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The critical dynamics of superconductors in the charged regime is reconsidered within field-theory. For the
dynamics, the Ginzburg-Landau model with complex order parameter coupled to the gauge field suggested
earlier [Lannert et al. Phys. Rev. Lett. 92, 097004 (2004)] is used. Assuming relaxational dynamics for both
guantities, the renormalization group functions within one loop approximation are recalculated for different
choices of the gauge. A gauge independent result for the divergence of the measurable electric conductivity
is obtained only at the weak scaling fixed point unstable in one loop order where the time scales of the order
parameter and the gauge field are different.
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1. Introduction

The nature of the static phase transition in superconductors was an open question for decades,
since due to the large correlation length of the available superconducting materials the effect of
critical fluctuations was hard to observe in the vicinity of the critical temperature T,.. Moreover, it
was unclear whether the phase transition was of first or second order and in case it was of second
order, to which universality class the transition belonged. The appearance of high-T. supercon-
ducting compounds with short correlation lengths [1] made the critical region of superconductors
experimentally accessible. In turn, this leads to a comparison of the experiment with analytical
results in order to establish the critical properties of superconductors and their universality class.

From the theoretical point of view the static critical properties are now well understandable. The
theoretical model for the description of static critical properties was formulated in [2] and contains,
besides the two component (n = 2) order parameter (OP) and its fourth order interaction term, a
minimal coupling to a gauge field (GF) due to the charged character of the OP (macroscopic wave
function of the Cooper pair). The coupling of the OP to the GF introduces an essential difference
to the superfluid phase transition, where the OP is uncharged.

While for type-I superconductors the fluctuation effects are weak and a mean-field analysis can
be applied, the situation with type-II superconductors is more complicated since here fluctuations
of the OP cannot be neglected. The first renormalization group (RG) analysis in one-loop approx-
imation [2] leads to the conclusion that a stable fixed point (FP) and thus a second order phase
transition only exist for OP dimensions n larger than 365.9. For OP dimension n = 2 no stable FP
was found and the runaway solution was interpreted as a weak first order phase transition. A two
loop order calculation of the renormalization group equations within the field theory indicated the
possibility of a continuous phase transition for n = 2 [3] if certain resummations are performed.
This was investigated further and led to the following picture [4]: There are four FPs, two un-
charged ones known from the standard Ginzburg-Landau-Wilson (GLW) model and two charged
ones. Depending on the initial (background) conditions for the flow of the fourth order coupling
and the coupling to the charge (defining the value of the Ginzburg parameter x), a runaway flow
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is obtained or the flow reaches the stable charged FP. The other charged FP is reached starting
at the separatrix (defined by k = k) separating the attraction region of the charged FP from the
runaway region. Physically this FP reached at the separatrix describes tricritical behavior indi-
cating that a tricritical point separates the first order transition of the superconductors of type I
from the second order transition for superconductors of type II. The results of duality arguments
[5] and Monte Carlo calculations [6] are in agreement with this picture, which is also supported by
experiment [7,8].

An important question in calculating critical properties like the critical exponents is their
dependence on the gauge used for the GF. Physically observable quantities should be independent
of the specific gauge used. This has been shown in one loop order [9]. However non-observable
quantities might depend on the gauge. Thus the critical exponents v or « of the penetration length
A (proportional to the correlation length ¢ of the OP correlation function at the charged FP) and
the specific heat, respectively, should be independent of gauge, whereas the critical exponent of
the static OP correlation function turns out to be gauge dependent [10].

The issue of dynamical critical properties was less studied. Experimental investigations give
no consistent picture of the dynamical critical exponent z (for references see [11]) obtained from
measurements of the electrical conductivity. The values of the dynamical critical exponents found
vary between 1.5 and 2.3.

Theoretical predictions of z are mainly based on the results of the known universality classes
(model A, C, E or model F, for a review see [12]). Model A is the simplest model assuming a
relaxation equation for the OP without coupling to other conserved densities, whereas model C
contains a coupling to a diffusion equation for a conserved density (only relevant if the specific heat
is diverging). Models E and F define the universality class of the critical dynamics of the superfluid
transition in *He. Dynamical equations from the vortex-loop model [13,14] indicate a relation to
that universality class. So far no systematic derivation of dynamical equations with mode coupling
terms derived from Poisson bracket relations using for instance methods described in [15] has been
performed.

