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Discussed in the paper are resonance phenomena in electrolytes related to possible relative motion of the 
charged core and hydrate (solvate) shell of each cluster. The resonances are shown to contain important informa-
tion on the internal structure of clusters. Special attention is paid to the process of formation of the cluster asso-
ciated mass in the solvent. 
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The problem of solvent inhomogeneity in the vicinity of 

point-like charges important for most effects involving 
various charged clusters is one of the tasks very poorly 
treated in the theory of electrolytes. Its quantum-chemical 
treatment (e.g., see Refs. 1 and 2) employing concepts of 
the first and next coordination spheres around the charged 
center and predicting complete or partial solvent crystalli-
zation there the hydration (solvation) effect only approx-
imately accounts for the role of external environment in 
cluster formation. Current microscopic theories [3,4] pro-
viding detailed description of the short-range order in the 
structure of a homogeneous liquid do not work within the 
local density enhancement ( )rδρ  around the ion. The exis-
tent experimental techniques allow as a rule to obtain only 
integral characteristics of the cluster (e.g., hydration (sol-
vation) energy in the thermodynamics of electrolytes [1,2]) 
or lackluster data on effective masses of charged clusters 
derived from ultrasonic measurements [5,6]. 

In these extremely adverse for development of appro-
priate theory conditions (strong interaction between the 
particles inside the polaron, substantial spatial inhomo-
geneity, lack of firmly established experimental data) it is 
natural to search for additional sources of information ca-
pable of elucidating the cluster structure. Considered in the 
present paper is one of the approaches in that direction 
which has not yet been discussed in the literature. The idea 
is to consider the resonances (which we call the structure 

resonances) arising in the course of relative motion of the 
core ion and the adjacent neutral shell of the charged clus-
ter. It should be emphasized that, in our opinion, the very 
concept of structure resonances has already been dealt with 
in experiments on charged nanodroplets [7–10]. By em-
ploying the technique allowing to produce extremely small 
droplets (containing a few water molecules: 1, 2, 3 … 
whose number is measured in mass-spectrometer experi-
ments) and charging them with single protons, the authors 
of Refs. 7–10 observed excitation of droplets in external 
high-frequency field and calculated the observed resonance 
frequencies with the first-principles methods employing 
the molecular dynamics technique. Yielding the numbers 
which are consistent with available experimental data, this 
approach tells practically nothing on physics of observed 
phenomena. Under these conditions our purpose is not only 
transferring the ideas of Refs. 7–10 to clusters in liquid; 
here the problem is less promising in the sense of the 
sharpness of resonances, but it is more important in its es-
sence (the problem formulation is more natural, the clus-
ters need not be fabricated artificially since they are al-
ready available and have precisely the same size in each 
electrolyte; in addition, the resonance frequency can be the 
major characteristic allowing to identify the charged clus-
ter) involving the discussion of physical nature of the reso-
nances in nanodroplets. Further, the proposed quasimacro-
scopic approach allows one to trace how the macroscopic 
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liquid characteristics (such as dielectric constant, surface 
tension, etc.) arise as the nanocluster size is increased. 
Similar problems are often considered in condensed matter 
physics (appearance of collective Fermi level or supercon-
ducting order parameter in small metal particles, develop-
ment of superfluid properties in liquid nanodroplets, etc.) 

1. Let us first show (the central statement of the present 
paper) that a single charged cluster can be resonantly ex-
cited in the following way (for simplicity, we consider the 
classical case). The solvated ion contains a charged nuc-
leus of mass im  and adjacent density enhancement consist-
ing according to Refs. 1 and 2 of at least 6–8 solvent mole-
cules in the first coordination sphere firmly bound to the 
core charge due to the ion-dipole interaction. Let iM m�  
be the shell mass. The external electric field accelerates the 
mass im  carrying the electric charge. As to the neutral 
shell, it is only accelerated due to some elastic coupling to 
the core charged particle. Thus, dynamics of the entire 
complex im M+  is described by two equations 

 2
1= ( ),im x k x x− ω − −  2

1 1= ( )M x k x x− ω − −  (1) 

where k  is the elastic interaction coefficient between the 
components. This quantity is assumed to be finite and is 
actually a new phenomenological parameter of the charged 
cluster we are interested in. 

