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The four-dimensional Ising model is simulated on the Creutz cellular automaton using the finite-size lattices 
with the linear dimension 4 ≤ L ≤ 8. The temperature variations and the finite-size scaling plots of the specific 
heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical tem-
perature for the 7, 14, and 21 independent simulations. The approximate values for the critical temperature of the 
infinite lattice, Tc(∞) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) 
(without logarithmic factor), 6.6921(22) (without logarithmic factor), 6.6909(2) (without logarithmic factor), 
6.6822(13) (with logarithmic factor), 6.6819(11) (with logarithmic factor), 6.6808(8) (with logarithmic factor) 
are obtained from the intersection points of specific heat curves, the Binder parameter curves and the straight 
line fit of specific heat maxima for the 7, 14, and 21 independent simulations, respectively. As the number of in-
dependent simulations increases, the obtained results, 6.6802(1) and 6.6808(8), are in very good agreement with 
the series expansion results of Tc(∞) = 6.6817(15), 6.6802(2), the dynamic Monte Carlo result of 
Tc(∞) = 6.6803(1), the cluster Monte Carlo result of Tc(∞) = 6.680(1) and the Monte Carlo using Metropolis and 
Wolff-cluster algorithm of Tc(∞) = 6.6802632 ± 5⋅10–5. The average values obtained for the critical exponent of 
the specific heat are calculated as α = –0.0402(15), –0.0393(12), –0.0391(11) for the 7, 14, and 21 independent si-
mulations, respectively. As the number of independent simulations increases, the obtained result, α = –0.0391(11), 
is agreement with the series expansions results of α = –0.12 ± 0.03 and the Monte Carlo using Metropolis and 
Wolff-cluster algorithm of α ≥ 0±0.04. However, α = –0.0391(11) isn’t consistent with the renormalization group 
prediction of α = 0. 

PACS: 05.45.–a Computational methods in statistical physics and nonlinear dynamics; 
75.10.Hk Classical spin models; 
75.40.Cx Static properties. 
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1. Introduction 

While the four-dimensional Ising model is not directly 
applicable to real magnetic systems, it is useful to investi-
gate the influence of dimensionality on phase transitions 
[1]. In fact, in Euclidean quantum field theory the 4D Ising 
model describes the physical dimension. As the dimension 
and/or the lattice size increases, the simulation of the Ising 
model by the conventional Monte Carlo method becomes 
impractical and faster algorithms are needed. The Creutz 
cellular automaton [2] does not require high-quality ran-
dom numbers, is an order of magnitude faster than the 
conventional Monte Carlo method, and compared to the 
Q2R cellular automaton [3], and also has the advantage of 
fluctuating internal energy from which the specific heat 
can be computed. 

The purpose of this study is to the finite-size scaling re-
lations for the specific heat and the Binder parameter near 
the infinite-lattice critical temperature in 4d =  dimensions 
on the Creutz cellular automaton for the 7, 14, and 21 in-
dependent simulations. The critical temperatures for the 
specific heat and the Binder parameter and static critical 
exponents for the specific heat are obtained by analyzing 
the data within the framework of the renormalization group 
theory [4,5] either by approximating the infinite lattice by 
suitable finite-size lattice [6] or by using the finite-size 
scaling relations available [7–9]. 

The simulations are carried out on the Creutz cellular au-
tomaton [2,10] which has arisen as an alternative research 
tool for Ising model investigations and has simulated the 
Ising model in the dimensionalities 2 8d≤ ≤  [11,12]. 
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This paper is organized as follows. The model is de-
scribed in Sec. 2, the results are discussed in Sec. 3, and a 
conclusion is given in Sec. 4. 

2. Model 

Five binary bits are associated with each site of the lat-
tice. The value for each site is determined from its value 
and those of its nearest neighbors at the previous time step. 
The updating rule, which defines a deterministic cellular 
automaton, is as follows. Of the five binary bits on each 
site, the first one is the Ising spin iB . Its value may be “0” 
or “1”. Ising spin energy (internal energy) of the lattice, 

IH , is given (in units of the nearest neighbor coupling 
constant J) by 

 
,

I i j
i j

H J S S
〈 〉

= − ∑ , (1) 

where 2 1i iS B= −  and ,i j〈 〉  denotes the sum over all 
nearest neighbor pairs of sites. The next three bits are for 
the momentum variable conjugate to the spin (the demon). 
These three bits form an integer which can take on the val-
ues within the interval (0,7). The kinetic energy (in units 
of J) associated with the demon can take on four times 
these integer values. The total energy 

 I KH H H= +  (2) 

is conserved; here KH  denotes the kinetic energy of the 
lattice. For a given total energy the system temperature T  
(in units of / BJ k  where Bk  is the Boltzmann constant) is 
obtained from the average value of the kinetic energy. The 
fifth bit provides a checkerboard style updating, and so it 
allows the simulation of the Ising model on a cellular au-
tomaton. The black sites of the checkerboard are updated 
and then their colour is changed into white: the white sites 
are changed into black without being updated. 

