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A theoretical model is developed to describe the experimental results obtained for the isobaric thermal con-
ductivity of rare gas solids (RGS). The isobaric thermal conductivity of RGS has been analysed within Debye
approximation with regard to the effect of thermal expansion. The suggested model takes into consideration
the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is
determined by “diffusive” modes migrating randomly from site to site. The mobility edge wy is determined from
the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the
phonon wavelength.
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1. Introduction

In the high temperature region, at Debye temperature (©p) and higher, the thermal conduc-
tivity of perfect crystals is determined mainly by phonon-phonon interactions. However, with the
increased complication of crystalline structure, there appear new types of thermal motions, which
are capable of affecting the thermal conductivity and thus complicate the analysis of its tempera-
ture dependence [1]. In this respect, the solidified inert gases are very convenient objects in order
to compare the experimental results with the theory, since in this case, the lattice dynamics does
not get complicated by the contribution of optical phonons, librons, and by the effects related
to structural disorder. It is generally known that according to the theoretical predictions [2], the
lattice thermal conductivity should be inversely proportional to temperature A < 1/T at T > Op.
However, as early as in the first experimental studies the results have been obtained, which can-
not be described within the framework of existent theoretical models of heat transfer [2,3]. Both
isobaric and isochoric thermal conductivities of RGS possess the temperature dependence that con-
siderably differs from the 1/T one [3]. At isochoric conditions, the thermal conductivity depends
on temperature much slower than 1/7T [4]. This is connected with the fact that the mean free path
of phonons in these substances becomes of the order of interatomic distance at premelting tem-
peratures [4]. The analysis of experimental data [1,5-7] for isobaric thermal conductivity points to
some typical tendencies in the behavior of its temperature dependences. In the given temperature
range, the experiments at constant pressure showed that the thermal conductivity varied more
rapidly than 1/T.

In the present paper, we concentrate on the quantitative analysis of high temperature isobaric
thermal conductivity in solid Ar, Kr, and Xe. Simulation was carried out within the framework of
Debye approximation by using the concept of the lower limit of thermal conductivity and taking
into account the effect of thermal expansion of the samples.
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2. Calculations and comparison with experiment

In the current work we consider only the isobaric thermal conductivity. The study of isobaric
thermal conductivity is very important for the practical use of substances under real-life conditions.
In the solidified inert gases such as Ar, Kr, and Xe, the phonon-phonon interactions turn out to
be the main mechanism determining the value and the temperature dependence of the thermal
conductivity A(T") at the Debye temperature and higher (He and Ne melt at temperatures much
below Op [3]). Figure 1 shows the isobaric thermal conductivity of Ar, Kr, and Xe (black squares)
[5]. It decreases with the increase of temperature as A3 oc 7716, AKT oc 7713 and AX® oc 7715
The most obvious interpretation of this phenomenon is the effect of thermal expansion.
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Figure 1. Isobaric thermal conductivity A, of solids Ar(a), Kr(b) and Xe(c). The solid lines are
the fitting curves for isobaric thermal conductivity. Apn and Agir are contributions of phonons and
“diffusive” modes to heat transfer, respectively. The lower limit of the thermal conductivity Amin
is calculated according to equation (2). Aga is the thermal conductivity calculated according to
equation (1).
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We begin our quantitative analysis of experimental data with a simple approach where the heat
transfer is described in the well-known theoretical 1/T" dependence and takes into account the effect
of thermal expansion. In these calculations we use the expression of Leibfried and Shlémann [8]:

kB)S ma©3, )

Aca1:K<h ’}/QT s

where a is the lattice parameter, m is the atomic mass, v is the Griineisen parameter, K is the
numerical coefficient (table 2). Note that the values a, 7, and ©p depend on temperature at a
constant pressure due to the thermal expansion of the samples (see table 1).

Table 1. The values used at calculations of Acai, Apn, and Agif.

T, K ‘ v, m/s ‘ a, 107%m ‘ Op, K ‘ ~
Ar
30 1021.5 3.36 90.4 2.79
40 999.6 3.37 88.1 2.81
50 997.2 3.39 85.8 2.88
60 933.3 3.40 81.6 2.84
70 889.4 3.42 7.3 2.78
80 844.9 3.44 73.1 2.74
83.7 801.1 3.45 69.1 2.74
Kr
30 843.2 3.57 70.0 2.83
40 834.3 3.58 69.1 2.83
50 817.9 3.59 67.5 2.84
60 802.3 3.60 66.1 2.83
70 781.2 3.61 64.1 2.81
80 758.8 3.62 62.1 2.76
90 734.4 3.64 59.8 2.75
100 708.9 3.65 57.5 2.79
110 684.4 3.67 55.3 2.94
Xe
50 804.2 3.88 61.5 2.73
60 786.9 3.89 60.1 2.82
70 772.8 3.90 58.8 2.85
80 758.5 3.91 57.6 2.86
90 744.2 3.92 56.4 2.90
100 729.6 3.93 55.1 2.92
110 715.1 3.94 53.9 2.96
120 700.7 3.95 52.7 2.98
130 687.3 3.96 51.5 2.99
140 672.8 3.97 50.2 3.00
150 660.3 3.99 49.1 3.02

