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1. Introduction 

Single surface and subsurface defects result in an inter-
ference pattern in images obtained by scanning tunneling 
microscope (STM) [1] (for review see [2–4]). The nature 
of a nonmonotonic dependence of the tunnel conductance 

= /G dI dV  on the lateral coordinates, as measured be-
tween the STM-tip and the sample, is of the same nature as 
Friedel oscillations in the electron local density of states 
(LDOS) in the vicinity of a scatterer [5]. It is the quantum 
interference between incident electron waves and waves 
scattered by the defects, leading to the formation of stand-
ing waves. Analysis of the oscillatory dependence of the 
conductance on the STM-tip position relative to the defects 
gives information about the defect itself and the host metal. 
Particularly, the depth of the defects below the metal sur-
face [6–9], the magnetic moment of subsurface magnetic 
clusters [10,11], and contours related to the bulk Fermi 
surface can be determined [12–16]. 

Many works deal with STM theory (for reviews see, for 
example, [3,17,18]). One of the widely used models de-
scribing STM experiments was proposed by Tersoff and 
Hamann [19] whose theoretical analysis of the tunnel cur-
rent is based on Bardeen’s formalism [20]. Reference 19 

used a model wave function for an isolated STM-tip and an 
unperturbed wave function of states at the surface of the 
sample to show that the conductance of the system is pro-
portional to the LDOS of the sample at the tip position. 
Such an approach reduces the task of the theoretical inter-
pretation of standing wave pattern in the STM images to 
the calculation of Friedel oscillations in LDOS of surface 
states (see, for example, [21]). 

Another model [22] which can be applied to describe 
STM experiments [7] is the model of an inhomogeneous 
barrier of small transparency as part of an infinitly thin 
interface between two conductors. In framework of this 
model an asymptotically exact analytical formula for the 
tunnel conductance can be obtained [22] (in terms of the 
inverse barrier amplitude), as well as its oscillations due to 
subsurface defects [7]. 

In this paper we use the latter model [22] to study the 
electron tunneling through a small contact into Shockley-
like surface states. The scattering of surface electron waves 
by a single defect incorporated in the sample surface is 
taken into account. Under assumptions of an elliptic dis-
persion law for the conduction electrons (i.e., in the ap-
proximation of an effective mass tensor which does not 
depend on momentum), and a small interaction constant 
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for scattering of the electrons with the defect, we have 
found an asymptotically exact expression for the conduc-
tance of the system. The relation between the Fermi sur-
face contour and the interference pattern produced in the 
conductance by the electron scattering is discussed. 

The novelty of the present paper is defined by the fol-
lowing: Analytical formulas for the STM conductance de-
scribing the electron tunneling into surface states, taking 
into account their scattering by single defects, have been 
obtained for arbitrary size of the contact and for an aniso-
tropic (elliptic) Fermi contour. We found exact mathemati-
cal relations between shape of the contours in the real-
space STM images, their Fourier transform, and the true 
Fermi contour ellipse. 

The organization of this paper is as follows. The model 
that we use to describe the contact, and the method for 
obtaining a solution of the Schrödinger equation are de-
scribed in Sec. 2. In Sec. 3 the differential conductance is 
found on the basis of a calculation of the probability cur-
rent density through the contact. Section 4 presents a phys-
ical interpretation of the results obtained. In Sec. 5 we con-
clude by discussing the possibilities for exploiting these 
theoretical results for interpretation of STM experiments. 

2. Solution of the Schrödinger equation 

The model that we consider is illustrated in Fig. 1. Elec-
trons can tunnel through a small region centered at the 
point = 0r  in an infinitely thin insulating interface at 

= 0z  from a half-space < 0z  (the tip) into a conducting 
half-space > 0.z  The inhomogeneous potential barrier in 
the plane = 0z  we describe by the function ( ) =U r  

0 ( ) ( ),U f z= δρ = ( , )x yρ  is a two-dimensional position 
vector in the plane. The function ( )f ρ  provides the elec-
tron tunneling through a bounded region of range a  cor-
responding to the radius of the contact, and fulfills the 
conditions, 

 ( )
1,

=
, .

a
f

a
ρ⎧

⎨→∞ ρ⎩

∼
�

ρ  (1) 

In the vicinity of the interface at > 0z  a single point-
like defect described by a short range potential ( ) =D r  

0 0( , )gD z= −ρ ρ  is situated, where g  is the constant of inte-
raction of the electrons with the defect, and 0 0( , )D z−ρ ρ  is a 
function localized within a region > 0z  of characteristic ra-
dius Dr  around of the point 0 0= ( , 0).+r ρ  It satisfies the 
normalization condition 

 ( )0 0 , = 1.d D z
∞

−∞

−∫ r ρ ρ  (2) 