The updating rules for the spin and the momentum va-
riables are as follows: for a site to be updated its spin is 
flipped and the change in the Ising energy (internal ener-
gy), IH , is calculated. If this energy change is transferable 
to or from the momentum variable associated with this site, 
such that the total energy, H, is conserved, then this change 
is done and the momentum is appropriately changed. Oth-
erwise the spin and the momentum are not changed. 

As the initial configuration all the spins are taken ordered 
(up or down). The initial kinetic energy is given to the lattice 
via the third bits of the momentum variables in the white 
sites randomly, such that the value of the initial kinetic ener-
gy for such a demon is 16 (in units of J) which is just the 
amount need to flip a spin at its initial configuration. 

The simulations are carried out on simple hypercubic 
lattices 4L  of linear dimensions 4 8L≤ ≤  with periodic 
boundary conditions by using four-bit demons. The cellu-
lar automaton develops 59.6 10⋅ (L = 4, 6, 8) sweeps for 
each run with 7, 14, and 21 runs for each total energy 

which total energy is average arithmetic for 7, 14, and 
21 runs. 

3. Results and discussion 

The temperature-dependence of the functions for the 
specific heat ( LC ) and the Binder parameter ( Lg ) using 
the finite-size lattice with the linear dimension 4 8L≤ ≤  
are illustrated in Figs. 1 and 2 for 7, 14, and 21 indepen-
dent simulations. The finite-size lattice critical tempera-
tures obtained from the specific heat maxima ( )C

cT L  and 
the intersection points of specific heat curves are listed in 
Table 1. The singular part of the free-energy density 

( ),S
Lf t h  of a hybercubic finite system dL  with  periodic 

boundary conditions for ud d<  is given by Privman and 
Fisher [13] as 

Fig. 1. The temperature-dependence of the specific heat CL for 
7 (a), 14 (b) and 21 (c) independent simulations (4 8).L≤ ≤  
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 ( ) 1/
1 2( , ) ( , ) ,S d

Lf t h L Y C tL C hL− ν Δ
ν=  (3) 

 0, 0,t h L→ → →∞ ,  

where Δ  is the gap exponent, ν  is critical exponent for the 
correlation lenght for the infinite system, ( ) /c ct T T T= −  is 
the reduced temperature, ud  is the upper critical dimension 
and h  is the reduced external magnetic field. The scale fac-
tors 1C  and 2C  are the only nonuniversal system-dependent 
parameters, that is, the scaling function Y(x,y) is universal, 
with no further nonuniversal prefactor. 

The Privman–Fisher hypothesis for the singular part of 
the free-energy density ( ),S

Lf t h  of a hypercubic finite 
system dL  with periodic boundary conditions is adapted 
for the Ising model in 4d =  dimension [11], by proposing 

the finite-size scaling function Y(x,y), correct to leading  
logarithms, as below: 

 ( ) 2 1/6 3 1/4
1 2( , ) ( log , log )S d

Lf t h L Y C tL L C hL L−= , (4) 

 0, 0,t h L→ → →∞ .  

Table 1. The values of ( )C
cT L (the finite-size lattice critical 

temperatures obtained from the specific heat maxima), max
LC  and 

( )L cC T  (at 6.6802(2))cT =  for 7, 14, and 21 independent simu-
lations 

The number 
of independent 

simulations 
L ( )C

cT L  max
LC  ( )L cC T  

7 
4 

6.2748(6) 0.6509(10) 0.3994(78) 
14 6.2758(8) 0.6508(15) 0.3995(52) 
21 6.2792(8) 0.6511(16) 0.3992(17) 

7 
6 

6.5163(8) 0.6806(18) 0.4266(61) 
14 6.5164(6) 0.6803(21) 0.4268(38) 
21 6.5167(6) 0.6802(20) 0.4269(15) 

7 
8 

6.5823(8) 0.6952(32) 0.4406(52) 
14 6.5824(3) 0.6951(26) 0.4405(21) 
21 6.5827(4) 0.6949(25) 0.4402(11) 

