
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 3. P. 200-203.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

200

PACS 42.79.Dj, 78.35.+c

Grating and plasmon resonances in the scattering
of light by finite silver nanostrip gratings

O.V. Shapoval1, R. Sauleau2, A.I. Nosich1

1Institute of Radio-Physics and Electronics, NAS of Ukraine, 
12, Proskury str., 61085 Kharkiv, Ukraine
E-mail: olga.v.shapoval@gmail.com
2IETR, University of Rennes 1, Campus Beaulieu, bat 11-D, 35042 Rennes Cedex, France
E-mail: ronan.sauleau@univ-rennes1.fr

Abstract. We study numerically the H-polarized wave scattering by finite flat gratings of 
N silver nanostrips in free space in the context of co-existence of surface plasmon 
resonances (SPR) and periodicity-induced grating resonances (GRs). The accurate 
numerical analysis is carried out using the previously developed combination of two-side 
generalized boundary conditions imposed on the strip median lines and Nystrom-type 
discretization of the relevant singular and hyper-singular integral equations. Our 
computations are focused on specific periodicity-caused coupling which leads to the 
existence of the grating or lattice resonances near to λG = p/m, m = 1, 2,… (at normal 
incidence). These resonances result in large reflection, transmission, absorption, and 
near-field enhancement. We also study the interplay of SPR and GR, if they approach 
each other and the optical response dependence of the grating parameters, such as overall 
dimension and number of strips. 

Keywords: finite nanostrip grating, surface plasmon resonance, grating resonance, two-
side generalized boundary conditions, singular and hyper-singular integral equations, 
Nystrom-type discretization.

Manuscript received 08.05.12; revised version received 07.06.12; accepted for 
publication 14.06.12; published online 25.09.12.

1. Introduction

Optical nanoantennas have unique ability of 
concentrating the light within nanoscale domains thanks 
to plasmon resonances (PRs), as revealed by measuring 
or computing the scattering and absorption of light by 
noble-metal scatterers. In this connection, noble-metal 
nanosize strips and their finite ensembles are very 
attractive as easily manufactured components of various 
optical devices [1, 2]. The typical dimensions of metal 
nanostrips are: the width from 100 to 1000 nm and the 
thickness from 5 to 50 nm. Thereby, the thickness is 
some 10 to 180 times smaller than the wavelength in the 
visible band. PRs are the Fabry-Perot-like resonances, 
formed by the reflections of the short-range surface 
plasmon wave of the corresponding metal layer from the 
strip edges [2]. Therefore, their wavelengths can be 
easily tuned by changing the strip width and thickness. 
In addition to PRs, multi-element finite gratings made of 

sufficiently massive silver strips have attractive 
properties of extraordinarily large reflection, 
transmission, absorption, and near-field enhancement 
that are inherited from the light scattering by infinite 
strip gratings. Namely, these phenomena are greatly 
effected by the so-called grating resonances that appear 
due to periodicity [3, 4]. It should be noted that, until 
recently, these resonances have been commonly 
explained via the Rayleigh anomalies [3], and it was 
only in [4] that the true nature of these specific 
resonances was explained. 

Therefore, in this paper we focus our study on the 
periodicity-induced resonance effects in the light 
scattering by finite silver nanostrip gratings located in 
free space. As a reliable instrument, we use the 
developed earlier by us median-line integral equation 
method based on the two-side generalized boundary 
conditions (GBCs) [5] and Nystrom-type discretization 
of the interpolation type [6, 7].
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2. Setting the problem and generalized boundary 
conditions 

Geometry of a flat strip grating made of finite number N 
of identical silver strips is shown in Fig. 1. Assume that 
the incident wave is an H-polarized plane wave coming 
to the grating at the angle β from the upper half-space.

The total magnetic field is the sum of the incident 
wave and the fields scattered by the finite strip grating 
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satisfy the Helmholtz equation off the strips contours. 
Exploiting the small thickness of the strips, h , we 
assume it to be zero, i.e. we shrink their cross-sections to 
the corresponding median lines 
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which contain the strip characteristics such as electric 
thickness kh and relative dielectric function εr; n


 is the 

unit vector normal to the strip grating; and the 
superscripts   denote the limit values of the field at the 
top and bottom faces of the strip, respectively. These 
GBCs are valid if 1kh  and 1r  [5, 6]. In 

addition,  rH sc
z


 must satisfy the Sommerfeld radiation 

condition at infinity and condition of the local energy 
finiteness. Such a scattering problem is uniquely 
solvable.

