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1. Introduction

Investigations of scattering of band carriers by neutral 
impurities have no noticeable advance for a long time 
[1–5]. Several approaches to the problem of neutral 
impurity scattering were used, but only one received 
wide recognition. There was consideration of interaction 
of electrons with shallow neutral impurity, which 
imitates spherically symmetrical hydrogen atom. In this 
case relaxation time  for momentum of carriers was 
constructed on the base of cross-section for scattering 
process [6]. This time has well-known Erginsoy’s form 
[1]
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Here L  is dielectric constant of lattice, m  is 

effective mass, 0n  is concentration of scattering centers. 

However, there are serious claims to the method of 
scalar relaxation time as a whole [7, 8]. The attempts to 
improve agreement of theory and experimental data by 
the way of introducing some adjusting factor in Eq. (1) 
(see, for instance, [4]) should be considered as very 
naive only. 

Other direction of investigations uses model for 
scattering potential of neutral impurity as rectangular 
spherically isotropic hole [9]. Limit case of this model is 
delta-shaped function in space [10, 11]). In this case 
there is no possibility to evaluate amplitude of 
interaction. There is also no way to derive rectangular or 
delta-shaped potential as well-reasoned limit case of 
physically grounded interaction. 

Bellow we shall consider mobility of band carriers, 
scattered by charged and neutral impurities; calculations 
will be based on quantum kinetic equation [10, 11]. For 
simplicity we use here only a model of simple isotropic 
parabolic dispersion law for band carriers.

We consider shallow donors, which are partially 
ionized, as a scattering system; degree of donors 
ionization depends on temperature. So, generally we 
have both neutral and charged scattering centers; relation 
between their concentrations depends on temperature. 
We consider here only low temperatures and do not take 
into account phonon scattering. 

2. Scattering potential

2.1. Delta-shaped potential

The formulation “scattering of band electron on neutral 
point defect” is completely conditional, because 
Coulomb interaction of charged particle with really 
neutral point object does not take place. Therefore 
neutral scattering center has to be some compact 
complex structure containing several different charges 
and has to be neutral as a whole only. In this case range 
of forces is practically limited by geometrical size of the 
complex center. 

Let us consider delta-shaped potential as the 
simplest model of a neutral scattering center:
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Fourier component of this potential is:
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Let us note that the value )(qI


  does not depend 

on wave vector q


 .

2.2. Charged impurity

Fourier component of Coulomb potential generated by 
charged impurity has the form (see [10, 11]):
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Taking into account screening of potential of 
scattering by band carriers, one can obtain:
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Here L  is dielectric constant of lattice, ),(  q


is dielectric function of band carriers.
Correlator of screened potentials is:
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where (see [10]):

Fig. 1
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and )(0
kf   is equilibrium distribution function; 

mkk 2/22  is dispersion line for this section (we 

assume that it is simple isotropic parabolic relation).
Carrying out integration similar to that in Eq. (3), 

we obtain: 
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The case 0c  corresponds to absence of 
screening of Coulomb potential by band carriers. Figure 
1 represents dependence of Fourier component of 
potential generated by screened charged impurity on 

dimensionless wave vector 1/ qq  for different values of 

dimensionless Fermi energy   and screening constant c. 

Comparison of these figures and dependence presented 
by Eq. (3) shows that screened Coulomb potential 
cannot imitate delta-shaped potential. The reason for that 
is evident: the screening cuts Coulomb interaction at 
long distances and is not important for short distance 
interaction. 

Using Eqs. (8) and (9), let us rewrite correlator (6) 
in the following form:
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2.3. Hydrogen-shape neutral impurity

Let us consider donor impurity having the structure 
similar to the spherically symmetrical hydrogen atom. 
Space density of negative charge   can be presented by 

the following relation:

2
)()(  e .  (11)

Here )(  )/exp( Br is wave function of 

electron of shallow donor; 

22 / mer LB     (12)

rB is Bohr radius of exterior donor electron; m  is 
effective mass. The charge density )(  is normalized 

by the relation
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Electrostatic potential of the positive kernel of 
impurity atom in crystal is
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Electrostatic potential generated by distributed 
negative charge of exterior donor electron is
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Total scattering potential of neutral center is:
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Several examples for the space distribution of 
potential )(rN  are presented in Fig. 2. Here 

2
0 /)(),( errrK INL  ; the curves (a), (b), (c), (d) 

refer to 4,2,1,0/0  Brr  respectively. The value 

of radius Br  determines range of action for scattering 

center. 
Fourier component of potential (16) has the 

following form:

Fig. 2.        
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Fig. 3.
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Here

])1(2)1)(2/3(1[)1()( 221212   pppp

(see Fig. 3), and 22 /2/2 LBB merq  . 