 
From Eq. (4) the finite-size scaling expressions for the 
singular part of the specific heat ( ) ( , )S

LC t h  can be de-
rived as 

 
2

( )
2( , )S L

L
f

C t h
t

∂
= − =

∂
  

 1/3 2 2 1/6 3 1/4
1 1 1log ( ) ( log , log )L C W C tL L C hL L= . (5) 

It can be  rewritten in more informative form as follow: 

( ) / 1/3 2
1( , ) log ( )S

LC t h L L Cα ν= ×  
2 1/6 3 1/4

1 2( log , log ), 0W C tL L C hL L× α = , (6) 

where α  is the critical exponent for the specific heat; W is 
the corresponding finite-size scaling function. For 0,h =  it 
reduces to the following equation: 

( ) / 1/3 2 2 1/6
1 1( ) log ( ) ( log ),S

LC t L L C W C tL Lα ν= 0α = . (7) 

For 0h =  and 0t =  it reduces to 

 ( ) / 1/3 2
1( ) log ( ) (0,0), 0S

LC t L L C Wα ν= α = . (8) 

(0,0)W  is universal. The Eq. (6) for 0h =  can be tested 
by simulations directly for 7, 14, and 21 independent simu-
lations. 

In Fig. 3, we show the finite-size scaling plots of the 
specific heat for 7, 14, and 21 independent simulations. In 
this figure, not all of the data points for a given L  fall on 
the finite-size scaling curve. Since not all the scaled quan-
tities of LC  for the different L  values overlap, the finite-
size scaling relation for LC  is verified near the reduced 
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Fig. 2. The temperature-dependence of the Binder parameter gL
for 7 (a), 14 (b) and 21 (c) independent simulations (4 8).L≤ ≤  
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temperature ( ( ) /c ct T T T= − ) for 7, 14, and 21 indepen-
dent simulations. It should be mentioned that the contribu-
tion of LC  from the regular part is not considered in this 
plot. That is, the values of the specific heat computed in 
the simulations are used directly in the plots. 

The dependences of the critical temperature ( )C
cT L  ob-

tained from the specific heat maxima of the finite-size lat-
tices on the linear dimension (L) are given by the following 
relations [7]: 

 1/( ) ( )C C
c cT T L L− ν∞ − α , (9) 

 1/ 1/6( ) ( ) logC C
c cT T L L L− ν −∞ − α . (10) 

The finite-size critical temperatures, ( )C
cT L , are plotted 

without and with logarithmic factors for 7, 14 and 21  
independent simulations. For both cases the straight 
lines which fit to these data give ( )cT ∞  = 6.6925(22), 
6.6921(22),  6.6909(2)  and ( )cT ∞ =  6.6822(13), 
6.6819(11),  6.6808(8)  without and with logarithmic fac-
tors for 7, 14, and 21 independent simulations, respec-
tively (Table 2). The intersection of the curves in Fig. 1 for 
4 8L≤ ≤  gives the critical temperatures of ( )cT ∞ =  

6.6965(35),= 6.6961(30),  6.6960(12)  for 7, 14, and 21 
independent simulations, respectively (Table 2). As the num-
ber of independent simulations increases, the obtained result, 

( ) 6.6808(8)cT ∞ = (with logarithmic factors) is consistent 
with the series expansion results of ( ) 6.6817(15)cT ∞ =  
[14], ( ) 6.6802(2)cT ∞ = [15], the dynamic Monte Carlo re-
sult of ( ) 6.6803(1)cT ∞ = [15], the cluster Monte Carlo result 
of ( ) 6.680(1)cT ∞ = [9], the Creutz cellular automaton results 
of ( ) 6.680,cT ∞ =  6.6802(2),  6.682  and 6.67  [11,12] and 
the Monte Carlo using Metropolis and Wolff-cluster algo-
rithm of 5( ) 6.6802632 5 10cT −∞ = ± ⋅ [16]. 