Monte Carlo simulations [13] in the limiting cases of large and small values of the Ginzburg
parameter established the values of the dynamical exponent of 2.7 and 1.5, respectively. Using
the vortex model [11] for superconducting transition, the dynamical critical exponent has been
analytically calculated in the two limits mentioned above. The resulting exponents were 5/2 and
3/2, respectively, and they were related to the dynamical exponents obtained in simulations. A
discussion [16] arose concerning the cause of the deviation of the Monte Carlo results from the
expected value of model A, which would lead to a dynamical exponent of about 2. Recently in [14]
for extreme type Il superconductors, where the uncharged FP describes the static behavior, it was
argued, using scaling and duality arguments, that z = 3/2 exactly.

A concrete dynamical model defined by equations of motion for the OP and the GF has been
presented in [17]. Both equations are of relaxational character and the essential parameter is the
ratio w = I'y, /T'a of the kinetic coefficients I'y, of the OP and I'y of the GF. A dynamical FP, w*
finite, implying strong scaling with a common dynamical critical exponent z for the OP and the
GF in the Feynman gauge (one adds a quadratic term in the divergence of the GF to the static
functional) has been found in one loop order. However, the question of the gauge dependence of
the dynamical exponents was not addressed in [17].

Another important issue not considered so far in the discussion of the dynamical critical be-
havior concerns the time scales entering the problem. One has to discriminate between the time
scale for the OP and its dynamical critical exponent z, and the time scale of the GF and its dy-
namical critical exponent z5. They are defined by the characteristic frequencies of the dynamical
correlation functions for the OP and the GF, respectively

wy ~ Kk gy(kE),  wa ~ k™ ga(k§), (1)

gy and ga are scaling functions which are finite and nonzero at the superfluid transition 7.
The dynamical critical exponents are different [18] if weak scaling holds. Otherwise one says
the dynamical correlation functions obey strong scaling. So far in the discussion the latter case was
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assumed. Even if for the uncharged FP, the dynamics would be in the universality class of model
E, it is the weak scaling FP which is stable [19].

Only one of these dynamical exponents is observable, namely za entering the frequency depen-
dent diverging electric conductivity

(&, k=0,w) ~ g(ZA—2+17A)7 (2)

na = 4 — d is the anomalous dimension of the GF independent of the gauge [20]. This implies that
the dynamical critical exponent z5 has to be gauge independent. No such condition holds for zy.
Therefore, if it turns out that z, is gauge dependent, strong scaling cannot hold.

In this paper we apply the field-theoretical RG approach in the minimal subtraction scheme
and dimensional regularization to the dynamical model of [17] in order to investigate the gauge
dependence of the critical dynamics. It turns out that the dynamical exponent 2y of the OP is gauge
dependent and a gauge independent value for za is only obtained in the weak scaling FP w* — oo,
which, however, has been found unstable. Therefore, one has to question the physical relevance of
the one loop result. This goes together with the problems in statics of the Ginzburg-Landau model
at the one loop order level.

2. Model

Static critical properties of charged superconductors in d dimensional space are described by
the Abelian Higgs model with the static functional [2]:

n/2

SV = ool + TP+ 5V x AP h, ()

i=1

1, - 1

H = dd - 2 -
[t Sitdo + 5

with the complex n-component OP 1/70 (generalized to n/2-components, the superconductor being
the case n = 2) and the d-dimensional GF Ag. The bare parameter 7 is proportional to the distance

from T, and the bare coupling ¢ is the effective charge. Parameter u is the usual fourth order OP
coupling. In all subsequent calculations we add the contribution

1
H= %(V'Ao)y (4)

to the static functional which allows us to choose the gauge. In the limit ¢ — 0, the Landau gauge
is recovered, while for a system with ¢ — 1, the Feynman gauge is achieved.

The OP and the GF are nonconserved quantities. Thus, their dynamical behavior may be
described by relaxation equations. Such a set of equations of motion has been suggested [17]:

Oo,i Y
: = —2F —— 91';
ot Y sug, +
g . OH
2 = 9T 07
ot Y 5104 O
Ao . OH
o _ _p 0,. 5
ot ASdon T 5)

The OP relaxes with the kinetic coefficient I'y, while the GF relaxes with the kinetic coefficient
['a. The stochastic forces in (5) are related to the kinetic coefficients and satisfy the relations:

(0i(x, )07 (X, 1)) = ATyd(x—x)3(t—1)5;5,  (Bi(x,0)) =0,
(Oa(x,0)05(x, 1)) = 20a0(x —X)0(t — t)0ug,  (Ba(x,t)) =0. (6)

The indices ¢, j adopt the values 1,...,n/2, while the indices a, 8 adopt the values 1,...,d.
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As it was pointed out in [17] the equation for the GF in (5) can be derived from Maxwell’s
equations in their low-frequency form. In this case the inverse transverse coefficient 12‘;1 for the
GF can be identified with the bare normal electrical conductivity.

