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The quantum energy spectrum of the oscillating spherical void in solids is calculated within the continuum 

matter model. It is suggested that the ground state of the oscillating void corresponds to the vacancy in real crys-

tals. The dependence of the vacancy formation energy on the shear modulus, density, pressure and surface ten-

sion is determined. The obtained results are used to estimate properties of vacancies in solid Ar. A possibility to 

use the obtained results to estimate the properties of vacancies in liquid melts is discussed. 
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Many properties of crystals near melting are determined 

by presence of vacancies [1]. First of all, this concerns the 

processes of the self-diffusion, the diffusion of impurities, 

the ion mobility, etc. Vacancies also influence the specific 

heat and volume thermal expansion of crystals. A number 

of attempts to construct the vacancy model of melting are 

known [2–4]. Molecular dynamics studies of melting re-

veal that an ideal crystal melts at temperatures notably 

higher than a crystal that contains vacancies [5,6]. The 

energy of the vacancy formation vE  is the most important 

characteristic of the vacancies. Experimental values of vE  

near the triple point are known for many substances, in-

cluding series of metals [7] and rare gas solids [8]. At-

tempts of theoretical determination of vE  are very cum-

bersome, which makes difficult their extrapolation to the 

limit of extremely high pressures and temperatures. In the 

present paper a simple model is suggested, which gives a 

possibility to obtain an analytical dependence of vE  on the 

crystal density, external pressure and shear modulus. 

Within the model of an isotropic matter, a spherical 

void formation results in the local change of the crystal 

potential energy due to the deformation and work against 

the surface and volume forces: 

 2 3= = 4 (4 / 3) ,d s v dU U U U U R pR        (1) 

where   is the surface tension, p  is the external pressure, 

and R  is the void radius. In equilibrium, the energy of 

deformation is given by [9] 
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where   and   are the Lamé coefficients, and iku  is the 

strain tensor, which (for small deformations) reads 
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In the case of a spherical void, the vector of deformation u  

depends only on spherical coordinate r  

 = ( ) ru ru n  (4) 

and nonzero components of the deformation tensor are 
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The quadratic forms included in Eq. (2) are given by 
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The equation of equilibrium of an isotropic incompressible 

solid is [9] 

 ( )grad div = 0.u u    (7) 

In the spherically symmetric case rot = 0u  and Eq. (7) 

gets a form 

 grad div = 0.u  (8) 

From this it follows that u  satisfies equation 

 div = const,u  (9) 

solution of which finite outside the void is 

 
2= / .u a r  (10) 

The constant a  is determined from the boundary condition 

 2 3( ) = / = , = .u R a R R a R  (11) 

Thus 
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Now Eq. (2) gets a form 

 3= 8 .dU R  (13) 

Taking into account the kinetic energy of the radial mo-

tion, the change of the full energy of the deformed iso-

tropic matter is given by 
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where   is the matter density and 
2 2= 3 /u R R r . In the 

case of 0E   this equation describes an oscillatory mo-

tion of the void wall under the action of the elastic forces, 

surface tension and pressure. The energy of any oscillation 

is quantized. The dispersion law of these oscillations can 

be determined from the Bohr–Sommerfeld quantization 

conditions 
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where 3= 4RP R R  is the generalized momentum of the 

surrounding matter. Substitution of R  from Eq. (14) into 

Eq. (15) gives an integral equation for determination of the 

void creation energy nE  

 
1/2

3/2 2 3

0

1/2

4
4 6

3

3 3
= ,

8 4

Rn

nR E R p R dR

n

 
       
 

   
     



 (16) 

where the maximum size of the void nR  is determined by 
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In two limiting cases, solution of Eqs. (16) and (17) can 

be obtained analytically. When (6 ) / 3 1np R   the 

surface force can be neglected and we get 
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where  

1
3/2 3 1/2

0
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In the opposite limit (6 ) / 3 1np R   the energy spec-

trum of the void is determined by 

 

4/75/7
12/7 2/7 4/7

2/7

2

3
2 3 ,

4

.
4

n

n
n

E n

E
R

  
     






 (19) 

A spectrum similar to Eq. (19) was obtained by Lifshitz and 

Kagan [10] for the energy of quantum nuclei and by Khra-

pak [11,12] for the energy spectrum of microscopic bub-

bles (bublons) in ideal incompressible liquids. 

