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The explicit analytical expression for the effective correlation length ¢ as a function of reduced temperature
T, external field h and system size L for the Ising-like system near the phase transition point 7, is obtained.
The role of these quantities in the formation of the correlation length value is ascertained. It is shown that the
irregular increase of the correlation length exists only in the case of - — 0, h — 0 and L — oo. With deviation
from these values the essential slowing down exists for the increasing £. The criterium of the permissible
range of temperature values (field values), where the correlation length behaviour is defined by temperature
(or field) variable, is established for the fixed size of the system. Beyond this range 7 < 7¢, h < h¢r the system
size becomes crucial for forming the correlation length.
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The correlation length £ is one of the most important characteristics of the phase transition.
This quantity tends to infinity with nearing to the phase transition temperature 7, from exponential
law

6 :5Ot|7—|_y7 (1)
at the absence of the external field for infinite systems (7 = (T — T.)/T.). The quantity o
is called critical amplitude, and v is (temperature) critical exponent. Now it is well established
that v depends on the system universality class (see, for example, [1,2]) and dimensionality. For
Ising model, which is considered below, this value also depends on the spin component dilution
(replacing magnetic atoms by nonmagnetic ones) and on the type of the impurity distribution [3,4].
In contrast to the v the quantity &y is nonuniversal and depends on the microscopic parameters
of the system. Far from the phase transition point, the quantity &y takes on the values of the
order of the distance between the system particles. The value of the exponent v as well as other
critical exponents for Ising model are known with high accuracy (see, for example, [5]). These
are the so-called temperature critical exponents. In addition, the field exponents that describe the
dependence of the physical quantities on the field in the case of T' = T, are known as well. Since
for the correlation length £ we have the dependence

§=&onh™", (2)

where p is the (filed) critical exponent of the correlation length at T' = Tt &y, is the corresponding
critical amplitude , h = BH (H is magnetic field =1 = kT)).

Generalizing different calculation methods (e — series expansion [6], theoretical field approach
for fixed dimensionality d = 3 [7], Monte-Carlo calculation data, [8], high-temperature expansions
[9]), one may claim that for Ising model v = 0.630, and u is determined using the relations for
critical exponents

v
©= :
B+
Taking into account the results of papers [6-9], we find
1= 0.402. (3)
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In the recent work [10] the expression for some typical distance . is found, which is proportional
to the correlation length of the three-dimensional Ising model. The quantity &, explicitly takes into
account the dependence on the temperature 7 as well as on the external field h:

6 = o (2 70r2) e

Here £y = c- 50, where c is the constant of the simple cubic lattice, for which the calculations were
performed, and sg is some interaction potential parameter (sg = 2) [11]. The symbols h and 7 are
renormalized quantities of the external field h and reduced temperature 7

Gk,
fo
The values for the coefficients c¢) and fj are given in [11,12]. For the Ising systems with exponen-
tially decreasing interaction potential ®(r;;) = Aexp(—r;;/b) these coefficients take on the values
c1r = 0.976, fo = 1/2 at b/c = 0.5. For other values of Hamiltonian parameter the values for these
quantities are given in [13].

As one can see from (4), at sufficiently large fields h > he (he = |T|P°, po = 05, where ¢ and
0 are critical exponents of the order parameter) the temperature practically does not effect the
values of the correlation length. In this case the formula (4) transforms into the dependence (2)
with critical amplitude

h=sy"fy 'h. (5)

7::

Een = Eoftisg”® (6)
and critical exponent
2
S @

In the case of the weak fields (71 < h¢) the temperature variable plays a crucial role in the for-
mation of the correlation length. Here the dependence (1) is valid, where for the critical amplitude

we have y
fet = 50 <f0) . (8)

C1k

The critical exponent v in contrast to y from (7) is determined by analyzing the recurrence relations
[11] for coefficients of the effective block Hamiltonians. It depends on the symmetry of the system,
on the presence of impurities, etc. [4].

The expression (4) is the consequence of the temperature and field dependence of the system
exit point n, on the order parameter critical fluctuations [10].

_ In(R2+h2)

- 1
" 2In By ) 9)

where F; is the eigenvalue of the linearized matrix of renormalization group transformation (near
the fixed point) [11-14].
d+2

Here s is the renormalization group parameter. The quantity n, was introduced in [13]. It charac-
terizes the number of enlargements of the lattice system of the Ising spins (with parameter s) in the
spirit of the Kadanoff construction [15]. For the fixed temperature 7 (7 < 1) one can construct the
sequence of n, effective block lattices, each of which exhibits an s times enlarged lattice constant.
In the case of h = 0 the quantity n, — oo, when 7 — 0. For 7 # 0 the quantity n, is finite and
proportional to —In 7 [13].