We study this critical dynamics by using the Bausch-Janssen-Wagner approach [21] of dy-
namical field-theoretical RG. In this approach, the critical behavior is considered based on the
long-distance and long-time properties of the Lagrangian incorporating the features defined by the
dynamical equations of the model:

n/2 n/2 +
~ 0. . OH ~ ~ oy . OH ~
L = /ddxdtz'(/}arﬂ l ag’ + 2Ty, 75 T —21—‘1/,2/13:1- + Z’(/}O’i l 8;7 + 2Ty, 751/) 4—2F¢’(/10’7;
=1 1/)0,2‘ i=1 0,2
d
- [0Age - SH . -
A ——— 4+ Tp—— —THrA .
+ Z 0, |: 6t + A(SAO,()L A O,a:| (7)

Here, in order to keep the powers in the interaction terms low an auxiliary OP density o and
an auxiliary GF A have been introduced. The dynamical equations defined by (3)—(6) are then
described by the unrenormalized Lagrangian (7), which we separate £ = Ly + £; into a Gaussian
part

n/2 n/2

o -, o~ . ~92 ~ o o
Lo = /ddgcdt —4Ty, Z Vg0, —TaAg + Z%fi <6t + Ty (7 — A)) Yo.i
=1 =1

n/2

~ 0 - ~ 0Ay - 1
| =4y (r—A T4+ Ay — 4T 1-—= < Ag) — AA
# 3o (g )i Ao (T Ea (V0 DT A0 —80) )69
and an interaction part
@ n/2 n/2
Ly = /ddxdt I‘¢,§|¢|2 Z(@/J(J)r,ﬂﬁo,i + Po,ithg ;) + 20 piéAg - Z(’l/}({iv'lbo,i — 0.V ;)
’ i=1 i=1
n/2 1 n/2
+'yie(V - Ag) Z(#fﬁtﬂ/fo,i — o,tg) + FAiiéAo : Z(ﬁ’o,ivﬂj({i — g Vbo.q)
i=1 i=1
n/2
+LyE ALY (0 0+ Yoit) + Taé® Ag - Aolyl? | - (9)
i=1

The Lagrangian functional serves to calculate the dynamical vertex, response and correlation func-
tions in perturbation theory using the weight function W ~ e~_£. For instance, the correlation
function for an order parameter is calculated as the average (1 "). The description of dynamical
vertex functions structure is given in the next section.

3. Perturbative expansion and renormalization

3.1. Vertex functions

In order to proceed, the vertex functions for the OP and the GF are calculated in one loop
expansion. We keep the general structure of the two point vertex functions [12] and separate the
static contributions. The calculation leads to the following general form of the OP vertex function

Dype = —iwQyg +20,05, . (10)
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In one loop order, the dynamical OP function Q i reads

. o 1 kk')?
Quor = 1+4€2Fw/ e —— <k2—(k,2))
(r+(k+k")2) k"2 (—iw+Ly (F+(k+k")2) + Tak'?)

1\ 1.7\ 2
+é’21“w<°/ - — 1 . <((2k+lfz)k) ),(11)
(F+(k+k")2) k"2 (—iws+<Ty (r+(k+k")2)+T a k'?) k

whereas the static OP vertex function is given by

o 1 n+ 2 1 1
st _ o 2 o 02 °
Lpp+ = 2{7’+k + 5 u/ (F+k’2)+e (d_1+<)/ﬁ
1 (k"2 ((2k + K')K')?
— 4¢ k? — ; . 12
‘ / (r+ (k+ B)2)k? ( Rz T ke (12)
The same general structure holds for the GF vertex function
1% = —iwQS% + TAl% 7, (13)
with the one loop expression
2 o k+ 2k (k + 2k")P
0 = o atay [ e L)
20 (F+E2)( 4 (kR)?)[=iw + Ty (F + &2) + Ty (r + (k+4)?)]

for the dynamical GF function and

: KRS 1 kKO 1 1 (k + 2k')* (k + 2K')P
stafB 1.2 af )
Faa =k <5 TR i ) e /r"+k’2 (6“52 Pt (k+ K2 ) (15)

for the GF static vertex function.

