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Spin-fluctuation superconductivity in
the Hubbard model
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The theory of the superconductivity mediated by kinematic and exchange
interactions in t−J and two-band Hubbard models in a paramagnetic state
is formulated. The Dyson equations for the matrix Green functions in terms
of the Hubbard operators are obtained in the non-crossing approximation.
To calculate superconducting Tc a numerical solution of self-consistent
Eliashberg equations is proposed.
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1. Introduction

Since the discovery of high temperature superconductivity in cuprates it has
been believed by many researchers that an electronic mechanism could be respon-
sible for high values of Tc. Recent experimental evidences of a d-wave supercon-
ducting pairing in high-Tc cuprates strongly support this idea (see, for example,
[1,2]). At present various phenomenological models for the spin-fluctuation pairing
mechanism are known (for reference see, e.g., [2,3]). Numerical finite cluster cal-
culations also suggest a d-wave superconducting instability for models with strong
electron correlations [4].

Anderson [5] was the first who stressed the importance of strong electron cor-
relations in copper oxides and proposed to take them into account within the
framework of a one-band Hubbard model:

H = −t
∑

〈ij〉σ

(a+iσajσ +H.c.) + U
∑

i

ni↑ni↓, (1)

where t is an effective transfer integral for the nearest neighbour sites, 〈ij〉, and
U is the Coulomb single-site energy. He also considered the so-called t− J model
which results from the Hubbard model (1) in the strong coupling limit, U ≫ t,
when only singly occupied sites are taken into account, since a doubly occupied
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site needs a large additional energy U :

Ht−J = −t
∑

〈ij〉,σ

(ã+iσãjσ +H.c.) + J
∑

〈ij〉

(SiSj −
1

4
ninj). (2)

Here electron operators ã+iσ = a+iσ(1− ni−σ) act in the subspace without a double
occupancy and ni = ni↑ + ni↓ is the number operator for electrons. The second
term describes the spin-1/2 Heisenberg antiferromagnet (AFM) with the exchange
energy J = 4t2/U for the nearest neighbours.

To allow for the constraint of no double occupancy on a rigorous basis it is
convenient to rewrite the t−J model (2) in terms of the Hubbard operators (HO):

Ht−J = −
∑

i 6=j,σ

tijX
σ0
i X0σ

j − µ
∑

iσ

Xσσ
i +

1

2

∑

i 6=j,σ

Jij

(

Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j

)

, (3)

where tij = t, t
′

is the electron hopping energy for the nearest and the second neigh-
bours on the 2D square lattice, respectively, and Jij is the exchange interaction.
We have also introduced chemical potential µ and number operator ni =

∑

σ X
σσ
i .

The HO are defined as
Xαβ

i = |i, α〉〈i, β| (4)

for three possible states at the lattice site i: |i, α〉 = |i, 0〉, |i, σ〉 for an empty site
and for a site singly occupied by an electron with the spin σ/2 (σ = ±1, σ̄ = −σ).
They obey the completeness relation

X00
i +

∑

σ

Xσσ
i = 1, (5)

which rigorously preserves the constraint of no double occupancy.
Below we consider a more realistic for copper-oxide compounds two-band p−d

model. It can be reduced to the asymmetric Hubbard model with the lower Hubard
sub-band (LHB) occupied by one-hole Cu-d like states and the upper Hubbard sub-
band (UHB) occupied by two-hole p−d singlet states [6]. In terms of the Hubbard
operators the asymmetric Hubbard model reads:

H = H0 +Ht = E1

∑

iσ

Xσσ
i + E2

∑

i

X22
i

−
∑

i 6=jσ

{t11ij X
σ0
i X0σ

j + t22ij X
2σ
i Xσ2

j + σt12ij (X
2σ̄
i X0σ

j +Xσ0
i X σ̄2

j )}. (6)

