)

P = %Z[n(z) -

These operators satisfy the SU(2) algebra
[P*,P7] =2P,, [P*,P,) = FP~ (37)

and the Heisenberg equations

0

— Pt = 4+(2u—U)P*
i (2p = U)P~,
0
— P, = 0.
i P 0 (38)
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Let us consider the thermal retarded Green function

Pt —t)=(R[PT)P (t)]) = i / +OO dw et PH=(w).  (39)

By means of the equation of motion (38) we obtain for the correlation function
1 B (n — 1)e*i(2u*U)(t*t’)
+ Ny —
~ (PHt)P~(t')) = T (40)

This is an exact result which relates the pseudospin correlation function to the
particle number n and is a manifestation of the intrinsic symmetry.

Another important symmetry is given by the conservation of the current den-
sity. By defining the charge p(i) and current j(i) densities as

p(i) = ecl(i)c(i), (41)
i) = —itead’c'(i))[V — V]e(d), (42)

we obtain, by means of the Heisenberg equation (14), the conservation law

V- 50) + opli) =0 (13)

The symmetry content of the algebraic equation (43) manifests itself on the
level of observation as relations among matrix elements, once a choice of the phys-
ical space of states has been made. Indeed, by defining the causal charge and
current functions as

Xab(%, ) = (T[ga(i)gs(9)]) =

ia?

(2m)?

[ et ) ), (1)

where
p(i) for a=0,

Ga(i) =< ju(i) for a=zx, (45)
Jy(i) for a=y,
we can derive a series of Ward-Takahashi identities connecting current-current,
charge-current and charge-charge propagators. One of those reads as follows:

e Xao (R, w) + [1— e yyo(ke, w). (46)

In the static approximation of the Composite Operator Method the charge,
current, spin, pseudospin correlation function can be connected to convolutions
of single-particle propagators. This occurrence is related to a linearized dynamics
together with the choice of occupation dependent electronic excitations as the basic
fields [3]. Once these calculations have been performed, equations (36), (40) and
(46) constitute a set of five coupled self-consistent equations which can be satisfied
by an appropriate choice of the five parameters p, I35, IS5, m3;, m.

Thus, we have a scheme of calculations in which it is possible to recover, through
a self-consistent calculation, a series of fundamental symmetries by choosing a
suitable Hilbert space.

Detailed calculations will be presented elsewhere.

iawxo(k,w) = [1 —

19



F.Mancini, A.Avella

Appendices

A. The normalization matrix
From definition (33) and by means of the canonical algebra for c-electrons it is

straightforward to see that for the paramagnetic ground state the normalization
matrix has the following expression:

[(k> = 0 [22(k) [23(k) (A-l)
k

with
(k) = 1-2.
Lis(k) = A+ (p—Iypn)alk),
I(k) = g, (A.2)
I3(k) —A —pa(k),
Iy(k) = I+ a(k) IS

The quantities introduced in (A.2) are defined:

no= (i) e()) =2 [1 - (@) ') — (@) n'(2))] ,
A = (€D E@) — (@) '), (A.3)
1, .. . . Nt .
p o= (@)~ (IO () )
n is the average number of electrons per site; A and p are static correlation func-
tions between nearest neighbour sites. In particular, parameter p describes the

inter-site charge, spin and pair correlations. In the calculation of I33(k) only the
nearest neighbour contributions are retained

{m(i), 7' () }) = 655 Iy + oy IS5 (A.4)

B. The m-matrix

First of all we note that time translational invariance requires the m-matrix to
be hermitian
mu(k) mlz(k:) mlg(k)
m(k) = m12(k) mgz(k:) mgg(k:) . (B].)
muz(k) mas(k) mas(k)

From definition (34) and by making use of expressions (20-21) for the source
current it is possible to calculate

mu(k) = —[,u—l—4t0z(k)]]11—4t113,
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mia(k) —4t a(k) Iyg — 4t Io3,

mis(k) = —[p+4ta(k)] L3 — 4t [a(k) I3 + I33], (B.2)
moa(k) = —(pu—U)ly + 4t Ins,

maz(k) = —(p— U)o + 4t I3,

mas (k) ma + (k) mg;.

In the calculation of ms3(k) only the nearest neighbour contributions are retained

({J5(), 7' (j) }) = 6iy ms + vy ms. (B.3)
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CumeTpil y di3nui CUNbHO CKOpesibOBaHUX
€J1IEKTPOHHUX CUCTEM

@®.Mamnuini, A.ABenna

YHiBepcuteT CanepHo, PakynsteT disnyHnx Hayk im. E.P. KaiaHienno,
84081 bapoHicci, CanepHo, ITaniqa

OTtpumaHo 11 yepBHa 1998 p.

CucteMn 3 CUNBLHOIO eNEeKTPOHHOI0 Kopensuieto noTpebytoTb PO3BUTKY
HOBUX TEOPETUYHNX CXEM 3 METOIO OMNUCY X HE3BMYAMHNX | HEOUiKYBaHWMX
BIaCTMBOCTEN. 3BMYaliHi cxeMu Teopii 30ypeHb € HeaaekBaTHi | € NoTpe-
6a y BBEEHHI HOBUX KOHUEeNUin. Y Hawomy niaxoni - Metoni Komnoant-
Horo Onepartopa - € MOXJIMBUM BiATBOPUTU B paMKax CamMoy3rofXeHoro
pO3paxyHky paa GyHOaAMEHTaNIbHUX CUMETPIN LWNAXOM BUOOPY BiAMNoBia-
HOrO riNbOEepPTOBOro NPOCTOPY.

Knio4oBi cnoBa: cucremim 3 CUIbHOKO €/1IEKTPOHHOK KOPEJISLIEIO,
moaesnb Xabbapaa, cumeTpii, Meros KOMrno3nTHOIro orneparopa

PACS: 71.10.-w, 71.10.Fd, 71.27 .+a
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