Fig. 4.
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One can see that wave vector Bq  is natural 

measure for distribution of scattering potential, 
generated by neutral impurity, in q-space. For n-GaAs 
we have: 0067.0 mm  , and 5.12L ; therefore we

obtain: 2122 10108.4  cmqB . Hence it follows that 

noticeable screening of the short-range potential (16) by 
band electrons takes place in this crystal at 

concentrations 31710  cmn . Assuming 0Bq  (that is 

Br ) in expression (17), we obtain form (4).

As follows from Eq. (17), the correlator of 
scattering potentials for neutral centers is:
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Here INN  is concentration of neutral impurities.

Due to short range of considered scattering center, there 
is no need to involve screening of scattering potential by 
band electrons into consideration.

3. Mobility of band carriers

Let us consider impurity system as partially ionized, 
partially neutral donors. The degree of ionization depends 
on temperature T. Let us write the relation between 
concentrations of ionized and neutral impurities as

ICINIDNDD NNNNN   .      (19)

Below we shall assume that band electrons 
concentration n  is equal to concentration of ionized 
donors 

1

exp1
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Here F  is Fermi energy, 0D  is energy level 

for donors.
We calculate mobility   of band carriers using the 

formula (see Ref. [11]) 
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The value IC  represents contribution of charged 

impurities in reverse mobility of band carriers, the value 

IN  refers to neutral impurities. 

We carried out the following numerical 
calculations for set of AIII-BV-group crystals (see Ref. 
[12] and Table 1):

Table 1

AIII-BV m/m0 L D (eV)
1 GaAs 0.067 12.5 0.008
2 GaSb 0.05 15 0.003
3 InP 0.07 14 0.008
4 InSb 0.013 17 0.0007
5 InAs 0.02 14 0.002

Results of calculations of mobility based on 
formulae (21)(23) are presented in Fig. 4 (a  l). Here

M
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Numbers on curves correspond to numbers in 
Table 1.

 Fig. 5

Fig. 6
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Temperature dependence of mobility  for 

considered crystal appears as a result of competition of 
two processes: change of ionized centres number and 
change of average energy of electrons. The first process 
dominates at lower temperatures, the second one — at 
higher temperatures. Therefore calculated dependence of 
dimensionless mobility M  on temperature T is non-
monotonous.

Figure 5 is presented here for comparison, which 
reproduces Fig. 4.5(b) from Ref. [9]. Here curve 1 is 
constructed on the base of Erginsoy’s theory [1], curves 
2 and 3 — on the base of theoretical calculations of N. 
Sclar [12] and T. McGill with R. Baron [13] 
respectively. Our curves shown in Fig. 4 have the same 
shape as curves 2 and 3 in Fig. 5.

Fig. 7.
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Fig. 8.

4. Discussion

To compare contributions of neutral and charged 
impurities in mobility, let us introduce border 
temperature *T  by the relationship 

*)(*)( TT INIC  . Connection between temperature 

*T  and donor concentration DN  is presented in Fig. 6 

by five lines (corresponding to five different crystals). 
These lines divide the plane {ND, T} in two areas. In top 
area (T > T*) the scattering on charged donor prevails; in 
lower area (T < T*) scattering on neutral impurities 
dominates. The numbers of curves correspond to 
Table 1. 

Let us now compare results obtained in this article 
with results which can be obtained on the base of 
calculations carried out on the base of tau-approximation 
(see Ref. [5]). Result of comparison is shown in Fig. 7. 
Here B-lines refer to the calculations of this article, A-
line are constructed with the help of corresponding 
formulae represented in monograph of Anselm (see Ref. 
[5]). One can see that their divergence is quite 
noticeable.

