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The effect of finite size of the system on correlation
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The explicit analytical expression for the effective correlation length ξ as a function of reduced temperature
τ , external field h and system size L for the Ising-like system near the phase transition point Tc is obtained.
The role of these quantities in the formation of the correlation length value is ascertained. It is shown that the
irregular increase of the correlation length exists only in the case of τ → 0, h → 0 and L → ∞. With deviation
from these values the essential slowing down exists for the increasing ξ. The criterium of the permissible
range of temperature values (field values), where the correlation length behaviour is defined by temperature
(or field) variable, is established for the fixed size of the system. Beyond this range τ < τc, h < hcr the system
size becomes crucial for forming the correlation length.
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The correlation length ξ is one of the most important characteristics of the phase transition.
This quantity tends to infinity with nearing to the phase transition temperature Tc from exponential
law

ξ = ξ0t|τ |
−ν , (1)

at the absence of the external field for infinite systems (τ = (T − Tc)/Tc). The quantity ξ0t

is called critical amplitude, and ν is (temperature) critical exponent. Now it is well established
that ν depends on the system universality class (see, for example, [1,2]) and dimensionality. For
Ising model, which is considered below, this value also depends on the spin component dilution
(replacing magnetic atoms by nonmagnetic ones) and on the type of the impurity distribution [3,4].
In contrast to the ν the quantity ξ0t is nonuniversal and depends on the microscopic parameters
of the system. Far from the phase transition point, the quantity ξ0t takes on the values of the
order of the distance between the system particles. The value of the exponent ν as well as other
critical exponents for Ising model are known with high accuracy (see, for example, [5]). These
are the so-called temperature critical exponents. In addition, the field exponents that describe the
dependence of the physical quantities on the field in the case of T = Tc, are known as well. Since
for the correlation length ξ we have the dependence

ξ = ξ0hh−µ, (2)

where µ is the (filed) critical exponent of the correlation length at T = Tc, ξ0h is the corresponding
critical amplitude , h = βH (H is magnetic field β−1 = kT ).

Generalizing different calculation methods (ε – series expansion [6], theoretical field approach
for fixed dimensionality d = 3 [7], Monte-Carlo calculation data, [8], high-temperature expansions
[9]), one may claim that for Ising model ν = 0.630, and µ is determined using the relations for
critical exponents

µ =
ν

β + γ
.

Taking into account the results of papers [6–9], we find

µ = 0.402. (3)
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In the recent work [10] the expression for some typical distance ξe is found, which is proportional
to the correlation length of the three-dimensional Ising model. The quantity ξe explicitly takes into
account the dependence on the temperature τ as well as on the external field h:

ξe = ξ0

(

h̃2 + τ̃ (d+2)ν
)

−
1

d+2

. (4)

Here ξ0 = c · s0, where c is the constant of the simple cubic lattice, for which the calculations were
performed, and s0 is some interaction potential parameter (s0 = 2) [11]. The symbols h̃ and τ̃ are
renormalized quantities of the external field h and reduced temperature τ

τ̃ =
c1k

f0
τ, h̃ = s

3/2
0 f−1

0 h. (5)

The values for the coefficients c1k and f0 are given in [11,12]. For the Ising systems with exponen-
tially decreasing interaction potential Φ(rij) = A exp(−rij/b) these coefficients take on the values
c1k = 0.976, f0 = 1/2 at b/c = 0.5. For other values of Hamiltonian parameter the values for these
quantities are given in [13].

As one can see from (4), at sufficiently large fields h̃ � hc (hc = |τ̃ |p0 , p0 = δβ, where δ and
β are critical exponents of the order parameter) the temperature practically does not effect the
values of the correlation length. In this case the formula (4) transforms into the dependence (2)
with critical amplitude

ξeh = ξ0f
µ
0 s

−3/5
0 (6)

and critical exponent

µ =
2

d + 2
. (7)

In the case of the weak fields (h̃ � hc) the temperature variable plays a crucial role in the for-
mation of the correlation length. Here the dependence (1) is valid, where for the critical amplitude
we have

ξet = ξ0

(

f0

c1k

)ν

. (8)

The critical exponent ν in contrast to µ from (7) is determined by analyzing the recurrence relations
[11] for coefficients of the effective block Hamiltonians. It depends on the symmetry of the system,
on the presence of impurities, etc. [4].

The expression (4) is the consequence of the temperature and field dependence of the system
exit point np on the order parameter critical fluctuations [10].

np = −
ln(h̃2 + h2

c)

2 ln E1
− 1, (9)

where E1 is the eigenvalue of the linearized matrix of renormalization group transformation (near
the fixed point) [11–14].