Here the energy levels E1 = E0 − µ and E2 = 2E0 − 2µ + ∆ are introduced for
singly and doubly occupied sites, respectively, where E0 is a reference energy. In the
singlet-hole model (6) the Coulomb repulsion energy U in the standard Hubbard
model (1) is substituted by the charge transfer energy ∆ = ǫp − ǫd between p-
and d-levels in the CuO2 plane. The hopping integrals have different values for the
LHB (t11ij ), the UHB (t22ij ) and the inter-band transitions (t12ij ). They can be written

in the form tαβij = −Kαβ2tνij where t = tpd is the p− d hybridization integral and
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νij are the overlapping parameters for the Wannier oxygen states which are equal
to: ν1 = νj j±ax/y ≃ −0.14 for the nearest neighbours and ν2 = νj j±ax±ay ≃ −0.02
for the second neighbours, where ax/y are lattice constants. The coefficients Kαβ

depend on the dimensionless parameter t/∆ and for a realistic value of ∆ = 2t
they are of the order 0.5− 0.9 [6] (also see [7]).

The Hubbard operators (4) for a two-band model (6) are defined for 4 possible
states at lattice site i: |i, α〉 = |i, 0〉 , |i, σ〉 , |i, ↑↓〉 for an empty site, a site
singly occupied by an electron with the spin σ and for a doubly-occupied site,
respectively. For these states the completeness relation for the Hubbard operators
reads:

X00
i +

∑

σ

Xσσ
i +X22

i = 1 . (7)

A number of attempts have been made to obtain a superconducting pairing
within the microscopical theory for the Hubbard models discussed above. It should
be pointed out that the superconducting pairing due to the kinematic interaction
in the Hubbard model (1) in the limit of strong electron correlations (U → ∞) was
first proposed by Zaitsev and Ivanov [8]. Close results were obtained by Plakida
and Stasyuk [9] by applying an equation of the motion method to two-time Green
functions (GF) [10]. However, in these papers only the mean field approximation
was considered which results in the s-wave pairing irrelevant to strongly correlated
systems (for the discussion see [11]). Later on the theory in the mean field approx-
imation was considered for the t − J model within the GF approach in [11,12]
where the d-wave spin-fluctuation superconducting pairing due to the exchange
interaction J was studied.

Superconductivity in the original Hubbard model (1) was discussed in [13,14]
in the mean field type approximation within the projection technique for the GF.
Local superconducting pairings of the s- and d-symmetry were obtained which,
however, should disappear in the limit of strong correlations, U → ∞. Unfor-
tunately, in this approximation the self-energy operator caused by kinematic and
exchange interactions is ignored, though it results in finite life-time effects and
gives a substantial contribution to the renormalization of the quasiparticle (QP)
spectrum in the normal state. The self-energy of the anomalous GF is also respon-
sible for the non-local spin-fluctuation d-wave superconducting pairing.

Recently it was demonstrated for the spin-polaron representation of the t− J
model in [15]. A self-consistent numerical treatment of the strong coupling Eliash-
berg equations revealed a strong renormalization of the QP hole spectrum due to
spin-fluctuations and proved the d- wave pairing. The maximum Tc ≃ 0.01t was
obtained at the optimal concentration of doped holes δ ≃ 0.2. However, a two-
sublattice representation used in [15] can be rigorously proved only for a small
doping with a long-range AFM order. At a moderate doping one has to consider
a paramagnetic (spin-rotationally invariant) state in the t− J model.

The opposite limit of low electron densities in the t − J model was studied
by M. Kagan and Rice [16]. They observed various forms of electron pairing at
low temperatures including the d-wave instability at the values J/t > 1. A special
diagram technique for the Hubbard operators was also applied by Izyumov et
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al. [17] to consider spin fluctuations and a superconducting pairing in the t − J
model. However, no numerical results were presented.