Finding from the second equation in (1) the displace-
ment 1x  

 1 2= kxx
k M− ω

  

and substituting it into the first equation one easily obtains 
the proper dipole frequency of the cluster as a whole: 

 
2

2
2=i

kk m
k M

− ω
− ω

 (2) 

or 

 2 1= ,+ γ
ω

γ
 = ,

/ ik m
ω

ω  = / iM mγ . (3) 

The quantity 2ω  varies from unity for 1γ�  up to 2 for 
1γ � , according to well-known properties of dynamics of 

two coupled particles. We use the term “dipole” for the 
frequency (3) since it can be excited with a uniform elec-
tric field. 

In its pure form, the resonance (3) is only possible for 
single charged droplets and, in our opinion, it is exactly the 
case addressed in Refs. 7–10. However, if positive or nega-
tive clusters in liquid solvents are discussed, the problem 
described by Eq. (1) needs some refinement since in that 
case both the associated mass *M  and effective viscosity 
of the environment should be taken into account. If the 
frequency range in the vicinity of the resonance (3) allows 
to speak of the well-formed quantity *M , its contribution 
to equations of motion (1) is rather simple: 

 *
eff = ,M M M+  * 32= ,

3 i lM Rπ ρ  0> ,iR R  (4) 

where M  is again the shell bare mass, iR  is effective ex-
ternal cluster radius in ideal hydrodynamics, 0R  is some 
internal cutoff radius for the structural singularities asso-
ciated with properties of the ion-dipole interaction idV , 
and lρ  is the solvent mass density. 

However, generally, the associated mass frequency dis-
persion becomes important in calculations of the structure 
resonances. This phenomenon (which is also of structural 
origin) can be taken into account by adding the hydrody-
namic drag force hydF  into the cluster equation of motion. 
Classical hydrodynamics yields two asymptotic expres-
sions for the force hydF  acting on a sphere of radius iR  
corresponding to its motion in either ideal or viscous 
(Stokes formula) liquids (e.g., see Ref. 11). In the first 
case, employing the frequency representation where all 
quantities are proportional to exp( )i t− ω  one has 

3 3 2 2
*

4 4
[ (2 )]

( ) = 2 ,
(4 )
i i

id
i

q R i q R
M

q R

− + +
ω ω

+
F v   = /q s ω , (5) 

where s  is the sound velocity, q  is the wave number (the 
dispersion law is assumed to be linear), and v  is the am-
plitude of the cluster velocity as a whole. In the limit 

2 2 1iq R �  the associated mass *( )M ω  defined as propor-
tionality coefficient in the ratio 

 *Im ( ) = ( )idF Mω ω ωv  (5a) 

reduces to *M  from Eq. (4). On the contrary, if 2 2 1iq R �  
the associated mass *( )M ω  acquires a noticeable frequen-
cy dependence. In both cases oscillations of a sphere in 
ideal liquid involve energy dissipation through emission of 
sound waves. 

Taking into account Eq. (5), in the presence of driving 
field || 0( ) = exp ( )eE t eE i t− ω  the equation set (1) is re-
placed by the following equations: 

 2
1 0= ( ) ,im x k x x eE− ω − − +  (6) 

 2
1 1 1 1 1= ( ) ( , ) = .idM x k x x F i x− ω − − + ω − ωv v  (7) 

Here the force 1( , )idF ω v  from (5) contains efficient fric-
tion for the cluster motion in the solvent which accounts 
for the frequency dependent associated cluster mass 

3= 4 / 3i sM Rπ ρ , >s lρ ρ  being the effective density in 
the neutral part of the cluster. 