E1 = s
d+2

2 . (10)

Here s is the renormalization group parameter. The quantity np was introduced in [13]. It charac-
terizes the number of enlargements of the lattice system of the Ising spins (with parameter s) in the
spirit of the Kadanoff construction [15]. For the fixed temperature τ (τ � 1) one can construct the
sequence of np effective block lattices, each of which exhibits an s times enlarged lattice constant.
In the case of h = 0 the quantity np → ∞, when τ → 0. For τ 6= 0 the quantity np is finite and
proportional to − ln τ [13].

For the finite systems, which are investigated using the numerical methods [8,16], the system
consists of the finite number of particles L3. It is evident that the correlation length in such systems
does not exceed the value of L. This fact essentially effects the way of its calculation. In order to
investigate the effect of the system finiteness on the formation of the correlation length we modify
the quantity np. It defines the number of the effective block lattices (Kadanoff construction [15]),
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for which the renormalization group symmetry exists. The typical distance Lp = snp corresponds
to the quantity np. It is obvious that ξ 6 cLp.

Let us assume that T = Tc and h = 0. Then the maximal value of the quantity np defines the
effective block lattice period cnp

, which is determined only by the system size.

cnp
= c0Lp. (11)

For the system with N particles (N = L3) the effective block lattice period cnp
cannot exceed the

value L. Thus, the largest value of np is defined by the equality

cnp
= L. (12)

Taking into account (11), we find

np =
1

3

ln N0

ln s
, (13)

where N0 = Ns−3
0 . The parameter s0 defines the region of the parabolic approximation for the

Fourier transform of the interaction potential [10,13]. The formula (13) allows one to generalize
the expression (9) for the case of the finite systems when τ 6= 0 and h 6= 0. We obtain the relation

np = −
ln(h̃2 + h2

c + L
−(d+2)
0 )

2 ln E1
− 1. (14)

The value of np determines the characteristic distance ξ (hereinafter we call it correlation distance)1

ξ = ξ0s
np , (15)

where ξ0 = c0 = cs0. Using the formula (14) for the quantity np, we find

ξ = ξ′0

(

h̃2 + τ̃ (d+2)ν + L
−(d+2)
0

)

−
1

d+2

, (16)

where for the quantity ξ′0 we have

ξ′0 = ξ0s
−1 = c

s0

s
. (17)

In the limit case h = 0 and L → ∞ the expression (16) transforms into (1), where for the
critical amplitude ξ0t we have the relation

ξ0t = c
s0

s

(

f0

c1k

)ν

. (18)

In the case of τ = 0 and L → ∞ the expression (16) is reduced to the dependence (2), where
for ξ0h we obtain

ξ0h =
c

s
(s0f0)

µ
. (19)

When τ = 0, h = 0 and L0 = const for the quantity ξ we have

ξL = ξ′0L0 =
c

s
L, (20)

where L is the linear size of the cube of the investigated system, c is lattice constant.
From (16) one can estimate the size of the system, which exhibits critical phenomena. It is well

known that for the infinite system at h = 0 such phenomena take place at τ < τc, where τc ≈ 10−2.
The quantity (16) for τ = τc (at h = 0 and L → ∞) takes on the value

ξ(τc, h = 0, L → ∞) ≈ 6c. (21)

1Note that in the work [10] the value ξ was defined as ξ′ = ξ0snp+1, i.e., it was s times larger. It does not effect
the asymptotic behaviour in both cases, but changes the numerical value of the critical amplitude.
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Figure 1. The correlation distance ξe at h = 0
(curve 1) and h = hcr (curve 2) as a function
of the temperature.

Figure 2. The correlation distance ξe at τ = 0
(curve 1) and τ = τc (curve 2) as a function
of the magnetic field.

Let us estimate the value of the field h, which defines the quantity (21) at τ = 0 and L → ∞. We
have

h = 4.5 · 10−4. (22)

Now we find the value of L corresponding to the case of ξ = 6 on condition that τ = 0, h = 0.
Using the relation (16) and the equality ξ = 6c, we find

Lc ≈ 20, (23)

which corresponds to N ∼ 104 particles.
Thus the formula (16) allows one to establish the boundaries of the critical region, i.e., the values

of the quantities τc, hcr and the particle number Nc in the system (τc = 10−2, hcr ≈ 4.5 · 10−4 and
Nc ≈ 104), for which the value of the correlation distance is the same on condition that the rest of
parameters take on the values corresponding to the critical point.

Let us consider the behavior of the quantity (16) at τ < τc, h < hcr and L > Lc. For the infinite
systems (L → ∞) we have only the dependencies on the τ and h. In the cases of h = 0 and h = hcr

the dependence of ξ on the temperature is shown in figure 1. The dependence of this quantity on
the field is shown in figure 2 for the cases of τ = 0 and τ = 0.01. By comparing the dependencies
for ξ on the temperature (figure 1) it is easy to see that at h = 0 the increase of the correlation
distance with a decreasing τ is permanent and tends to infinity at τ → 0. In the case of h = hcr the
increase of ξ with a decreasing τ tends only to the value of ξ from (21). A similar situation takes
place for the dependence of the correlation distance on the field. Note that the dependences shown
in figure 1 (at h = 0) and in figure 2 (at τ = 0) are in good agreement with the corresponding
numerical calculations performed using Monte-Carlo method [16].