In the given paper we consider a paramagnetic state with only short-range
dynamic spin fluctuations at a moderate doping. We develop the theory of super-
conductivity for the t − J model (3) and the asymmetric Hubbard model (6) by
applying the projection technique to the GF [10] in terms of the Hubbard oper-
ators. Contrary to the above mentioned papers, the self-energy operators due to
kinematic and exchange interactions are explicitly calculated in the non-crossing
approximation. The QP spectrum in the normal state of the t − J model within
the GF approach at T = 0 was also studied recently by Prelovśek [18].

Below, the Dyson equations for the matrix Green function are presented for
the t− J model in section 2 and for the Hubbard model in section 3, which are a
direct generalization of the theory developed earlier in collaboration with Professor
I.V.Stasyuk [9,11].

2. Dyson equation for the t − J model

To discuss the superconducting pairing within model (3) we consider the matrix
Green function (GF)

Ĝij,σ(t− t′) = 〈〈Ψiσ(t)|Ψ
+
jσ(t

′)〉〉 (8)

in terms of the Nambu operators:

Ψiσ =

(

X0σ
i

X σ̄0
i

)

, Ψ+
iσ =

(

Xσ0
i X0σ̄

i

)

, (9)

where Zubarev notation [10] for the anticommutator Green function (8) is used.
To calculate the GF (8) we use the equation of motion for the HO:

(

i
d

dt
+ µ

)

X0σ
i = −

∑

l

tilBiσσ′X0σ′

l +
∑

l

Jil(Blσσ′ − δσσ′)X0σ′

i , (10)

where

Biσσ′ = (X00
i +Xσσ

i )δσ′σ +X σ̄σ
i δσ′σ̄ = (1−

1

2
ni + σSσ

i )δσ′σ + Sσ̄σ
i δσ′σ̄ . (11)

The boson-like operator Biσσ′ describes electron scattering on spin and charge
fluctuations caused by the nonfermionic commutation relations for the HO’s (the
first term in (10) – the so-called kinematical interaction) and by the exchange
spin-spin interaction (the second term in (10)).

By differentiating the GF (8) with respect to time t and t
′

and employing the
projection technique (see, e.g., [6]) we get the following Dyson equation:

Ĝijσ(ω) = Ĝ0
ijσ(ω) +

∑

kl

Ĝ0
ikσ(ω) Σ̂klσ(ω) Ĝljσ(ω) (12)
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for the Fourier component. Here the zero–order GF is calculated in the mean-field
approximation

Ĝ0
ijσ(ω) = Q {ωτ̂0δij − Êijσ}

−1 (13)

with the frequency matrix Êijσ = 〈{[Ψiσ, H],Ψ+
jσ}〉 Q

−1 and the correlation func-
tion Q = 〈X00

i + Xσσ
i 〉 = 1 − n/2 . In a paramagnetic state it depends only on

the average number of electrons n = 〈ni〉 =
∑

σ〈X
σσ
i 〉. The self-energy operator

Σ̂klσ(ω) is defined by the equation:

Σ̂ijσ(ω) = Q−1 Σ̃ijσ(ω) = Q−1 〈〈Ẑ
(irr)
iσ | Ẑ

(irr)+

jσ 〉〉(irr)ω Q−1 (14)

where the irreducible part of the operator Ẑiσ = [Ψiσ, H] is defined by the
projection equation

Ẑ
(irr)
iσ = Ẑiσ −

∑

l

ÊilσΨlσ , 〈{Ẑ
(irr)
iσ ,Ψ+

jσ}〉 = 0 . (15)

Equations (12) - (14) give an exact representation for the one-electron GF
(8). To calculate it, however, one has to apply approximations to many-particle
GF in the self-energy matrix (14) which describes inelastic scattering of electrons
on a spin and charge fluctuations. Here we employ a non-crossing approximation
(or a self-consistent Born approximation) for the irreducible part of many-particle
Green functions in (14). It neglects vertex corrections and is given by the following
two-time decoupling for the correlation functions:

〈Xσ′0
j′ B+

jσσ′X0σ′

i′ (t)Biσσ′(t)〉(j 6=j′, i 6=i′) ≃ 〈Xσ′0
j′ X0σ′

i′ (t)〉〈B+
jσσ′Biσσ′(t)〉 . (16)

Using a spectral representation for the GF we obtain the following results for
self-energy matrix elements in the k-representation:

Σ̃σ
11(12)(k, ω) =

1

N

∑

q

∫

+∞
∫

−∞

dzdΩN(ω, z,Ω)λ11(12)(q, k − q | Ω)Aσ
11(12)(q, z), (17)

with

N(ω, z,Ω) =
1

2

tanh(z/2T ) + coth(Ω/2T )

ω − z − Ω
. (18)

Here we introduce a spectral density for the normal (G11) and anomalous (G12)
GF:

Aσ
11(q, z) = −

1

Qπ
Im 〈〈X0σ

q | Xσ0
q 〉〉z+iδ , (19)

Aσ
12(q, z) = −

1

Qπ
Im 〈〈X0σ

q | X0σ̄
−q〉〉z+iδ (20)

and the electron - electron interaction functions caused by spin and charge fluctu-
ations

λ11(12)(q, k − q | Ω) = g2(q, k − q) D+(−)(k − q,Ω), (21)
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where g(q, k− q) = t(q)− J(k − q) and the spectral density of bosonic excitations
are given by the imaginary part of the spin and charge susceptibilities:

D±(q,Ω) = −
1

π
Im

{

〈〈Sq | S−q〉〉Ω+iδ ± (1/4)〈〈nq | n
+
q 〉〉Ω+iδ

}

. (22)

A linearized system of Eliashberg equations close to Tc can be written as self-
consistent equations for the normal GF and its self-energy operator

G̃σ
11(k, iωn) = {iωn − Ek + µ̃− Σ̃σ

11(k, iωn)}
−1 ,

Σ̃σ
11(k, iωn) = −

T

N

∑

q

∑

m

G̃σ
11(q, iωm)λ11(q, k − q | iωn − iωm) (23)

and for the gap equation:

Φσ(k, iωn) = ∆σ
k + Σ̃σ

12(k, iωn) =
T

N

∑

q

∑

m

{2J(k − q)+

+λ12(q, k − q | iωn − iωm)}G̃
σ
11(q, iωm)G̃

σ̄
11(q,−iωm)Φ

σ(q, iωm). (24)

In equation (24) we omit the k-independent part of the gap function ∆σ
k in the

MFA (13) which is caused by the kinematic interaction [8], since it gives no con-
tribution to the d-wave pairing ([11]). Here we use the imaginary frequency repre-
sentation, ω = iωn = iπT (2n+ 1).

The energy of quasiparticles Eσ
k and the renormalized chemical potential µ̃ =

µ− δµ in the MFA (13) is given by

Eσ
k = −ǫ(k)Q− ǫs(k)/Q−

4J

N

∑

q

γ(k − q)Nqσ, (25)

where ǫ(k) = t(k) = 4tγ(k) + 4t′γ′(k), ǫs(k) = 4tγ(k)χ1s + 4t′γ′(k)χ2s with γ(k) =
(1/2)(cosaxqx + cos ayqy), γ

′(k) = cos axqx cos ayqy.

δµ =
1

N

∑

q

ǫ(q)Nqσ − 4J(n/2− χ1s/Q) . (26)

The average number of electrons in the k-representation is written in the form:

n =
1

N

∑

k,σ

〈Xσ0
k X0σ

k 〉 =
Q

N

∑

k,σ

Nkσ, (27)

where

Nkσ = {1 +
2T

N

∑

k

∞
∑

n=−∞

G̃σ
11(k, iωn)}, (28)

which defines function Nqσ in equations (25), (26). When calculating the normal
part of the frequency matrix (25) we neglect charge fluctuations and introduce
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spin correlation functions for the nearest, a1 = (±ax,±ay), and the second, a2 =
±(ax ± ay), neighbour lattice sites :