3. Singular and hyper-singular IEs 
and Nystrom-type discretization

To satisfy the Helmholtz equation and radiation 
condition, we seek the scattered field as a sum,
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Fig. 1. Geometry of a finite grating of silver nanostrips having 
the width d, thickness h and period p.
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where       rrkHirrG 
 1

04/,  is the Green 

function. Note that the unknown functions  rv j


,  rwj



are magnetic and electric currents, respectively, induced 
on the strips of the grating.

Using GBC (1), (2) and the properties of the limit 
values of potentials in (4), we obtain two independent 
sets of N IEs of the second kind. One of them, for all 
 xvi , Ni ,...,1 , contains equations with logarithmic-

type singularities, and the other, for  xwi , with hyper-

type singularities,
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Note that the integrals in (6) are understood in the 

sense of finite part of Hadamard. Transforming to new 
normalized variables  1,1, 0 tt , introducing new 

unknown surface functions as      2/121~ 
 ttwtw jj

and following [6, 7], we isolate the singularities and 
discretize the resulted sets of N IEs using the Nystrom-
type method with two different quadrature rules of 
interpolation type. For IEs (5), we use the Gauss-
Legendre quadrature formulas of the th-vn  order with 

nodes in the nulls of Legendre polynomials   0 jnv
P , 

vnj ,...,1 . For IEs (6), the use of the Gauss-Chebyshev 

quadrature formulas of the th-wn  order (with the 

weight   2/121 t ) is more efficient, with nodes in the 
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Fig. 2. Normalized TSCS per one strip versus the 
wavelength for the finite grating of N silver strips with the 
width d = 300 nm, thickness h =50 nm, period p = 800 nm 
and β = π/2 (normal incidence).
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Fig. 3. Normalized near-field patterns for the plane H-wave (β = π/2) normally incident on the grating of N = 50 silver strips of 
d = 300 nm, h = 50 nm and p = 800 nm at the wavelengths of the grating resonances λ = 799 nm (a) and 402 nm (b).

nulls of Chebyshev polynomials of the second kind, 
 wj njt /cos  , wnj ,...,1 . In view of the limited 

space, we omit the details and refer to [ 8-6 ]. Thereby, 
applying the above mentioned quadrature formulas, we 
arrive at two independent sets of matrix equations of the 
orders vnN  and wnN  , respectively, for the values 

 ijv   and  kj tw~ . These matrix equations represent 

discrete models of our IEs. On solving them we obtain 
the surface currents as interpolations polynomials.

The chosen quadrature formulas ensure rapid 
convergence of numerical solutions to the accurate ones 
if vn , wn . Conservative estimation gives the rates 

of convergence as  wvnO ,/1 , although the actual rate is 

always higher [6, 7]. The empiric rule to achieve 4-digit 
accuracy in the analysis of surface currents is to take 

5 SRPWw kdn  and 5 kdnv  where SRPW  is the 

effective refractive index of short-range surface plasmon 
wave of the corresponding metal layer [6, 8]. For 
instance, for a 20-nm thick and 2λ-wide silver strip in 
the whole visible range, one can take nv = nw = 50.

4. Numerical simulation: plasmon 
and grating resonances

To study the plasmon and periodicity resonance effects 
in the H-polarized light scattering by the finite silver 
nanostrip gratings, we have investigated the 
wavelength dependences of the total scattering cross 
section (TSCS), obtained via integration of the far-field 
scattering pattern, and visualized the near-field patterns 
at resonance wavelengths. To characterize the complex
dielectric permittivity of silver, we took the 
experimental data of Johnson and Christy with spline 
interpolation.

As one can see from Fig. 2, a stand-alone silver 
strip with h = 50 nm has two PRs in the visible range at 
the normal incidence (β = π/2): at  λ = 354.1 nm and  λ =
680.5 nm. The TSCS of silver grating of N = 50 strips 
exhibits, after normalization by N, two types of 
resonances: PRs and GRs (the latter resonances are 
marked with asterisks). 

Here, the first G-resonance wavelength is λ =
402 nm that is slightly above p/2, and another one at 
λ = 799 nm that is close to p. In fact, within the whole 
range between 600 and 850 nm, a combined resonance 
takes place; such merging leads to considerable 
enhancement of scattering per a strip of the grating.

Presented in Fig. 3 are the total near-field patterns 
at the corresponding wavelengths, λ = 799 nm (a) and 
λ = 402 nm (b), together with their zooms around five 
central periods.