Surface states at > 0z  are induced by the surface potential 
( ).sV z  In order to obtain an analytical solution of the 

Schrödinger equation and calculate the electric current in 
what follows we use an anisotropic dispersion law ( )ε k  
for the charge carriers in both conducting half-spaces, 
where k  is the electron wave vector, and for concreteness 
we take it to be elliptical. The wave function ( )ψ r  then 
satisfies the Schrödinger equation 

 ( )
2 2 2 2

2 2 22 x y zm x m y m z

⎛ ⎞∂ ∂ ∂⎜ ⎟+ + ψ +
⎜ ⎟∂ ∂ ∂⎝ ⎠

r   

 ( ) ( ) ( ) ( ) = 0.sU D V z+ ε − − − ψ⎡ ⎤⎣ ⎦r r r  (3) 

Here, ε  is the electron energy, and > 0km  are the prin-
cipal values of effective mass tensor. 

Let us search for solutions of Eq. (3) corresponding to 
electron tunneling from the surface states at > 0z  into the 
bulk tip states in the half-space < 0.z  Hereafter we follow 
the procedure for the finding the electron wave functions in 
the limits 0U →∞  and 0g →  that was proposed in 
Refs. 7,22 and search for the wave function ( )ψ r  as an 
expansion into a series: 

( ) ( ) ( ) ( ) ( )0 0 1 1
0 0

1= ...gg
U U

ψ ψ + ϕ + ψ + ϕ +r r r r r  (4) 

The functions 0,1( )ψ r  of the zeroth order approximation in 
01/U  satisfy the boundary condition at the interface = 0z  

 ( )0,1 ,0 = 0,ψ ρ  (5) 

while the functions 0,1( )ψ r  satisfy the continuity condition 

 ( ) ( )0,1 0,1, 0 = , 0 ,ϕ + ϕ −ρ ρ  (6) 

and the condition for jump in the derivative at = 0,z  
which for large 0U  reduces to the condition [7,22] 

 
( )
( ) ( ) ( )

( )
0 0

21 1= 0 =0

2= .
z z

m f
z

∗⎧ψ ⎫ ⎧ϕ ⎫∂ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ψ ϕ∂ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

r r
r r

∓

∓
=

ρ  (7) 

In leading approximation in the constant g  the functions 
1( )ψ r  and 1( )ϕ r can be written as 

Fig. 1. Schematic representation of a STM experiment. In our
model the STM tip (a) has been replaced by an inhomogeneous
barrier at = 0z  (b), which is described by the function ( )f ρ  (1).
Arrows schematically show directions of propagation of electron
waves. In the point 0ρ  a point-like defect describing by potential

0( , )D z−ρ ρ  is situated. 
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( )
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1 0

= ( , ) ; ,d D z G
∞

+

−∞
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where 0 ( ; )G+ ′ εr,r  is the retarded Green’s function for the 
unperturbed surface states in the field of the potential 

im ( )V z  near an impenetrable interface. 
The wave function in the zeroth approximation ( )0ψ r , 

as well as the Green’s function 0 ( ; ),G+ ′ εr,r  can be easily 
found. For the wave function we have, 

 ( ) ( )0 0
1= e .i

x y
z

L L
ψ χr κρ  (9) 

In Eqs. (9) and (12) below, κ  is a two-dimensional elec-
tron wave vector parallel to the interface, ,x yL L  are the 
sizes of the interface ,( ),x yL →∞  and 0 ( )zχ  is the solu-
tion of the equation 

 
( ) ( )( ) ( )

22
0

0 02 = 0, 0,
2 s

z

z
V z z z

m z

∂ χ
+ ε − χ

∂
 (10) 

subject to boundary conditions and normalization, 

( ) ( ) ( ) 2
0 0 0

0
0 = 0, 0, = 1.z dz z

∞
χ χ → ∞ → χ∫  (11) 

The electron energy corresponding to the state (9) is 
0= ( ) ,ε ε + εκ  where 2 2 2 2( ) = /2 /2x x y ym mε κ + κ= =κ  is 

the energy of the electron motion in a plane = const,z  and 
0ε  is the electron energy level in the potential well formed 

by the potential im ( )V z  and the infinite wall at = 0.z  We 
will assume that there is ony one filled quantum level be-
low the Fermi level F.ε  

The function 0 ( )ψ r  in Eq. (9) is the wave function for 
the surface states in an ideal conducting half-space when 
neglecting the finite value of a work function. The function 

1( )ψ r  describes the perturbation of 0 ( )ψ r  by electron 
scattering on the defect. 