In Fig. 8 our theoretical curve (solid line) and 
experimental curve (dashed line) obtained for InSb by 
H.J. Hrostowski et al. are presented (see Refs. [14, 15]). 
It is seen that these lines are in gratifying agreement. 
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1. Introduction 

Investigations of scattering of band carriers by neutral impurities have no noticeable advance for a long time [1–5]. Several approaches to the problem of neutral impurity scattering were used, but only one received wide recognition. There was consideration of interaction of electrons with shallow neutral impurity, which imitates spherically symmetrical hydrogen atom. In this case relaxation time ( for momentum of carriers was constructed on the base of cross-section for scattering process [6]. This time has well-known Erginsoy’s form [1]
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Other direction of investigations uses model for scattering potential of neutral impurity as rectangular spherically isotropic hole [9]. Limit case of this model is delta-shaped function in space [10, 11]). In this case there is no possibility to evaluate amplitude of interaction. There is also no way to derive rectangular or delta-shaped potential as well-reasoned limit case of physically grounded interaction. 


Bellow we shall consider mobility of band carriers, scattered by charged and neutral impurities; calculations will be based on quantum kinetic equation [10, 11]. For simplicity we use here only a model of simple isotropic parabolic dispersion law for band carriers.



We consider shallow donors, which are partially ionized, as a scattering system; degree of donors ionization depends on temperature. So, generally we have both neutral and charged scattering centers; relation between their concentrations depends on temperature. We consider here only low temperatures and do not take into account phonon scattering. 


2. Scattering potential


2.1. Delta-shaped potential


The formulation “scattering of band electron on neutral point defect” is completely conditional, because Coulomb interaction of charged particle with really neutral point object does not take place. Therefore neutral scattering center has to be some compact complex structure containing several different charges and has to be neutral as a whole only. In this case range of forces is practically limited by geometrical size of the complex center. 


Let us consider delta-shaped potential as the simplest model of a neutral scattering center:
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Fourier component of this potential is:
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Let us note that the value 
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2.2. Charged impurity


Fourier component of Coulomb potential generated by charged impurity has the form (see [10, 11]):
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[image: image76.png]Taking into account screening of potential of scattering by band carriers, one can obtain:
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Here 
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Correlator of screened potentials is:
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where (see [10]): 
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and 
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Carrying out integration similar to that in Eq. (3), we obtain: 
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Here 
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The case 
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 corresponds to absence of screening of Coulomb potential by band carriers. Figure 1 represents dependence of Fourier component of potential generated by screened charged impurity on dimensionless wave vector 
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 and screening constant c. Comparison of these figures and dependence presented by Eq. (3) shows that screened Coulomb potential cannot imitate delta-shaped potential. The reason for that is evident: the screening cuts Coulomb interaction at long distances and is not important for short distance interaction. 


Using Eqs. (8) and (9), let us rewrite correlator (6) in the following form:
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2.3. Hydrogen-shape neutral impurity


Let us consider donor impurity having the structure similar to the spherically symmetrical hydrogen atom. Space density of negative charge 

[image: image26.wmf]c


 can be presented by the following relation:
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rB is Bohr radius of exterior donor electron; 
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 is effective mass. The charge density 
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Electrostatic potential of the positive kernel of impurity atom in crystal is
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Electrostatic potential generated by distributed negative charge of exterior donor electron is
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Total scattering potential of neutral center is:
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Several examples for the space distribution of potential 
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Fourier component of potential (16) has the following form:

[image: image41.png]
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(17)  

Here 
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 (see Fig. 3), and
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One can see that wave vector 
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 is natural measure for distribution of scattering potential, generated by neutral impurity, in q-space. For n-GaAs we have:
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. Hence it follows that noticeable screening of the short-range potential (16) by band electrons takes place in this crystal at concentrations 
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) in expression (17), we obtain form (4).


As follows from Eq. (17), the correlator of scattering potentials for neutral centers is:
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Here 
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 is concentration of neutral impurities.


Due to short range of considered scattering center, there is no need to involve screening of scattering potential by band electrons into consideration.

3. Mobility of band carriers


Let us consider impurity system as partially ionized, partially neutral donors. The degree of ionization depends on temperature T. Let us write the relation between concentrations of ionized and neutral impurities as
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Below we shall assume that band electrons concentration 
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 is equal to concentration of ionized donors 
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Here 
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 is Fermi energy, 
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 is energy level for donors.