For massive clusters (strongly asymmetric normal elec-
trolytes) the typical frequency range can shift to lower val-
ues compared to Eq. (5) with ( ) iRδ ω � , where ( )δ ω  is 
the viscous penetration depth. If the external part of the 
problem is again modelled with a sphere of radius sR  
(which does not necessarily coincide with iR ) the Walden 
[12,13] rule is assumed to be valid for considered clusters, 
i.e., 
 = constση  (8) 

where σ  is the conductivity (or, equivalently, mobility), η  
is the solvent viscosity, then the solvent response to the 
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motion of sphere is described by the Stokes force ( , )sF ω v  
with the Fourier components 

 ( , ) = 6 1 ( )
( )

s
s c

R
F R

⎛ ⎞
ω πη + ω +⎜ ⎟δ ω⎝ ⎠
v v   

 2 223 1 ( ) ,
9 ( )

s
s

R
R i

⎛ ⎞ηρ
+ π + ω ω⎜ ⎟ω δ ω⎝ ⎠

v  (9) 

where v  is the sphere velocity, 1/2( ) = (2 / )lδ ω η ρ ω  is the 
already mentioned dynamic penetration depth, lρ  is the 
liquid density, and η  is its viscosity. Equations of motion 
are now written in the form of (6), (7) with 1( , )idF ω v  de-
fined by Eq. (5) replaced with ( , )sF ω v  (9). Details of 
arising dynamics were studied in Ref. 14. 

2. It is natural to start the estimation of the strength of 
coupling between the charge and neutral shell of the cluster 
by considering single charged droplets. Let for definiteness 
the charge is assumed to be a single proton with mass pm , 
interacting with adjacent N  water molecules each having 
volume aqV  and effective mass aqm . The corresponding 
effective parameters of the droplet are: 

 aq= ,M Nm    3
aq

4 =
3

R NVπ  (10) 

Inside the droplet, the proton is repelled from its surface 
by image forces so that in equilibrium it resides at the 
droplet center. The energy ( )U rδ  associated with its dis-
placement from the center of the sphere is 

 
2 2

3
( 1)( ) .

( 2)
e rU r

R
ε −

δ
ε ε +

�  (11) 

Accordingly, the restoring force = ( ) /f U r rε −∂δ ∂  con-
tains the stiffness coefficient k : 

 = ,f kxε −  
2

3
( 1) 2= .

( 2)
ek

R
ε −

ε ε +
 (11a) 

Here ε  is the static dielectric constant of water, and R  is 
taken from Eq. (10). 

Based on Eqs. (11), (11a) we shall start our estimates 
with finding the proton localization radius in the potential 
(11). In the classical treatment, one obtains the so-called 
Bierum radius following from the estimate 

 ( )
1,TU r

T
δ

�  or 
2

2 2
Tr TR

R e
ε� . (12) 

At temperatures not too different from room temperature 
the ratio /Tr R  for water does not exceed unity (which 
should be expected from the physical essence of the prob-
lem) until 7< 10R −  cm. 

Accordingly, 

 
2
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3

( 1) 2/ = .
( 2)p p

p

ek m
m R

ε −
ω

ε ε +
�  (13) 

The scale of arising frequency 123 10pω ⋅∼  s–1 is notice-
ably (at least by an order of magnitude) below the typical 
frequencies observed in experiments [7–10]. 

An alternative to the mechanism (10–13) is the scenario 
with solidified neutral shell of the cluster. Assuming the 
solid part to be homogeneous and the domain where force 
is applied to be point-like, one can estimate the coupling 
coefficient k  in the following way. Since the longitudinal 
sound velocity in ice is known to be 4000s�  m/s while 
the lattice spacing (which is of order of the charge localiza-
tion length iR ) is 3a�  Å, one has the following estimate 
for k : 

 
2

3
aq 5 10 dyn/cmsk m

a
⎛ ⎞ ⋅⎜ ⎟
⎝ ⎠

∼ ∼ . (14) 

Estimation of the frequency (3) with the above value of 
k  and proton mass 241.6 10pm −⋅�  g, 22

aq 10m −�  g, 
yields 

 13 16 10 .s s−ω ⋅�  (15) 

Understanding the qualitative nature of this estimate, we 
note that the scale of sω  (15) is comparable with the typi-
cal frequencies reported in [7–10] thus indicating correct-
ness of physical picture of phenomenon occurring in dy-
namics of charged nanodroplets (elastic coupling between 
the central charge and the shell). 