One can see two different standing waves: one is 
formed at y > 0, because of enhanced reflection, and 
another one stands along the x-axis, formed by the quasi-
Floquet harmonics of the grating. To deepen the 
understanding of the resonance effects, in Fig. 4 we show 
the reliefs of TSCS versus two parameters: wavelength 
and grating period while d = 300 nm (a) and wavelength 
and grating width while p = 800 nm (b) for the grating of 
N = 20 silver strips under the normal incidence.

In Fig. 4a, a pronounced sharp “ridge” stretching 
along the line λ = p is observed and a smaller one is 
discernible along λ = p/2. They correspond to the 
mentioned above GRs and run across the broad “hill” of 
the main PR of the given strip-width. For the finite strip 
grating with a fixed period of 800 nm (Fig. 4b), under 
the normal incidence, two PR “hills” are cut by two 
pronounced GR “ridges” at almost fixed wavelengths 
near λ ≈ p/2 and λ ≈ p; these GRs are best visible in the 
case of the strip width from 100 to 200 nm and from 300 
to 500 nm, respectively.
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Fig. 4. Normalized per one strip reliefs of TSCS (in nm) versus 
the wavelength and the period while d = 300 nm (a) and versus 
the wavelength and width while p = 800 nm (b) for the silver 
strip grating of N = 20 of thickness h = 50 nm under the normal 
incidence (β = π/2).

5. Conclusions

Summarizing, we have studied the scattering and 
absorption of the H-polarized electromagnetic wave by 
free-standing finite silver nanostrip gratings, in the 
visible range. The analysis has shown co-existence of 
the localized surface-plasmon resonances of a stand-
alone silver strip and the grating resonances close to 
λ ≈ p/m, m = 1, 2, … caused by the effect of periodicity. 
Here, the gratings of the larger numbers of strips have 
more pronounced grating resonances. The effect of 
enhanced scattering in the combined resonance has been 
revealed.
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1. Introduction 

Optical nanoantennas have unique ability of concentrating the light within nanoscale domains thanks to plasmon resonances (PRs), as revealed by measuring or computing the scattering and absorption of light by noble-metal scatterers. In this connection, noble-metal nanosize strips and their finite ensembles are very attractive as easily manufactured components of various optical devices [1, 2]. The typical dimensions of metal nanostrips are: the width from 100 to 1000 nm and the thickness from 5 to 50 nm. Thereby, the thickness is some 10 to 180 times smaller than the wavelength in the visible band. PRs are the Fabry-Perot-like resonances, formed by the reflections of the short-range surface plasmon wave of the corresponding metal layer from the strip edges [2]. Therefore, their wavelengths can be easily tuned by changing the strip width and thickness. In addition to PRs, multi-element finite gratings made of sufficiently massive silver strips have attractive properties of extraordinarily large reflection, transmission, absorption, and near-field enhancement that are inherited from the light scattering by infinite strip gratings. Namely, these phenomena are greatly effected by the so-called grating resonances that appear due to periodicity [3, 4]. It should be noted that, until recently, these resonances have been commonly explained via the Rayleigh anomalies [3], and it was only in [4] that the true nature of these specific resonances was explained. 


Therefore, in this paper we focus our study on the periodicity-induced resonance effects in the light scattering by finite silver nanostrip gratings located in free space. As a reliable instrument, we use the developed earlier by us median-line integral equation method based on the two-side generalized boundary conditions (GBCs) [5] and Nystrom-type discretization of the interpolation type [6, 7].


2. Setting the problem and generalized boundary conditions 


Geometry of a flat strip grating made of finite number N of identical silver strips is shown in Fig. 1. Assume that the incident wave is an H-polarized plane wave coming to the grating at the angle β from the upper half-space.