χ1s = 〈SiSi+a1〉 , χ2s = 〈SiSi+a2〉 . (29)

In the present calculations we take into account only the spin-fluctuation con-
tribution modelled by the spin-fluctuation susceptibility (see, e. g., [18,19]):

χ
′′

s (q, ω) = χs(q) χ
′′

s (ω) =
χ0

1 + ξ2(q − QAF )
2
tanh

ω

2T

1

1 + (ω/ωs)2
(30)

with the characteristic AFM correlation length ξ and spin-fluctuation energy ωs ≃
J . To fix constant χ0 in (30) we use the following normalization condition:

1

N

∑

i

〈SiSi〉 =
1

N

∑

q

χs(q)

+∞
∫

−∞

dz

exp z
T
− 1

χ
′′

s (z) =
πωs

2N

∑

q

χs(q) =
3

4
n . (31)

In this approximation we get for the interaction functions (21)

λ11(q, k − q | iων) = λ12(q, k − q | iων)

= −g2(q, k − q)χs(k − q)

+∞
∫

0

2zdz

z2 + ω2
ν

tanh(z/2T )

1 + (z/ωs)2
. (32)

For model (30) we can calculate static spin correlation functions (29) from the
equations:

χ1s = 〈SiSi+a1〉 =
1

N

∑

q

γ(q)〈SqS−q〉, χ2s = 〈SiSi+a2〉 =
1

N

∑

q

γ′(q)〈SqS−q〉,

where

〈SqS−q〉 = χs(q)

+∞
∫

−∞

dz

exp (z/T )− 1
χ

′′

s (z) = χs(q)
π

2
ωs. (33)

Therefore, we have obtained a closed system of equations which should be solved
numerically. Preliminary calculations [20] confirm the existence of narrow QP
peaks for the one-electron spectral density (19) near the Fermi surface (FS). The
latter has a characteristic behaviour for strongly correlated systems with the occu-
pation numbers N(k) ≥ 0.5 throughout the whole Brillouin zone which results in
the large FS even at a small doping. A direct numerical solution by the fast Fourier
transformation of gap equation (24) proves a superconducting pairing (caused by
the exchange, J , and kinematic, t2, interactions in (24)) of the d-wave symmetry
that occurs at high Tc ≃ 0.06t.
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3. Dyson equation for the p − d model

In this section we discuss the results for the two band p−d model (6). To study
the two–band problem we have to introduce a matrix Green function concerning
the normal state properties

Ĝijσ(t− t′) = 〈〈X̃iσ(t); X̃
+
jσ(t

′)〉〉, (34)

where we use two–component operators

X̃iσ =

(

Xσ2
i

X0σ̄
i

)

, X̃+
jσ =

(

X2σ
j X σ̄0

j

)

. (35)

By differentiating the GF (34) with respect to time t and t
′

and using the projection
technique described above, we get the Dyson equation in the form analogous to
(12). In [6] only a zero order GF was calculated in the form analogous to the one
band GF (13). The two-band spectrum for d-like holes and p − d singlets as well
as the density of states were calculated. It was found that hybridization between
d-like holes and singlets results in a substantial renormalization of the spectrum.
In addition, the dispersion relation depends strongly on antiferromagnetic short-
range spin correlations (given by the static spin correlation functions, equations
(29) ) in the spin-singlet state. For large spin correlations at small doping values
one finds a next-nearest neighbour dispersion. With the doping decreasing spin
correlations, the dispersion changes to an ordinary nearest neighbour one.