From Eqs. (16) and (17) it follows that the creation en-

ergy and size of the voids are quantized and can not be 

arbitrary small. Ground state with minimal values of the 

nE  and nR  are realized for = 0n . Owing to their quantum 

nature, the zero-oscillations of voids cannot decay, for ex-

ample, as result of the acoustic radiation. This gives reason 

to think that within the continuum matter model, the gro-

und state of voids corresponds to the vacancies in real cry-

stals. 

Below we estimate some properties of vacancies in so-

lid Ar using the proposed model. At = 0T  the density of 

solid Ar is =1.77s  g/cm
3
 and the shear modulus is 

= 14.6  kbar [13]. Assuming that at = 0T  a contribution 

of the surface force can be neglected, then for = 0p  the 

vacancy ground state energy and radius are given by 
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This value of 0E  is in qualitative agreement with theoret-

ical and experimental estimations of the monovacancy 

formation energy 905vE   K (see, for example, [1]). 

Equation (20) is valid when 02 / 1sR  . To check the 

validity of this inequality one has to know the surface ten-
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sion s  of the solid Ar. It can be estimated by means of 

the parachore formula [14] according to which 4  . 

Using well known surface tension of liquid Ar at the triple 

point =13.4l  dyn/cm and density =1.42l  g/cm
3
 we 

get 

 4( / ) 32.4 dyn/cm.s s l l       (21) 

This gives 02 / 11sR    and thus the neglect of the sur-

face energy is justified. 

At the Ar triple point = = 83.8tT T  K, =1.62s  g/cm3, 

6.00   kbar [13], 22.7s   dyn/cm. According to 

Eqs. (16) and (17) 0 880E   K (contribution to 0E  

from the surface energy amounts to 15%). The shear 

modulus 2= s tc   ( tc  is the transverse sound velocity) 

increases with the melting temperature mT  and density m . 

In Ar tc  was measured along its solidus in of relatively 

wide temperature region, from tT  to 205.6 K [15,16]. Cor-

responding values of   were reported by Burakovsky 

et al. [13] together with an analytical formula for ( )mT , 

which permits an extrapolation to extremely high tempera-

tures 3000mT  K. In Fig. 1 the dependence of 0E  on 

mT , following from Eqs. (16) and (17), with ( )mT  from 

[13] and m , mp  from [17] is shown. One can see that 

with a good accuracy 0 / 10.5tE T   which is in reasona-

ble agreement with the approximate relation / 9.4v tE T   

obtained by Bhatia and March [18] for monovacancies in 

solid Ar. The ratio 0 / mE T  decreases with the melting 

temperature. Direct comparison with experiments, where 

the constancy of the ratio /v mE T  is peculiar to classical 

rare gas crystals, a number of metals [19] and even for 

quantum crystals [20,21] is problematic for (at least) two 

reasons: First, the enthalpy of the vacancy formation is 

usually measured instead of vE  and the contribution of the 

nonconfigurational entropy (which has to grow with mT ) 

is difficult to detach. Second, the shear modulus increas-

es with the frequency of an external force (see, for exam-

ple, [22]). The frequency of the void wall oscillations 

14
0 0= / 10E   Hz at the triple point, and it increases 

with mT . This effect was not taken into account in calcu-

lating ( )mT  [13]. Unfortunately, the dependence ( )   at 

very high frequencies is unknown. 

The local undamped oscillations of matter surrounding 

the vacancy are not artifacts of the continuum matter mod-

el. In real crystals the vacancy formation has to result in 

reconstruction of the oscillation spectrum and in appearing 

of a new quantized mode. This effect may be important for 

development the vacancy theory of melting. The existing 

theories interpret the melting as the first order phase transi-

tion in the vacancy subsystem: At the melting line the 

equilibrium between crystalline system with relatively low 

concentration of vacancies, 3= / 10v ac n n  , and quasi-

crystalline system (liquid melt) with relatively high 
110c 

 takes place. However, properties of vacancies in 

the melt are unknown. We suppose that owing to the high 

frequency of the vacancy wall oscillations, the shear modu-

lus does not change significantly upon melting and vacan-

cies in a liquid preserve main properties of vacancies in a 

solid. 
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