We calculate mobility 
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 of band carriers using the formula (see Ref. [11]) 
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Here
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The value 
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 represents contribution of charged impurities in reverse mobility of band carriers, the value 
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 refers to neutral impurities. 


We carried out the following numerical calculations for set of AIII-BV-group crystals (see Ref. [12] and Table 1):

Table 1


		

		AIII-BV

		m/m0

		(L

		((D (eV)



		1

		GaAs

		0.067

		12.5

		0.008



		2

		GaSb

		0.05

		15

		0.003



		3

		InP

		0.07

		14

		0.008



		4

		InSb

		0.013

		17

		0.0007



		5

		InAs

		0.02

		14

		0.002





Results of calculations of mobility based on formulae (21)((23) are presented in Fig. 4 (a ( l). Here
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Numbers on curves correspond to numbers in Table 1.
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Fig. 6

Temperature dependence of mobility 
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 for considered crystal appears as a result of competition of two processes: change of ionized centres number and change of average energy of electrons. The first process dominates at lower temperatures, the second one — at higher temperatures. Therefore calculated dependence of dimensionless mobility 
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 on temperature T is non-monotonous.


[image: image78.png]Figure 5 is presented here for comparison, which reproduces Fig. 4.5(b) from Ref. [9]. Here curve 1 is constructed on the base of Erginsoy’s theory [1], curves 2 and 3 — on the base of theoretical calculations of N. Sclar [12] and T. McGill with R. Baron [13] respectively. Our curves shown in Fig. 4 have the same shape as curves 2 and 3 in Fig. 5.
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4. Discussion


To compare contributions of neutral and charged impurities in mobility, let us introduce border temperature 
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 by the relationship 
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. Connection between temperature 
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 and donor concentration 
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 is presented in Fig. 6 by five lines (corresponding to five different crystals). These lines divide the plane {ND, T} in two areas. In top area (T > T*) the scattering on charged donor prevails; in lower area (T < T*) scattering on neutral impurities dominates. The numbers of curves correspond to Table 1. 


Let us now compare results obtained in this article with results which can be obtained on the base of calculations carried out on the base of tau-approximation (see Ref. [5]). Result of comparison is shown in Fig. 7. Here B-lines refer to the calculations of this article, A-line are constructed with the help of corresponding formulae represented in monograph of Anselm (see Ref. [5]). One can see that their divergence is quite noticeable.


In Fig. 8 our theoretical curve (solid line) and experimental curve (dashed line) obtained for InSb by H.J. Hrostowski et al. are presented (see Refs. [14, 15]). It is seen that these lines are in gratifying agreement. 
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Fig. 1
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Fig. 9. Spectral dependences of the photocurrent on wavelength for Au/GaAs structures with thick (a) and thin (b) Au contacts. Curve 1 in the figure b is for structure with Au NPs and curve 2 without them, dotted curve is transmittance of the light into the GaAs substrate through the continuous film of Au with 21 nm thickness.
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Fig. 10. a) Calculated transmittance spectra of the light into the GaAs substrate with Au NPs on the top. The angle of light incidence is 0º. The numbers in the figure are the distance between NP in nm. Parameters for calculations: outer NP diameter is 55 nm, Au core diameter is 15 nm, shell is SiO2 with the refractive index n = 1.47. NPs are placed in triangular cell on GaAs substrate. b) Corresponding Au NPs absorption spectra.
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Surface distance	14.082 nm


Horiz distance	12.695 nm


Vert distance	4.418 nm


Angle	19.189 degree
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Horiz distance	10.742 nm


Vert distance	0.034 nm


Angle	0.182 degree


Surface distance	30.256 nm


Horiz distance	29.297 nm


Vert distance	3.780 nm


Angle	7.353 degree





	b							c


Fig. 1. Vertical film’s surfaces profile (a) with the indication of sizes between bench marks (b); the nuance of grey color corresponds to the nuance of bench marks; 3-D view of SnO2 film surface(c).
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Fig. 1. Vertical film’s surfaces profile (a) with the indication of sizes between bench marks (b); the nuance of grey color 


corresponds to the nuance of bench marks; 3 -D view of SnO
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 film surface(c). 
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