However, to consider the superconducting properties of the two–band model
we introduce the 4×4 matrix Green function [21]:

G̃ijσ(t− t′) = 〈〈X̂iσ(t); X̂
+
jσ(t

′)〉〉 (36)

for the four–component operators. For example, the H.c. one is given by the row-
vector:

X̂+
jσ =

(

X2σ
j X σ̄0

j X σ̄2
j X0σ

j

)

. (37)

By differentiating the GF (36) with respect to time t and t
′

and using the
projection technique described above, we get the following Dyson equation in (k, ω)
space:

G̃σ(k, ω)
−1 = G̃0

σ(k, ω)
−1 − Σ̃σ(k, ω) . (38)

The zero–order matrix GF is given by the generalized mean–field approximation:

G̃0
ij,σ(ω) = {ωδi,j τ̃0 − Ãij,σ}

−1χ̃, (39)

where
Ãij,σ = 〈{[X̂iσ, H] , X̂+

jσ}〉 χ̃
−1 (40)

is a frequency matrix. The self–energy operator is given by the irreducible part of
the scattering matrix:

Σ̃ij,σ(ω) = χ̃−1〈〈[X̂iσ, H]|[H, X̂+
jσ]〉〉

(irr)
ω χ̃−1. (41)
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We also introduce unity matrices τ̃0 (4× 4) and τ̂0 (2× 2) and the matrix χ̃ = τ̂0χ̂
with

χ̂ =

(

χ2 0
0 χ1

)

, (42)

where χ2 = 〈X22
i +Xσσ

i 〉 = 1−χ1. To solve the Dyson equation (38) which can be
written in the general form as

G̃σ(k, ω) =

(

Ĝσ(k, ω) F̂σ(k, ω)

(F̂σ(k, ω))
+ −Ĝσ̄(k,−ω)

)

(43)

we have to calculate the zero–order GF (39) and the self-energy matrix (41). The
anomalous part of the zero–order GF in (39), F̂ 0

σ (k, ω), vanishes if one disregards
the mean-field, k-independent gap function (due to the kinematic interaction)
which violates the restriction 〈Xσ2

i X σ̄2
i 〉 = 0, see [22]. For the normal part we can

use a diagonal approximation

Ĝ0
σ(k, ω) =

(

χ2/(ω − Ω2(k)) 0
0 χ1/(ω − Ω1(k))

)

, (44)

where the mean field spectrum is given by the dispersions Ω1(k) and Ω2(k) for
a singly occupied d-hole-like band and a doubly occupied singlet band, respec-
tively [6].

To calculate the self-energy matrix (41) we use the non-crossing approximation
described above (see equation (16)). Writing down the self-energy matrix as

Σ̃σ(k, ω) = χ̃−1

(

M̂σ(k, ω) Φ̂σ(k, ω)

Φ̂+
σ (k, ω) −M̂σ̄(k,−ω)

)

χ̃−1 (45)

we obtain for the normal part of the matrix

M̂σ(k, ω) =
t2

N

∑

q

γ2(q)

π

∫ ∞

−∞

∫ ∞

−∞
dνdzN(ω, ν, z)D+(k − q, z),

×{P̂2[−ImG22(q, ν + iδ)] + P̂1[−ImG11(q, ν + iδ)]} (46)

where γ(q) =
∑

j exp(iqj)ν0j , N(ω, ν, z) is given by (18) and the spin-charge sus-
ceptibility D+(k − q, z) is given by (22). The contributions from the singlet band
and from the d-hole band are defined by the matrices P̂2 and P̂1, respectively. Their
diagonal terms are:

P 11
2 = (K21)

2 , P 22
2 = (K22)

2 , P 11
1 = (K11)

2 , P 22
1 = (K12)

2 .

