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Generalization of Shoenberg theory of de Haas–van Alphen magnetic oscillation in 2D metals for the case of 
electrons with arbitrary spectrum dispersion is used to propose the way to determine the nature of charge carriers 
in 2D conducting systems: mono- and bilayer graphene. We analyzed the analytical expression for the oscillating 
susceptibility as a function of chemical potential and distinguished its characteristic features for carriers with 
normal parabolic and Dirac-like linear spectra that can be detected experimentally. 
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Quantum oscillation of magnetic moment provided by 

electron Landau level (LL) quantization in strong magnetic 
field was firstly observed in Bismuth by de Haas and van 
Alphen (dHvA) in 1930 [1] almost simultaneously with 
Landau prediction [2]. Their first satisfactory theory de-
scription in simple metals was done during 30's by Peierls 
[3], Shoenberg [5] and Landau [6]. 

Further exploration of dHvA effect was related with 
understanding of temperature and impurities effects. Re-
markable progress was achieved after the Lifshitz and Ko-
sevich (LK) [7] generalization of Shoenberg and Landau 
theory for the arbitrary electron spectrum and Fermi sur-
face (FS). Basing on Lifshitz–Onsager semiclassical quan-
tization of the electron orbital motion in magnetic field, 
moving in k-space around FS with cross-section S  

 = ( )2 ,eHS n
c

+ γ π  (1) 

LK demonstrated that only electrons having the extremal 
cross-section orbits give the contribution to dHvA oscilla-
tion and that S  is the most relevant parameter to describe 
the oscillation. In LK formalism the effective mass of elec-
tron is naturally generalized by the cyclotron mass, ex-
pressed through the derivative of S  over the chemical 
potential:  

 1= .
2

dSm
d

∗
π μ

 (2) 

DHvA effect measurements of S  as a function of field 
orientation and μ  permitted to reconstruct the electronic 
dispersion spectrum in various metals and semi-metals [8,9]. 

After incorporation of the impurity effect, described by 
the Dingle, LL broading = / 2Γ τ  [10] ( τ  is the mean 
free time of electrons) the classical LK formula for the 
oscillated part of magnetization (denoted by tilde) looks 
like 
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where the dimensionless term 2 2/ zS p∂ ∂  is the parallel to 
field curvature of FS at the extremal belts ( ±  is the sign of 

2 2/ zS p∂ ∂ ), term /S m∗  has the dimensionality of the 
energy and  
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We assume here = 1Bk  and use the atomic units: Bohr 
magneton, Bohr radius and Rydberg energy: 
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Phase parameter σγ  includes both the Lifshitz–Onsager 
quantization parameter γ  from Eq. (1) and Zeeman spin-
splitting factor = 1σ ±  [11–12]: 

 1= .
2σγ γ + βσ  (6) 

It is interestingly that although the Peierls interpretation 
of dHvA effect [3] (1933) as intersection of Fermi level 
with LLs is more intuitively clear for 2D case with Dirac 
comb density of states, the initial theory was done for 3D 
metals where the calculations are more complicated be-
cause of account of kz-dispersion of the spectra. The regu-
lar study of quantum oscillation in 2D systems was started 
only in 70’s with the era of thin films, superlattices, MOS-
structures and quantum wells. 

In 1984 Shoenberg [13] proposed the formula for 2D 
dHvA oscillation in simplest case of parabolic spectrum 
with no impurity scattering in form of harmonic series. 
Further history of generalization of Shoenberg formula for 
2D case repeated its 3D LK counterpart. In 2001 Champel 
and Mineev [14], basing on the Bychkov’s formalism of 
Green’s functions [15] calculated the dHvA oscillation for 
FS in form of corrugated cylinder that permits to follow 
the crossover from 3D LK metal to pure 2D system. The 
particular expression for 2D geometry was presented in 
elegant form that justifies the Shoenberg formula and in-
cludes the Dingle impurity scattering. Very recently we 
demonstrated [16] that Champel and Mineev formula can 
be written for the arbitrary electron spectra in the invariant 
LK terms of FS cross-section as 
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Although magnetic measurements are more compli-
cated for 2D samples, the free from zk  smearing dHvA 
signal in such systems can give much more information 
about the electronic process. Moreover, as it follows from 
comparison (3) and (7), dHvA oscillation in 2D geometry 
should be more intense because of the absence of the small 
factor 1/2( / Ry) .B Hμ  

Intensive study of graphite monolayer — graphene 
started in 2005 after publications [17,18] challenges the 
exploration of quantum oscillation for understanding of 2D 
carbon nanostructures. Shubnikov–de Haas (SdH) oscilla-
tion of conductivity, oscillation of Nernst constant and 
quantum Hall effect were already discovered in graphene. 
Using the general formula (7) we shall discuss the possible 
application of dHvA effect in graphene. Although dHvA 
oscillation has not yet being detected in graphene, they can 

be more simple for interpretation then quantum oscillation 
of transport properties there. 

The peculiarity of electrons in graphene is that, unlike 
normal carriers (NC) with parabolic dispersion, classical 
dependence ( )S μ  and fixed cyclotron mass: 

 
2
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they have the linear two-branch spectrum of so-called 
massless Dirac fermions (DF), quadratically dependent on 
μ  FS cross-section and cyclotron mass that vanishes when 
chemical potential μ  approaches to the Dirac point = 0:ε  

 
2
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More profound difference between NC and DF is coming 
in the phase factor γ  which is expressed via the Berry 
phase of the circulation of the matrix element  

 2( ) = ( ) ( )i u r u r d rk kkΩ ∇∗∫  (10) 

( ( )u rk  is the periodic part of the electron Bloch function, 
the integration is done over a unit cell) around the electron 
orbit kΓ  in k-space: 
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Factor γ  is the topologically protected quantum number 
[19] and 

 1= 0  for DF, and =   for NC.
2

γ γ  (12) 

Phase measurement of γ , firstly realized in 2004 [16] to 
distinguish the charge carriers in graphite, was successfully 
used in 2005 [17,18] as the principal method to detect the 
DF in graphene. 