The Green’s function of the surface states is given by 

 ( ) ( ) ( ) ( )( )(1)
0 0 0 002; = , , ,

2
x yi m m

G z z H+ ∗′ ′ ′ε χ χ Γ ε −εr,r ρ ρ   

  (12) 

where (1)
0H  is the Hankel function, with 

( ) 2 21, , = 2 [ ( ) ( ) ].x ym x x m y y′ ′ ′Γ ε ε − + −ρ ρ  (13) 

The wave function for the electrons transmitted through 
the barrier can be found by the method described in 
Refs. 7,22, 

 
____________________________________________________ 
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κρ

κ ρ ρρ
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 ( ) ( ) ( )( )2 (1)
0 0 0 0021 , e , , .

2
x y iig m m

d D z z H
∞

′′

−∞

⎧ ⎫⎪ ⎪′′ ′′ ′′ ′′ ′ ′′× + − χ Γ ε − ε⎨ ⎬
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∫ kr ρρ ρ ρ ρ  (14) 

_______________________________________________ 

3. Standing wave pattern in the point contact 
conductance 

For small transparency of the potential barrier the pro-
file of the electric potential can be approximated by a step 
function ( ).V zΘ −  We take the temperature = 0T  and 

< 0,eV  and consider only the electron flow from the sur-
face states at > 0z  into bulk tip states at < 0z  (Fig. 2). 
Obviously, in the case of a small applied bias ,FeV ε�  
which we consider in this work, the conductance 

= (0)/G I V  does not depend on the current direction. In 
the general case of non-Ohmic behavior the current-
voltage characteristic ( )I V  is not symmetric relative to 

= 0V  and the differential conductance ( ) = /G V dI dV  
must be calculated for each voltage sign separately, as was 
done for a small contact on the surface of a thin film in 
Ref. 23. The conductance of the system can be found by 
integration the total probability flux J  over an arbitrary 
plane = const, < 0z z  

Fig. 2. Illustration of the occupied energy bands. Arrows show the 
direction of electron tunneling from surface states into bulk states. 

�

�
F

�
F

+ eV

V zim( )

�0

0 z



Electron tunneling into surface states through an inhomogeneous barrier: asymptotically exact solution  

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 3 387 
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  (15) 

It is natural that the result of integration in Eq. (15) does 
not depend on z . Substituting the wave function ( , )zϕ ρ  
(14), into Eq.(15) we find after some integration 
 

____________________________________________________ 
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_______________________________________________ 
 

where 0 ( )J x  and 0 ( )Y x  are Bessel functions of the first 
and the second kind. Further calculations require explicit 
expressions for the functions ( )f ρ  and 0 0( , ).D z−ρ ρ  The 
integral formula (16) can be simplified for small contacts 
(contact radius 0)a →  and for a short range potential 
( 0).Dr →  In these limits all functions in the integrals, 
except ( )f ρ  and 0 0( , ),D z−ρ ρ  can be taken in the points 

= = 0,′ ′′ρ ρ  0′′′ =ρ ρ  and Eq.(16) is reduced to 

 ( ) ( ) ( ) ( )
2 0

0 eff 2 03
2= .DD

eG T Sπ
ρ ρ

=
ρ ρ  (17) 

Here 

 

( ) ( ) ( )( ) ( )( )0
2 0 0 0 0 0 0 02 2= 1 ,

x y
D D
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J h Y h

⎡ ⎤
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 ( ) ( )
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0 0

2 32 3

2
= , = ,x y F x y z

D D
m m m m mε

ρ ρ
π π

 (19) 

are the densities of states (for two spin directions) for de-
fect-free two-dimensional (2D) and three-dimensional (3D) 
systems, (0)

2Dρ  and (0)
3 ,Dρ  and local density of surface states 

scattered by single defect, 2 0( ).Dρ ρ  In these expressions, 

( ) ( )2 2
0 0 0 0

1= 2( ) ,cos sinF x yh m mε − ε ϑ + ϑn
=

 (20) 

0 0 0= (cos ,sin )ϑ ϑn  defines the angle between the point 
contact and the position of the defect 

0 0 0 0= (cos ,sin ),ρ ϑ ϑρ  and the coefficient eff( ),T S  
which depends on the effective area of the contact, plays 
the role of the tunneling matrix element, 

 ( )
6 2 2

eff 0 eff3 2
0

( ) = 0 ,
24

F

z
T S S

m U
πε ′χ +

=
 (21) 

 
( )eff = ,dS

f

∞

−∞
∫

ρ
ρ

 (22) 

and 

 i ( ) ( ) 2
0 0 0= ,g g d dzD z z

∞ ∞

−∞ −∞

− χ∫ ∫ρ ρ ρ  (23) 

is the effective constant of interaction of electrons belong-
ing to the surface states with the defect at 