We investigate the effect of the finite size of the system (with linear size L) on the quantity
ξ. At τ = 0 and h = 0 the expression (20) is valid. The quantity ξL increases linearly with the
increase of the quantity L.

Let us assume that h = 0, and τ 6= 0. Then, the dependence ξ on the L has the form shown in
figure 3. The presence of a horizontal section of the curve argues about the sufficiently large size
of the system, which does not effect the values of the quantity ξ. In this case ξ is defined by the
temperature and by the field. The sloping part of the curve demonstrates that the quantity ξ is
formed only by the quantity L, i.e., by the system size.

Thus, at the absence of the field, the behaviour of ξ from (16) in the region of the temperatures
τ < τc can be described only for the case when the linear sizes exceed Lc. For temperatures τ < τc

176



Correlation length behaviour at the presence of external field

Figure 3. The correlation distance ξe at τ = 10−2 – curve 1, τ = 3 · 10−3 – curve 2, τ = 10−3

– curve 3 and τ = 0, 5 · 10−3 – curve 4 as a function of the values of L (the number of lattice
points per direction).

we have L > Lc1 ≈ 30; for τ < 3 · 10−3 at L > Lc2 ≈ 50; for τ < 10−3 at L > Lc3 ≈ 120 and for
τ < 0, 5 · 10−3 at L > Lc4 ≈ 200 (see figure 3). The last value of L corresponds to the particles
number 8·106. With a decreasing region of temperature values we have an essentially larger number
of particles which causes numerous problems in performing the numerical calculations.

In the case of τ = 0 one can construct the dependence ξ on the system size L for different
values of h < hcr. Its character is similar to the one shown in figure 3.

The general condition for defining the size of the system L at fixed values of temperature τ and
field h is inequality L > L∗, where

L∗ = s0

(

h̃2 + τ̃ (d+2)ν
)

−
1

d+2

. (24)

In the region of small values of the field (see [17]) h̃ � hc for L∗ we have

 L∗

c = s0τ̃
−ν

(

1 −
1

5

h̃2

h2
c

)

, (25)

and for large values of the field h̃ � hc we find

L∗

h = s0h̃
−2/5

(

1 −
1

5

h2
c

h̃2

)

. (26)

In the vicinity of pseudocritical line (h̃ ≈ hc), the quantity L∗ is defined by the values of temper-
ature and field according to the expression (24).

Conclusions

The investigations of critical phenomena at the second order phase transition for finite size
systems or the use of numerical methods such as Monte-Carlo method, should predict the corre-
lation among particles number, the range of the temperature region and external field values. For
the one-component three-dimensional spin system the values of the temperature τc and field hcr

are established which correspond values to the boundary of the critical region. In other words, the
critical phenomena take place only in the regions 0 < τ < τc and h < hcr, where τc = 10−2, and
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hcr = 4.5 · 10−4. In the case of h > hcr and τ > τc the correlation distance becomes too small to
observe the critical phenomena.

It is established that the description of the three-dimensional system with finite number of
particles N near the critical point in the range of the values τ∗ < τ < τc and h∗ < h < hcr is valid
only in the case of N > N∗, where

N∗ ≈
[

(h∗)2 + (τ̃∗)5ν
]−3/5

,

where h̃∗ and τ̃∗ are renormalized in accordance with the values of the field and temperature in
the expression (5).
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Вплив скiнчених розмiрiв системи iзiнгiвських спiнiв на

поведiнку кореляцiйної довжини при наявностi зовнiшнього

поля

М.П.Козловський

Iнститут фiзики конденсованих систем НАН України, 79011 Львiв, вул. Свєнцiцького, 1

Отримано 4 травня 2007 р., в остаточному виглядi – 31 травня 2007 р.

Отриманий явний аналiтичний вираз для ефективної кореляцiйної довжини ξ iзiнгоподiбної системи

поблизу температури фазового переходу Tc як функцiї вiдносної температури τ , зовнiшнього поля

h та розмiрiв системи L. З’ясована роль цих величин у формуваннi значення кореляцiйної довжини

ξ. Показано, що аномальний рiст кореляцiйної довжини має мiсце лише у випадку τ → 0, h → 0 та

L → ∞. При вiдхиленнi вiд цих значень має мiсце суттєве сповiльнення росту ξ. Для фiксованого

розмiру системи встановлений критерiй допустимого дiапазону температур (полiв), де поведiнка

кореляцiйної довжини визначається температурною (чи польовою) змiнною. Поза цим дiапазоном

τ < τc, h < hcr розмiр системи стає визначальним при формуваннi кореляцiйної довжини.

Ключовi слова: фазовий перехiд, кореляцiйна довжина, зовнiшнє поле, скiнченна система
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