For the finite systems, which are investigated using the numerical methods [8,16], the system
consists of the finite number of particles L3. It is evident that the correlation length in such systems
does not exceed the value of L. This fact essentially effects the way of its calculation. In order to
investigate the effect of the system finiteness on the formation of the correlation length we modify
the quantity n,. It defines the number of the effective block lattices (Kadanoff construction [15]),
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for which the renormalization group symmetry exists. The typical distance L, = s"» corresponds
to the quantity n,. It is obvious that { < cL,,.

Let us assume that 7' = T and A = 0. Then the maximal value of the quantity n, defines the
effective block lattice period ¢y, which is determined only by the system size.

Cn, = colLyp. (11)

For the system with N particles (N = L?) the effective block lattice period Cn, cannot exceed the
value L. Thus, the largest value of n, is defined by the equality

Cn, = L. (12)
Taking into account (11), we find
"7 3 s

where Ny = Nsg 3. The parameter s defines the region of the parabolic approximation for the
Fourier transform of the interaction potential [10,13]. The formula (13) allows one to generalize
the expression (9) for the case of the finite systems when 7 # 0 and h # 0. We obtain the relation

7 —(d+2
In(h? + h2 + Ly ‘%)

— 1. 14
21HE1 ( )

np = —

The value of n,, determines the characteristic distance ¢ (hereinafter we call it correlation distance)!

§ = &os", (15)

where {y = ¢p = ¢s¢. Using the formula (14) for the quantity n,, we find

€= f(/) (52 _|_7~.(d+2)v + La(d-‘r2)>7‘iTr2 ’ (16)
where for the quantity &, we have
_ S
) =Eos ™! = C;O : (17)

In the limit case h = 0 and L — oo the expression (16) transforms into (1), where for the
critical amplitude &y; we have the relation

for = ¢ (fo)”_ (18)

S C1k

In the case of 7 = 0 and L — oo the expression (16) is reduced to the dependence (2), where
for &y, we obtain

Son = S (sofo)" - (19)

When 7 =0, h =0 and Ly = const for the quantity £ we have
c
&0 =&Lo= L, (20)

where L is the linear size of the cube of the investigated system, c is lattice constant.

From (16) one can estimate the size of the system, which exhibits critical phenomena. It is well
known that for the infinite system at h = 0 such phenomena take place at 7 < 7, where 7, ~ 1072,
The quantity (16) for 7 = 7. (at h = 0 and L — oo) takes on the value

&(1e,h =0,L — o) =~ 6e. (21)

I'Note that in the work [10] the value ¢ was defined as & = £ys™» 11 i.e., it was s times larger. Tt does not effect
the asymptotic behaviour in both cases, but changes the numerical value of the critical amplitude.
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Figure 1. The correlation distance & at h =0 Figure 2. The correlation distance & at 7 =0
(curve 1) and h = he (curve 2) as a function (curve 1) and 7 = 7¢ (curve 2) as a function
of the temperature. of the magnetic field.

Let us estimate the value of the field h, which defines the quantity (21) at 7 =0 and L — co. We
have
h=45-10"% (22)

Now we find the value of L corresponding to the case of £ = 6 on condition that 7 = 0, h = 0.
Using the relation (16) and the equality & = 6¢, we find

Le ~ 20, (23)

which corresponds to N ~ 10% particles.

Thus the formula (16) allows one to establish the boundaries of the critical region, i.e., the values
of the quantities 7., he; and the particle number N, in the system (7. = 1072, he, ~ 4.5-107% and
N, =~ 10%), for which the value of the correlation distance is the same on condition that the rest of
parameters take on the values corresponding to the critical point.

Let us consider the behavior of the quantity (16) at 7 < 7¢, h < her and L > L. For the infinite
systems (L — oo) we have only the dependencies on the 7 and h. In the cases of h = 0 and h = he,
the dependence of £ on the temperature is shown in figure 1. The dependence of this quantity on
the field is shown in figure 2 for the cases of 7 = 0 and 7 = 0.01. By comparing the dependencies
for € on the temperature (figure 1) it is easy to see that at h = 0 the increase of the correlation
distance with a decreasing 7 is permanent and tends to infinity at 7 — 0. In the case of h = h., the
increase of ¢ with a decreasing 7 tends only to the value of £ from (21). A similar situation takes
place for the dependence of the correlation distance on the field. Note that the dependences shown
in figure 1 (at h = 0) and in figure 2 (at 7 = 0) are in good agreement with the corresponding
numerical calculations performed using Monte-Carlo method [16].

We investigate the effect of the finite size of the system (with linear size L) on the quantity
& At 7 =0 and h = 0 the expression (20) is valid. The quantity &, increases linearly with the
increase of the quantity L.

Let us assume that h = 0, and 7 # 0. Then, the dependence £ on the L has the form shown in
figure 3. The presence of a horizontal section of the curve argues about the sufficiently large size
of the system, which does not effect the values of the quantity £. In this case £ is defined by the
temperature and by the field. The sloping part of the curve demonstrates that the quantity £ is
formed only by the quantity L, i.e., by the system size.