0 0 0 0= (cos ,sin ).ρ ϑ ϑρ  Note that the limit Eq. (17) can be 
used for describing experimental data with satisfactory 
accuracy, as long as a  and Dr  are smaller than the Fermi 
wave length .Fλ  

Figure 3 illustrates the standing wave pattern in the 
conductance 0( ),G ρ  Eq. (17), around the defect. Maxima 
and minima in Fig. 3 form curves of constant phase of os-
cillatory functions in Eq. (17), 0 02 ( ) = const,h ϑ ρ  and the 
visible contours are defined by the function 

 ( ) ( )0 0
0

const= .
2h

ρ ϑ
ϑ

 (24) 

Fig. 3. Standing wave pattern in the conductance G  as described 
by Eq. (17). The dashed ellipse is the Fermi contour in momen-
tum space. The center of the defect is placed in the point = 0,ρ
and 0/2 = / 2 ( ),F x Fmλ π ε − ε=  with = 3 .y xm m  
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4. Discussion 

Thus, in the framework of the model illustrated in 
Fig. 1(b) we have obtained a formula for the conductance, 
that is asymptotically exact in the limit of small transpa-
rency of the barrier between conductors, for an inhomoge-
neous tunnel barrier of arbitrary form allowing electron 
tunneling from the surface states into the bulk states in the 
other conductor (16 ). For the sake of clarity, in discussing 
our results we make reference to the simplified formula for 
the conductance, Eq.(17). 

The Fermi contour of the surface states for an elliptic 
dispersion law can be written in polar coordinates, with the 
center in the center of the ellipse, as  

 ( )
( )

0

2 2

2( )
= ,

cos sin

F x y

y x

m m
k

m m

ε − ε
φ

φ + φ=
 (25) 

= (cos ,sin ).k φ φk  The auxiliary function ( )h φ  is the func-
tion that measures the distance from the tangent line at 
the point ( )k φ  on the ellipse to the origin = 0k  [24], i.e. in 
k-space ( )h φ  is the projection of ( )φk  to the normal ( )φn  
to the curve ( )k φ  in the point defined by the angle ,φ  

 ( )
( ) ( )2 2

cos sin
= ,

cos sin

y x

y x

m m

m m

φ + φ
φ

φ + φ

i j
n  (26) 

( ) ( ) ( )
2 2

0

2 2

2( ) [( )]cos sin
= = .

( cos ) ( sin )

F x y y x

y x

m m m m
h

m m

ε −ε φ+ φ
φ φ φ

φ + φ
k n

  (27) 

If instead of the angle φ  we choose as a variable in the 
functions ( )φn  (26) and ( )h φ  (27) the angle ϑ between 
the normal vector ( ) = (cos ,sin )ϑ ϑ ϑn  and the x-axis (the 
change of variable is clear from Eq. (26)), the Eq. (27) for 
the auxiliary function ( )h ϑ  takes the same form as Eq. 
(20). Naturally, at =x ym m  the auxiliary function (27) 
coincides with the contour curve (25) that is the circle. For 
our model of the Fermi surface the function 0 0( )ρ ϑ  (24) 
gives ellipses rotated relative to the true Fermi contour 
(25) by an angle /2π  (see Fig. 3) This observation is a 
geometrical property of the ellipse and is not satisfied for 
any curve. 

At large distances from the defect 0 1hρ �  the oscillato-
ry part oscG  of the conductance (17) takes the simple form  
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( )
0 0osc

02
0 0 0

cos 2
, 1, 1.x y

F
S

g m m hG
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G h
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ρπ

n
n
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�

  
  (28) 

The Fourier transform of Eq. (28) given by, 

 osc 000
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( ) = e =i
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G
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∫ kk ρ ρ
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( )
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⎜ ⎟θ + −
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+ −

ε − ε ε − ε

==

�

==
 (29) 

directly gives us the true Fermi contour, of double the orig-
inal size. 

5. Conclusion 

In summary, we have investigated the electron tunne-
ling from surface states into bulk states through an inho-
mogeneous barrier of arbitrary form. An asymptotically 
exact formula for the conductance of the system is ob-
tained for an anisotropic quadratic dispersion law of charge 
carriers. The influence of electron scattering by a single 
point-like defect at the surface has been taken into account. 
We believe that the results obtained are suitable for de-
scribing STM experiments. In the framework of our model 
we have found explicit geometrical relations between the 
characteristics of the Fermi surface (principal values of the 
effective mass tensor; the Fermi energy) and curves of 
constant phase (for example, curves of maxima or minima 
of the oscillation amplitude) in the standing wave pattern 
in the real space STM images. Our results authenticate that 
the real space image does not give us the true Fermi con-
tours, while the Fourier transform makes it possible to re-
construct the Fermi contour of the surface states correctly. 
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