3. One of the most promising charged clusters in liquids 
is the cation He 4

+  (snowball) (as well as the anion (bubble)) 
in helium. Occupying an important place among various 
polaron-like structures, the snowball and bubble possess 
unique quantitative characteristics: at low temperatures the 
effective mass snow

effM  is of the order of 32 helium atom 
masses (the bare mass being one helium atom mass), while 

bub
eff 4> 200M m  with the bare mass equal to that of a single 

electron. The effective masses snow
effM  and bub

effM  can be 
measured with different techniques (e.g., the cyclotron 
resonance, excitation of 2D plasma resonances [15] or ei-
genfrequencies at the surface levels [16]), and there exist 
interesting data on the temperature and pressure depen-
dence of snow

eff ( , )M T P  [17], etc. However, even in these 
advanced (compared with achievements in dynamics of 
normal electrolytes) problems the structure of effM ±  is still 
unclear. Thus, estimates of M +  in the Atkins model [18] 
yield the value of 450M m+ ≥  already for the core part 
substantially exceeding the observed mass [15]. Similar 
discrepancies with numerical values occur in the problem 
of structural resonances for bubble-quasiparticles currently 
providing the only example of clusters where excitation 
with external field was realized (internal photo-transitions 
for electron in the bubble) [19]. Available calculations of 
the frequencies of electron transitions assume the spherical 
potential barrier confining the electron to the bubble to be 
stationary (fixed). However, simple analysis presented 
above already indicates that some caution is needed here 
since for the bubble almost the entire mass has an asso-
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ciated origin. At high frequencies corresponding to elec-
tron transitions *M  is close (as will be seen later) to zero 
so that the electron transition should be considered taking 
into account the finite value of the associated mass 

*
em M+  which has not been done yet. Thus the general 

problem on the structure of the total effective mass and the 
details of formation of its associated component is actually 
important in the case of helium ions. 

For more detailed treatment we note that according to 
Eq. (5) the frequency dependences of both imaginary and 
real parts of the force idF  are due to a finite value of the 
sound velocity ls  in the ideal liquid. This velocity is less 
than the sound velocity in the snowball solid core 
( 500ss ∼  m/s [20]) and a fortiori exceed the typical ve-
locities of the electron origin in the bubble. Therefore, the 
structural resonances for snowballs and bubbles (the reson-
ances given by Eq. (3)) should be expected in the frequen-
cy range well above frequencies where the associated mass 
dispersion occurs. Adopting the dimensionless variables 
where frequencies and velocities are normalized to 

0 = /l is Rω  and *
0 0= / ( )eE M ωv , respectively, the equ-

ation set (6), (7) can be reduced to a single equation for 
1 1= i x− ωv  which takes the form 

 1 2 2
1=

( ) 2(1 / ) ( )i f
−

⎡ ⎤ω ζ ω + −ω Ω ω⎣ ⎦

v , (16) 

where 

2 2

*
0

3 2

4

/(1 / )
( ) = , = = ,

(2 )( ) = .
4

ii s i

l

k mm M s R
s aM

if

+ −ω Ω
ζ ω Ω

ω

−ω + +ω
ω

+ω

(17) 

In the limit 0/Ω ω →∞ , i.e., k →∞ , Eq. (17) yields 
for the real and imaginary parts of the velocity 

 
4 3

1 6 2 4 2
4Re = ;