Table 2. The values of critical temperatures for the infinite lat-
tice obtained from by fitting the data for the critical temperatures 

( )C
cT L (without logarithmic factor) and ( )C

cT L (with logarithmic 
factor) within the interval 4 8L≤ ≤  for 7, 14, and 21 indepen-
dent simulations 

The number 
of independent 

simulations 

( )C
cT ∞  

(without loga-
rithmic factor)

( )C
cT ∞  

(with loga-
rithmic factor) 

( )cT ∞  
(the intersection 
points of specific 

heat curves) 

7 6.6925(22) 6.6822(13) 6.6965(35) 
14 6.6921(22) 6.6819(11) 6.6961(30) 
21 6.6909(2) 6.6808(8) 6.6960(12) 

 
The dependence of the specific heat ( )C L  on the linear 

dimension L  of the finite-size lattices is given by the rela-
tion [7,9] 

 / 1/3( ) log , ( ), ( )C
c cC L L L T T Lα ν∝ ∞ . (11) 

The values of the specific heat max( LC  and ( ))L cC T ob-
tained from Fig. 1 for the finite-size lattices with the linear 
dimensions 4 8L≤ ≤  are listed in Table 1. The values of 

max[ / ]vα and [ / ]cvα  obtained according to Eq. (11) for 
the finite-lattice at the infinite-lattice critical temperatures 
are max[ / ]vα =  –0.1001(0), –0.1001(1), –0.1012(2), 
[ / ]cvα =  –0.0530(38), –0.0536(58), –0.0534(11) for 7, 
14, and 21 independent simulations using lattices with the 
linear dimension 4 8L≤ ≤ , respectively (Table 3). The 
values of the critical exponents maxα  and cα  with 

1 / 2ν =  are computed to be maxα =  –0.0530(16), 
0.0513(13),−  –0.0512(12) and cα =  –0.0273(14), 
0.0272(11),−  –0.0269(10) for 7, 14, and 21 independent 

simulations, respectively. The average values of maxα  
and cα  for 7, 14, and 21 independent simulations are 

Fig. 3. Finite-size scaling plots of the specific heat CL with
/ 0α ν =  at 6.6802(2)cT =  for 7 (a), 14 (b) and 21 (c) indepen-

dent simulations. 
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averageα  = –0.0402(15), –0.0393(12), 0.0391(11),−  re-
spectively (Table 3). As the number of independent simula-
tions increases, the obtained result, averageα =  –0.0402(15), 
is consistent with the series expansions results of α =  

0.12 0.03= − ±  [17], the Creutz cellular automaton results of 
α =  –0.04 and –0.018 [11,12] and the Monte Carlo using 
Metropolis and Wolff-cluster algorithm of 0 0.04α ≥ ±  [16] 
within the error limits. However, α =  –0.0391(11) isn’t con-
sistent with the renormalization group prediction of 0.α =  

The 0h =  finite size renormalized coupling Lg  (Binder 
parameter or Binder cumulant) introduced by Binder [18] 

 
(4)4

2 2 4 4
0

3L L
L

L L h

s
g

s L
=

⎡ ⎤χ〈 〉
⎢ ⎥= − =
⎢ ⎥〈 〉 χ⎣ ⎦

, (12) 

where Lχ  is the susceptibility and (4)
Lχ  is the fourth field 

derivate; the subcripts L denotes the corresponding finite-
size quantities. In the method of Binder [18], the critical 
point cT  is located by finding the common crossing point 
of plots of Lg  versus temperature for a range of different 
system sizes L. The temperature variations of the Binder 
parameter for 4L = , 6  and 8  are shown in Fig. 2 for 7, 
14, and 21 independent simulations. In this figure, the in-
tersection points of the curves for 4 8L≤ ≤  give 

6.6800(3)cT = , 6.6801(2) , 6.6802(1)  for 7, 14, and 21 
independent simulations. As the number of independent 
simulations increases, the obtained result, 6.6802(1),cT =  
is consistent with the series expansion results of 

( ) 6.6817(15)cT ∞ =  [14], 6.6802(2)  [15], the dynamic 
Monte Carlo result of ( ) 6.6803(1)cT ∞ =  [15], the cluster 
Monte Carlo result of ( ) 6.680(1)cT ∞ =  [9], the Creutz 
cellular automaton results of ( ) 6.680,cT ∞ =  6.6802(2),  
6.682  and 6.67 [11,12] and the Monte Carlo using Metro-
polis and Wolff-cluster algorithm of ( )cT ∞ =

56.6802632 5 10−= ± ⋅  [16]. The computed values of 
( )L cg T  for 4L = , 6  and 8  are listed in Table 4 for 7, 14, 

and 21 independent simulations. By using the data in Table 4 
in getting plots of ( )L cg T  vs. L , the following of values 

( )L cg T  are obtained: ( ) 1.25(43),L cg T = −  1.22(25)− , 
1.24(5)−  for 7, 14, and 21 independent simulations, respec-

tively (Table 5). As the number of independent simulations 
increases, the obtained result, ( )L cg T =  –1.24(5), is incon-
sistent with the Monte Carlo simulations results of 

( ) 1.08L cg T ≅ −  for size 14L =  [19], the analytic prediction 

of ( ) 0.81156L cg T ≅ −  by Brezin and Zinn-Justin [20], the 
Creutz cellular automaton results of 0.8Lg = −  for 14L =  
[11], the geometrical cluster Monte Carlo method results of 

0.830(2)Lg = −  [21]. 