Thus, at the absence of the field, the behaviour of £ from (16) in the region of the temperatures
T < T can be described only for the case when the linear sizes exceed L. For temperatures 7 < 7
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Figure 3. The correlation distance & at 7 = 1072 — curve 1, 7 = 3-107% — curve 2, 7 = 1073
—curve 3 and 7 = 0,5 - 107 — curve 4 as a function of the values of L (the number of lattice
points per direction).

we have L > L. ~ 30; for 7 < 3-1073 at L > Loy ~ 50; for 7 < 1073 at L > L3 ~ 120 and for
7 <0,5-107% at L > L.y =~ 200 (see figure 3). The last value of L corresponds to the particles
number 8-10%. With a decreasing region of temperature values we have an essentially larger number
of particles which causes numerous problems in performing the numerical calculations.

In the case of 7 = 0 one can construct the dependence £ on the system size L for different
values of h < hc;. Its character is similar to the one shown in figure 3.

The general condition for defining the size of the system L at fixed values of temperature 7 and
field h is inequality L > L*, where

_1_

L* = s (B2 4 7H27) T (24)
In the region of small values of the field (see [17]) h < h for L* we have

1 h2

L: = 807:_1/ (1 — 5h(2:> , (25)

and for large values of the field i > he we find

~ 1 h2
Ly =soh™(1-2=¢). 26

h =50 572 (26)
In the vicinity of pseudocritical line (iL ~ h¢), the quantity L* is defined by the values of temper-
ature and field according to the expression (24).

Conclusions

The investigations of critical phenomena at the second order phase transition for finite size
systems or the use of numerical methods such as Monte-Carlo method, should predict the corre-
lation among particles number, the range of the temperature region and external field values. For
the one-component three-dimensional spin system the values of the temperature 7. and field hc,
are established which correspond values to the boundary of the critical region. In other words, the
critical phenomena take place only in the regions 0 < 7 < 7, and h < he;, where 7. = 1072, and
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her = 4.5 -107%. In the case of h > he, and T > 7. the correlation distance becomes too small to
observe the critical phenomena.

It is established that the description of the three-dimensional system with finite number of
particles N near the critical point in the range of the values 7* < 7 < 7. and h* < h < h,, is valid
only in the case of N > N*, where

N* ~ [(h*)2 4 (7:*)51/] —3/5 ,
where h* and 7* are renormalized in accordance with the values of the field and temperature in
the expression (5).
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BnamB CKiH4€HNX PO3MIipPiB CUCTEMM i3IHFBCbKUX CMiHIB Ha
noBeAiHKY KOpensyuinHOT A0BXWHU NPU HASSBHOCTI 30BHILLWHbOIO
nons

M.IM.Ko3noBcbkuin

IHCTUTYT @i3nKM KoHAeHcoBaHMX cucteM HAH Ykpainn, 79011 JlbBiB, Bys. CBEHLUILbKOrO, 1

OTpumaHo 4 TpaeHsa 2007 p., B ocTatoyHOMY Bumsaai — 31 TpasHa 2007 p.

OTpuUMaHWii SBHWUIN aHaniTU4HMIA BUPa3 ans e dekTUBHOT KOpensuinHoi AOBXUHM & i3iHronoaibHoi cuctemmn
no6nnady Temnepatypu GasoBoro nepexony 7. aK GyHKLUIi BiZHOCHOI TeMNepaTypu 7, 30BHILLUHbOrO NOns
h Ta po3MipiB cuctemu L. 3'acoBaHa posb LMX BEMYMH Y GOPMYBaHHI 3HAYEHHSI KOPeNsiLinHOi AOBXUHN
£. MNMokasaHo, Lo aHOMaNbHUIM PICT KOPENSALINHOI AOBXMHM Ma€E Micue nuwe y Bunagky - — 0, h — 0 T1a
L — oo. MNpu BigXMNeHHi Big, UMX 3Ha4YeHb Mae MiCLLle CYTTEBE CMOBiNIbHEHHSA POCTy £. [ina dikcoBaHoro
PO3Mipy CUCTEMW BCTAHOBMIEHUI KPUTEPIA AONYCTMMOro Aiana3oHy Temnepartyp (nonis), Ae noBenjiHka
KOPEensuinHoi JOBXUHN BU3HAYAETLCS TEMMEPATYPHOIO (41 MONbOBOID) 3MiHHOLO. Mo3a UMM aiana3oHoM
7 < Tey, h < her PO3MIP CUCTEMUN CTAE BU3HAYANILHUM NPU POPMYBAHHI KOPENSLINHOT LLOBXUHN.

KniouoBi cnoBa: ¢asoBuii nepexia, kopesnsiyiriHa A0BXnHA, 30BHILLHE 10/1€, CKIHYeHHa cuctema
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