[2 (4 )]
+ω ω
ω ω + +ω +μ +ω

v  (18) 

 

4 2 4

1 6 2 4 2

*

4 2 (4 )Im = ,
[2 (4 )]

= ( ) / .im M M

+ω +ω +μ +ω
ω ω + +ω +μ +ω

μ +

v
 (19) 

Frequency dependences of 1Re v  and 1Im v  for different 
values of the parameter *= ( ) /im M Mμ +  are shown in 
Figs. 1 and 2. Variations of these parameter allow one to 
get an idea on the role of the bare mass im  in the consi-
dered problem. In particular, the values *=i em m M� , 

= 0M  model the limit of zero bare mass suitable for sin-
gle electron bubbles (a consistent approach to this problem 
requires solution of the wave equation the electron). For 
comparison, the insets show the “usual” frequency plots 
for the same quantities derived in the standard Drude mod-
el (see details in Ref. 14). Qualitative difference in their 

behavior for the Drude and sound-related scenarios of the 
impedance. 

To get a more thorough understanding of the imped-
ance-type information presented in Figs. 1 and 2, it is use-
ful to trace the frequency dependence of the associated 
mass defined by Eq. (5a). The curve (1) in Fig. 3 reveals 
rapid reduction of *M  in the frequency range exceeding 
the critical value determined by the sound velocity in liq-
uid and the sphere radius. Qualitatively, this critical value 
coincides with the position of a peak in the *( )M ω  curve 
whose existence just follows from the definition of idF  (5) 
and could hardly be given any physical interpretation. 

Turning back to Eq. (16), it is easily seen that the main 
qualitative conclusions concerning the effect of idF  on the 
snowball structure resonance are related to the practical 
possibility (following from Fig. 3) of neglecting the imagi-
nary part of this force (the associated mass *M  does not 
have enough time to be formed) and appearance of finite 
damping due to emission of sound waves by the oscillating 

Fig. 1. 1Re ( )ωv  as a function of ω  for different values of the 
parameter μ . Inset shows the usual behavior of 1Re ( )ωv  for the 
Drude model (τ is the momentum relaxation time). 
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sphere. In other words, the resonance position is actually 
determined by Eqs. (3) and (4). At the quantitative level 
this information gathered together in Fig. 3 is presented in 
the following way. First of all, plotted is the frequency 
dependence of the cluster velocity absolute value for =M

4= 32m  [15]. The dimensionless frequency Ω  from (17) for 
helium takes into account difference in the sound velocities in 
solid and liquid phases (the former is 2–2.5 times larger than 
the latter [20]) as well as the cluster size (Atkins radius) 
which is approximately twice as large as the interatomic 
distance. For convenience, shown in Fig. 3 is also the fre-
quency dispersion of the associated mass *( )M ω  (curve 1). 

To comment on Fig. 3, we note that the structure reson-
ance for the cation in liquid helium is rather pronounced 
(its broadening due to emission of sound waves is not too 
large). In addition, it is clearly seen that the frequency dis-
persion of *( )M ω  should be taken into account. Apart 
from that, in the vicinity of the resonance *( ) 0M ω → . 
Bearing in mind the above results, one can hope that the 
actual position of the resonance yields interesting informa-
tion on the elastic coupling coefficient k  between the core 
charge and the cluster shell. 

Summary. A resonance approach to the study of struc-
ture of charged clusters in various electrolytes is proposed. 
The indicated resonances arise when the core charge and 
the cluster neutral shell move relative to each other and 
contain interesting information on the strength of elastic 
coupling between them. Within the corresponding formal-

ism the problem of formation of “ideal” associated mass of 
an oscillating sphere is discussed which is directly related 
to the structure resonances behavior. 

The work was supported by the RFBR grant No 09-02-
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Fig. 3. Frequency dependence of the effective associated mass
normalized to M  (curve 1, left scale) and the cluster velocity
modulus for the cluster mass 4= 32M m  (curve 2, right scale). 
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