Here we use a notation for hopping integrals in the two-band model (6): tαβij =
−Kαβ2tνij where α, β = 2 or 1 for the singlet and the d-hole band, respectively.
Matrix equation (46) defines the renormalization of quasiparticle spectra in the
two bands due to spin and charge fluctuations, while the analogous equation for
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matrix Φ̂σ(k, ω) gives a gap equation. In the diagonal approximations for the zero-
order GF (44) and self-energy (45), (46), the Dyson equation (43) can be solved,
which enables one to write an equation for superconducting gaps φαα

σ (k, ω) =
Φαα

σ (k, ω)/χα in the bands α = 2, 1 in the closed form:

φαα
σ (k, ω) =

t2

N

∑

q

γ2(q)

π

∫ ∞

−∞

∫ ∞

−∞
dνdzN(ω, ν, z)D−(k − q, z)

×{K2
αα[−Im

φαα
σ (q, ν)

Qα(q, ν)
]−

χβK
2
12

χα
[−Im

φββ
σ (q, ν)

Qβ(q, ν)
]}, (47)

where α 6= β and the denominator

Qα(q, ω) = (ω−Ωα(q)−Mαα
σ (q, ω)/χα)(ω+Ωα(q)+Mαα

σ̄ (q,−ω)/χα)−|φαα
σ |2 (48)

gives a spectrum of excitation in the superconducting phase.

4. Conclusions

To summarize, we would like to stress that starting from the microscopical t−J
(equation (2)) or the two-band p−d (equation (6)) model we obtain a self-consistent
system of equations for the Green functions and the corresponding self-energies.
The frequency matrices in the zero- order Green functions (equations (13), (39))
and the renormalization of the quasiparticle spectra given by self-energies, (23)
for the t − J model and (46) for the two-band model, and the superconducting
pairing in gap equations, (24) for the t − J model and (47) for the two-band
model, are caused by spin and charge fluctuations which arise from nonfermionic
commutation relations for the Hubbard operators in the models (see the equation of
motion (11)). Therefore, in our microscopical theory we have no fitting parameters
for the electron-spin interaction as in phenomenological approaches. However, the
theory is not fully self-consistent in the respect that the phenomenological model
for dynamical spin fluctuations (equation (30)), was used. Nevertheless, we believe
that numerical results should not depend considerably on the explicit form of the
model for spin-charge fluctuations. Being normalized (equation (31)), it cannot
change substantially the sum over (q, ω) in the equations for self-energies. The
non-crossing approximation for self-energies (equation (16)) also seems to be quite
reliable as has explicitly been proved for the spin-polaron t−J model where vertex
corrections are small.

It is also interesting to compare the results for the one-band t − J model and
the two-band Hubbard model. In the two-band model for the hole (electronically)
doped case the chemical potential µ is in the singlet (d-hole) band, α = 2 (1), and
the main contribution to the integrand in equation (47) comes from the same band
(first term), while the contribution from the other band is proportional to t/∆2.
The latter is analogous to the static spin-exchange contribution of order J ≃ (t/∆2)
in the one-band t − J model, i.e. to the first term in equation (24). However, in
the two-band model the spin-fluctuation contribution to equation (47) is given by
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the frequency dependent susceptibility D−(q, z) and the inter-band contributions
∝ K2

12 cannot be fully allowed for within the framework of the one-band t − J
model. It would be interesting to compare the solutions of gap equations in the
t − J model, equation (24), and in the two-band model, equation (47). However,
it demands rather complicated numerical work and will be considered in future
publications.
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Спін-флуктуаційна надпровідність у моделі

Хаббарда

М.М.Плакіда

Об’єднаний інститут ядерних досліджень, 141980 м. Дубна, Росія

Отримано 14 травня 1998 р.

Формулюється теорія надпровідності за посередництвом кінематич-

ної та обмінної взаємодій в t−J моделі та двозонній моделі Хаббар-

да в парамагнітному стані. Отримано рівняння Дайсона для матрич-

них функцій Гріна в термінах операторів Хаббарда у неперехресному

наближенні. Для розрахунку температури переходу в надпровідний

стан Tc запрпоновано числовий розв’язок самоузгоджених рівнянь

Еліасберга.

Ключові слова: надпровідність, сильні електронні кореляції,

модель Хаббарда, t− J модель, спінові флуктуації

PACS: 74.20.Mn, 74.20.-z, 74.72.-h
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