We discuss here how the unconventional DF dependen-
cies of LK parameters S  and m∗  on μ in graphene can be 
manifested in dHvA effect. The natural laboratory for the 
dHvA μ-dependence exploration would be the substrate-
deposited graphene in which the gate voltage drives the 
variation of the chemical potential. We would like to stress 
that such setup pins the chemical potential by the gate vol-
tage and the effect of dHvA oscillation of μ itself [8] does 
not appear here. To compare the results for DF in graphene 
with those for NC one can use the bilayer graphene [20] 
that according to band calculation has the two-branch pa-
rabolic spectrum 2( ) = / 2p p m⊥ε ±  and NC-type of LK 
parameters. 

Equation (7) can be simplified at low temperatures 
2 < BT Hπ β μ  when < 1λ  and ( ) 1lψ λ ≈ . For typical for 

graphene < 0.02m m∗  and H = 10 T this takes T < 10 K. 
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Fig. 1. 2D dHvA oscillation of magnetization (M) and susceptibility (χ) at = 3H T for normal carriers (a) and for Dirac fermions (b) as 
the function of chemical potential μ . The effective mass of NC = 0.02m m⊥ , the velocity of DF 8= 10 cm/sv . In both cases the Dingle 
temperature = 15Γ K. 
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Because of small m∗  we neglect also the Zeeman splitting 
in σγ . Then, series (7) can be calculated exactly giving 
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In case of NC Eq. (13) was obtained by Champel and Mi-
neev [14] and in case of DF by Sharapov, Gusynin and 
Beck [21]. 

We can also present the magnetic susceptibility 
22 ,= ( / )DD TM H μχ ∂ ∂  as 
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where 2= / = 1/137e cα  is the fine structure constant. 
Equations (13), (14) are valid for any spectrum and 

permit to compare the dHvA dependencies 2 ( )DM μ  and 
2 ( )Dχ μ  both for DF in graphene and for NC in bilayer 

graphene as shown in Fig. 1. 
In both cases the oscillation 2 ( )DM μ  has the same 

characteristic inverted sawtooth shape, predicted by 
Shoenberg for the system with chemical potential μ  dri-
ven by the external conditions [13] but several other fea-
tures can distinguish two dependencies. The oscillation 
maxima in 2 ( )Dχ μ  and corresponding odd zeroes in 

2 ( )DM μ  are equally distributed for NC: 

 1= 2 ,
2n B

mH n
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⎛ ⎞μ μ +⎜ ⎟
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 (15) 

whereas they become more condensed at high μ  for DF: 

 
1/22= 4 .n Bmv Hn⎡ ⎤μ μ⎣ ⎦  (16) 

Another important feature is the different shape of the 
envelope function that increases in case of NC and has the 
nonmonotonous behavior in case of DF. To study this 
question in detail we consider the different limit cases. 

In clean limit < B HπβΓ μ  the oscillating part of sus-
ceptibility can be present as the series of Lorentzians 
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Specifying these dependencies for DF (9) and NC (8) we 
obtain that in both cases maxχ , minχ  depend on the chem-
ical potential in the similar way 2μ∼  and therefore are 
indistinguishable. 

The situation changes in dirty limit > B HπβΓ μ  when 
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and the μ-dependence of oscillating susceptibility is driven 
by the exponential factor exp[ ( / )]B H−β πΓ μ . For NC 
with = /m m⊥β  the exponential factor does not depend on 
μ  and 2 ( )Dχ μ  always increases as 2μ  because of the 
pre-exponent factor. For DF with 2= / mvβ μ  the exponen-
tial factor is decreasing function of μ  and 2 ( )Dχ μ  first 
increases as 3μ  because of the pre-exponential growth and 
then decays exponentially. This experimentally detectable 
difference between NC and DF explains the shape of the 
dHvA oscillations for NC and DF in Fig. 1. 

The behavior of dHvA oscillation at high temperatures 
2 > BT Hπ β μ  when < 1λ  and ( ) 2 exp ( )l l lψ λ ≈ λ −λ  is 

somewhat similar to the low-T dirty limit since only the 
first term in the series expansion (7) can be kept and the 
formula for oscillating magnetization and susceptibility 
can be presented as 
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The amplitude of the oscillation however is substantially 
reduced by the exponential factor. 

To conclude we generalized the Shoenberg theory of 
2D dHvA oscillation for the case of the electrons with arbi-
trary spectrum and studied the oscillation of magnetic sus-
ceptibility as function of chemical potential for the elec-
trons having the parabolic spectrum of normal carriers and 
linear spectrum of Dirac fermions, making the special em-
phasis on the features that permit to distinguish between 
these cases. 

Note that the proposed theoretical description of dHvA 
oscillation is more simple and rigorous than that for SdH 
conductivity oscillation since it does not include the scat-
tering kinetic effects. At the same time the experimental 
situation is exactly the opposite. The SdH oscillation were 
the first experimental method to study the DF in graphene 
systems [17,18] whereas dHvA effect is not yet observed 
there. Possibly the best compromise between theoretical 
and experimental tools would be the observed giant quan-
tum oscillation of the Nernst coefficient [22,23], the theory 
of which was recently developed in [24] and that actually 
stimulated the current work. At the same time the μ-de-
pendence of the dHvA effect can be studied in the gated 
nano-thick layers of graphite where the existence of the DF 
was proposed [16,25,26]. 
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