The results of calculations carried out according to equation (1) are depicted in figure 1 as
dashed lines. The necessary initial data were taken from [5,7,9-13]. The temperature dependences of
the values used in the calculations are listed in table 1. As it is seen in figure 1 the calculated thermal
conductivity Ac, decreases with the temperature increase more rapidly than the experimental
one (A?;l o T717, A(If;l o T713, Az(,jl o T718). These results showed that the experimental
isobaric thermal conductivity of solid Ar, Kr, and Xe could not be completely explained by taking
into account the processes of thermal expansion of samples only. It led us to the suggestion that
such a behavior of thermal conductivity (figure 1) can be related to the thermal conductivity
approaching its lower limit. The model of the minimum thermal conductivity A, proceeds from
the assumption that all the excitations are weakly localized in the region whose sizes are half of
the phonon wavelength A/2. Consequently, the vibrational excitations can hop from site to site

231



O.1.Pursky, V.A.Konstantinov

Table 2. Debye model parameters of thermal conductivity used in the simulation, and relations
between the minimal values of the experimental thermal conductivity A5 and lower limit of
the thermal conductivity Amin are calculated according to (2).

Substance| K [A,107' s/K| a [ASP /Auin

Ar 1.93 4.2 1.1 1.65
Kr 2.18 3.5 1.7 1.87
Xe 2.16 2.9 1.6 1.89

through thermal diffusion [14]. In this case the Ay, can be written as

Op/T

m\1/3 T\? xz3e®
Amin = (=) ksn?Pu [ — /701 2
(5)  wen(go PR (2)
0

where Op = v (h/kg) (67r2n)1/ ® v is the polarization-averaged sound velocity, and n is the number
of atoms per unit volume. From figure 1 it can also be noted that the experimental thermal
conductivity of solid Ar, Kr, and Xe approaches its lower limit at premelting temperatures, being
no more than twice that value Ay, calculated using the equation (2) (see table 2).

The last one, qualitatively conforms to the case of strong phonon scattering, when the mean-
free path of vibrational modes is substantially limited and approaches the phonon wavelength. In
this respect, in order to quantitatively describe the temperature dependences of isobaric thermal
conductivity of solid Ar, Kr, and Xe, we used the Debye model of the heat transfer [2] and Roufosse
and Klemens assumption [15] concerning the lower limit of the phonon scattering length. According
to the Debye formalism, the lattice thermal conductivity is determined by integrating over all
angular frequencies w:

ks [
A= —=
52y /l(w)w dw, (3)
0

where wp is the Debye frequency (wp = (67r2) Y34 /a), and [ (w) is the phonon mean free path
determined by the U-processes at T' > Op, and for the perfect crystal it can be written as

ly (W) =v/ATw?, (4)

3 2
A= BT Fer (5)
V2 malwd
Expression (4) is not applicable if [ (w) becomes of the order or smaller than half of the phonon
wavelength A\/2 = nv/w. The problem is then to determine the density of states and the eigen-
frequencies of these excitations. A similar situation was considered previously for the case of U-
processes [15]. In this case, the mean free path of high-frequency phonons for frequencies lager
than a frequency wy becomes constant and comparable with an interatomic distance, whereas the
mean free path of low-frequency phonons is determined by equation (4) as before:

() = { v/AW*T 0 < w < wo, (6)

amv/w  wy < w < wp,

where « is the numerical coefficient of the order of unity. We have assumed the excitations whose
frequencies are above the phonon mobility edge wy to be “localized” or “diffusive”. Since completely
localized modes do not contribute to the thermal conductivity, we suppose that the localization is
weak and the excitations can hop from site to site diffusively, as it was suggested by Cahill and
Pohl [14]. The frequency wp can be expressed from the equations (4,6) as

wo = 1/amAT. (7)
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The integral of thermal conductivity (3) is subdivided into two parts describing the contributions
to the heat transfer from the low-frequency phonons and high-frequency “diffusive” modes:

A= Apn + Atoc. (8)

In the high-temperature limit (T' > Op) these contributions are as follows:

- kBWO
Apn = 2m2vAT’ )
Ad'f = % (w2 - w2) . (10)
' drv VD 0

The computer fitting of the thermal conductivity using equations (8-10) was performed by
varying the coefficients A and « using the least squares method. The parameters of the Debye
model for thermal conductivity used in the fitting as well as the fitted values A and « are listed in
table 1 and table 2. The fitting results for isobaric thermal conductivity of solids Ar, Kr, and Xe are
shown in figure 1 (solid line). The same figure shows the contributions (dot-and-dash lines) to the
heat transfer from the low-frequency phonons Ay, and the high-frequency “diffusive” modes Aqst
(calculated by equations (9), (10)). The dotted line shows the lower limit of thermal conductivity
Amin (2) calculated for the isobaric case according to Cahill and Pohl, within the framework of the
Einstein model of heat transfer directly from atom to atom [14]. It can be seen from figure 1, that
the results obtained taking account the effect of the thermal expansion and “diffusive” heat transfer
fit the experimental dependences well, and the differences do not exceed 7%. While calculating we
used the assumption that the minimal phonon mean-free path is equal to one half of the wavelength.
However, it should be noted that this is only one of the possible assumptions. For example, Slack
[16] supposed that the scattering length is equal to the phonon wavelength.

3. Conclusion

To summarize, we can say that the data of this study are helpful in understanding the heat
transfer mechanisms in dielectric crystals under isobaric conditions. To begin with, our results,
demonstrate that the isobaric thermal conductivity of rare gas solids can be described in a model,
where the heat is transferred by low-frequency phonons and above the phonon mobility edge by
“diffusive” modes migrating randomly from site to site. Besides, the present model takes into
account the thermal expansion of the samples. The results also indicate a considerable effect of the
thermal expansion and insignificant heat transfer by “diffusive” modes. The quantitative analysis
showed that the thermal conductivity of solidified Ar, Kr, and Xe approaches its lower limit at
premelting temperatures.

Based on these studies it seems reasonable to conclude that the main cause of considerable
deviations of the isobaric thermal conductivity of rare gas solids from the dependence 1/T is the
thermal expansion of the samples.
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BHeCcOK TenjioBoro po3wmpeHHsa Ta “ andy3Hnx” mMmog B i300apHy
TenJIonpoBiAHICTb KPUCTaNIB iIHEPTHUX rasis

O.1.Nypcbkuniil, B.A.KOHCTaHTIHOB?

1 Kuiscbkuit HauioHanbHMiA yHiBepcuTeT iM. Tapaca LLleByeHka, kadenpa MonekynsipHoi di3unku,
npocn. Myuwkosa, 6, Knis, 03022, YkpaiHa

2 izyKo-TEXHIHNIA IHCTUTYT HNU3bkMX TemnepaTtyp HAH Ykpainu, npocn. JleHiHa, 47, Xapkis 61103, YkpaiHa
OTtpumaHo 11 rpyaHs 2006 p.

TeopeTunyHa MoZesb afanToBaHa AJis ONncy eKCnepuMeHTaIbHUX Pe3ysbTaTiB, OTPMMaHNX ANis i3o6apHoi
TEnNonpPoBIOHOCTI KPUCTaniB iIHEPTHUX ragie. I306apHa TennonpoBiAHICTbL KPUCTaNIB iIHEPTHMX radiB aHani-
3y€EeTbCH B pamkax HabnwxeHHs Jebas i3 BpaxyBaHHAM BMJIMBY TEMIOBOro PO3LUMPEHHS. 3anpornoHoBaHa
MOfefb, B SIKilA TENI0 nepeHocnTbcst GOHOHaMU, a BULLE Bif, MeXi PYXJIMBOCTI POHOHIB — “AndYy3HUMUN”
MoZamu, Lo MIrpyloTb BUMaAKOBUM YMHOM 3 By3/a Ha By30Jl. Mexa pyxJiMBOCTi GOHOHIB wy BM3HAYa-
€TbCS i3 YMOBW, WO OOBXMHA BiflbHOrO npobiry ¢poHOHa, KOoTpa BU3HavYaeTbes U-npouecamun, He Moxe
CTaTV MEHLLOIO 32 MOJIOBUHY A0BXUHU XBUSI.

Knio4oBi cnoBa: Tern/ionpoBiaHICTb, pOHOHHA B3aemMogis, “aAny3Hi” moan

PACS: 66.70+f, 63.20.Ls
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