The total magnetic field is the sum of the incident wave and the fields scattered by the finite strip grating 
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3. Singular and hyper-singular IEs 
and Nystrom-type discretization

To satisfy the Helmholtz equation and radiation condition, we seek the scattered field as a sum,
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Fig. 1. Geometry of a finite grating of silver nanostrips having the width d, thickness h and period p.
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 and following [6, 7], we isolate the singularities and discretize the resulted sets of N IEs using the Nystrom-type method with two different quadrature rules of interpolation type. For IEs (5), we use the Gauss-Legendre quadrature formulas of the 
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. For IEs (6), the use of the Gauss-Chebyshev quadrature formulas of the 
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. In view of the limited space, we omit the details and refer to [
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]. Thereby, applying the above mentioned quadrature formulas, we arrive at two independent sets of matrix equations of the orders 
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. These matrix equations represent discrete models of our IEs. On solving them we obtain the surface currents as interpolations polynomials.
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The chosen quadrature formulas ensure rapid convergence of numerical solutions to the accurate ones if 

[image: image39.wmf]v


n


, 

[image: image40.wmf]¥


®


w


n


. Conservative estimation gives the rates of convergence as 

[image: image41.wmf](


)


w


v


n


O


,


/


1


, although the actual rate is always higher [6, 7]. The empiric rule to achieve 4-digit accuracy in the analysis of surface currents is to take 
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 is the effective refractive index of short-range surface plasmon wave of the corresponding metal layer [6, 8]. For instance, for a 20-nm thick and 2λ-wide silver strip in the whole visible range, one can take nv = nw = 50.


4. Numerical simulation: plasmon 
and grating resonances


To study the plasmon and periodicity resonance effects in the H-polarized light scattering by the finite silver nanostrip gratings, we have investigated the wavelength dependences of the total scattering cross section (TSCS), obtained via integration of the far-field scattering pattern, and visualized the near-field patterns at resonance wavelengths. To characterize the complex dielectric permittivity of silver, we took the experimental data of Johnson and Christy with spline interpolation.


As one can see from Fig. 2, a stand-alone silver strip with h = 50 nm has two PRs in the visible range at the normal incidence (β = π/2): at λ = 354.1 nm and λ = 680.5 nm. The TSCS of silver grating of N = 50 strips exhibits, after normalization by N, two types of resonances: PRs and GRs (the latter resonances are marked with asterisks). 

Here, the first G-resonance wavelength is λ = 402 nm that is slightly above p/2, and another one at λ = 799 nm that is close to p. In fact, within the whole range between 600 and 850 nm, a combined resonance takes place; such merging leads to considerable enhancement of scattering per a strip of the grating.


Presented in Fig. 3 are the total near-field patterns at the corresponding wavelengths, λ = 799 nm (a) and λ = 402 nm (b), together with their zooms around five central periods.


One can see two different standing waves: one is formed at y > 0, because of enhanced reflection, and another one stands along the x-axis, formed by the quasi-Floquet harmonics of the grating. To deepen the understanding of the resonance effects, in Fig. 4 we show the reliefs of TSCS versus two parameters: wavelength and grating period while d = 300 nm (a) and wavelength and grating width while p = 800 nm (b) for the grating of N = 20 silver strips under the normal incidence.


In Fig. 4a, a pronounced sharp “ridge” stretching along the line λ = p is observed and a smaller one is discernible along λ = p/2. They correspond to the mentioned above GRs and run across the broad “hill” of the main PR of the given strip-width. For the finite strip grating with a fixed period of 800 nm (Fig. 4b), under the normal incidence, two PR “hills” are cut by two pronounced GR “ridges” at almost fixed wavelengths near λ ≈ p/2 and λ ≈ p; these GRs are best visible in the case of the strip width from 100 to 200 nm and from 300 to 500 nm, respectively.
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Fig. 4. Normalized per one strip reliefs of TSCS (in nm) versus the wavelength and the period while d = 300 nm (a) and versus the wavelength and width while p = 800 nm (b) for the silver strip grating of N = 20 of thickness h = 50 nm under the normal incidence (β = π/2).

5. Conclusions


Summarizing, we have studied the scattering and absorption of the H-polarized electromagnetic wave by free-standing finite silver nanostrip gratings, in the visible range. The analysis has shown co-existence of the localized surface-plasmon resonances of a stand-alone silver strip and the grating resonances close to λ ≈ p/m, m = 1, 2, … caused by the effect of periodicity. Here, the gratings of the larger numbers of strips have more pronounced grating resonances. The effect of enhanced scattering in the combined resonance has been revealed.
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Fig. 3. Normalized near-field patterns for the plane H-wave (β = π/2) normally incident on the grating of N = 50 silver strips of d = 300 nm, h = 50 nm and p = 800 nm at the wavelengths of the grating resonances λ = 799 nm (a) and 402 nm (b).
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Fig. 2. Normalized TSCS per one strip versus the wavelength for the finite grating of N silver strips with the width d = 300 nm, thickness h =50 nm, period p = 800 nm and β = π/2 (normal incidence).
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