Table 4. The values of ( )L cg T  obtained from the finite-size 
lattices for 7, 14, and 21 independent simulations at the infinite-
lattice critical temperature 

The number 
of independent simulations

L ( )L cg T  

7 
4 

–1.2456(39) 
14 –1.2317(36) 
21 –1.2410(28) 
7 

6 
–1.2466(35) 

14 –1.2473(32) 
21 –1.2388(24) 
7 

8 
–1.2464(31) 

14 –1.2473(24) 
21 –1.2378(15) 

 

Table 5. The values of ( )cT ∞  and ( )L cg T  obtained from in-
tersection points of the Binder parameter curves for 7, 14, and 21 
independent simulations ( 4 8L≤ ≤ ) 

The number of inde-
pendent simulations 

( )L cg T  

( )cT ∞  
(the intersection points 

of Binder parameter 
curves) 

7 –1.25(43) 6.6800(3) 
14 –1.22(25) 6.6801(2) 
21 –1.24(5) 6.6802(1) 

 
From Eq. (4) the finite-size scaling expression for the 

Binder Cumulant [11], ( , )Lg t h , can be derived as 

(4)
2 1/6 3 1/4

1 24 2( , ) ( log , log )L
L

L
g t h G C tL L C hL L

L

χ
= =

χ
, (13) 

with the fourth derivative given by (4) 2 4/LL f hχ = −∂ ∂ . 
For 0h =  Eq. (13) reduce to the following equation: 

 2 1/6
1( ) ( log )Lg t G C tL L= . (14) 

Table 3. The values of critical exponents max[ / ]α ν , [ / ]cα ν , maxα , cα , averageα  for the set of finite-size lattices within the interval 
4 8L≤ ≤  for 7, 14 and 21 independent simulations 

The number of independent 
simulations max[ / ]α ν  [ / ]cα ν  maxα  cα  averageα  

7 –0.1001(0) –0.0530(38) –0.0530(16) –0.0273(14) –0.0402(15) 
14 –0.1001(1) –0.0536(58) –0.0513(13) –0.0272(11) –0.0393(12) 
21 –0.1012(2) –0.0534(11) –0.0512(12) –0.0269(10) –0.0391(11) 
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For 0h = , 0t =  Eq. (13) reduces to the following 
equation: 

 ( ) (0,0)Lg t G= . (15) 

(0,0)G  is universal. The Eq. (14) for 0h =  can be tested 
by simulations directly for 7, 14, and 21 independent simu-
lations. 

The finite-size scaling plot of the Binder parameter at 
( ) 6.6802(2)cT ∞ =  is illustrated in Fig. 4 for 7, 14, and 21 

independent simulations. The finite-size scaling plot of the 
Binder parameter for 7, 14, and 21 independent simula-
tions is a complete overlap of the plots for different L , 
verifying the finite-size scaling relation given Eq. (14). 

4. Conclusions 

The Ising model in 4d =  dimension is simulated on the 
Creutz cellular automaton using the finite-size lattice with 
the linear dimensions 4 8.L≤ ≤  As the number of simula-
tions increases, the exponent obtained by finite-size scaling 
relation for the specific heat at the infinite-lattice critical 
temperature, 0.0391(11),α = −  is consistent with the series 
expansions results of 0.12 0.03,α = − ±  the Creutz cellular 
automaton results of 0.04,α = −  0.018−  and the Monte 
Carlo using Metropolis and Wolff-cluster algorithm of 

0 0.04α ≥ ± [16] within the error limits. However, 
0.0391(11)α = −  isn’t consistent with the renormalization 

group prediction of 0α = , since not all the scaled quanti-
ties of LC  for the different L  values overlap, the finite-
size scaling relation for LC  is verified near the reduced 
temperature ( ( ) / )c ct T T T= −  for 7, 14, and 21 indepen-
dent simulations. On the other hand, since all the scaled 
quantities of Lg  for the different L  values overlap at the 
infinite-size critical temperature, the finite-size scaling 
relation for Lg  is verified for 7, 14, and 21 independent 
simulations. 
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