In an Appendix we present the diagrams for the one loop calculation of the corresponding
vertex functions.

The renormalization procedure of vertex functions given above is described in the next subsec-
tion.

3.2. Renormalization and field theoretic functions

In order to get finite results we perform renormalization within the minimal subtraction scheme
introducing renormalization factors leading to the renormalized parameters. The renormalization
factors of the GLW part of the static functional are introduced as usual

Yoi =2y, F—fo=27' 2, =k AT 225, (16)

where the shift of the phase transition temperature 7. has been taken into account. Parameter x
represents the free wave vector scale and € = 4 — d. We also introduced the usual geometric factor

he=r (- 2)r (1) .

where 4 is the surface of the d-dimensional unit sphere. The additional renormalization factors
due to the presence of the GF and its coupling to the OP are introduced as follows:

Ava =2 A0, E=wAT'Z:22' 250, =77 s, (17)
From Ward identities one derives the relations [9]

Zp=Zy,  Zo=1, (18)
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which show that only one additional (for the GF) renormalization constant with respect to the
GLW model appears.
In dynamics, two additional renormalization factors are needed which are as follows:

Yoi = Z;;/Q%/;i, Ago = Z}\/Q/Ia - (19)
For the kinetic coefficients no new factors are necessary
o L 1/2,,—1/2
ry, = ZFwa*Zw le Ty, (20)
Pa = Zp,Ta=20"2"Ta, (21)

where the second relations are due to the structure of the vertex functions (see (10) and (13)).
The renormalization factors calculated in one loop order for the statics are as follows:

2 2

e e
Zy =1 3—¢)—, Zan=1—n—, 22
p=1+6-9%,  Za=1-ng (22)
2 2 8 18 ¢4 2
ZT:1+n+ E_gi7 Zu:1+ig 72_2§€i’ (23)
6 ¢ € 6 ¢ u € e

as presented in [9]. The dynamical renormalization factors are correspondingly:

2 2

e e“sc w
Z: = 1-(3-—¢)— —2—>—— 24
; (-9 -2 (24)
e2 (1 1
Zz: = 1 — ===, 25
A Jrn25 (3 w> (25)
where we have introduced the time scale ratio
Ly
= 26
w=pt, (26)

whose FP value w* determines whether strong (w* # 0 or 0o) or weak scaling (w* = 0 or co) holds.

From the Z-factors one obtains the (-functions leading to the g-functions which determine the
FPs. The critical exponents describing the critical properties are then expressed by the values of
the (-functions at stable FPs. We use the unified definition

Gl o) = - S (27)

for all ¢-functions, where a denotes either any model parameter {a} = {u,e? T'y,Ta,w} or any
density z/?, ¥, A, A. The static ¢(-functions following from (22) and (23) read:

62

G = B9, (=l 2
+ 2
¢ = "uei e=3-97, (29)
4
Cu = n+8u—2g62—|—18€—. (30)
6 U

The (-function of the gauge parameter follows from (17) and (18) as (¢ = 0. The dynamical
¢-functions follow from (24) and (25). They are:

2

(302 92 Y (1 1
(G =—B=9¢ 2, C—n2(3 w>7 (31)

and the ¢-functions for the kinetic coefficients are obtained from the above relations (20) and (21)

1 1
ry, = 5(% - Q[,)a (ra = i(CA —C&)- (32)
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Inserting the one loop results (31) they read:

2
2 (3__S __,E(1_1
YA ) w
According to (26) and (32), the ¢-function of the time scale ratio w is then found as follows:
9 S n (1 1
= — = _—_— —_ - — . 4
Gw=(r, —lry =e (3 1+w+2<3 2w>> (34)

4. Fixed points and exponents

The behavior of the model parameters under renormalization is described by the flow equations

dOéi

0550 = Bo{ab0). (35)

where the right hand sides of the equations are determined by appropriate S-functions (the index
i Tuns over the set of parameters). The S-functions are generally defined as follows:

Ba,({ai}, s) = ai [—ci — piCy — ¢iCa + Ca,] - (36)
The coefficients ¢;, p; and g; follow from the general renormalization of a; as used above
G = KON, PR g 9 7 (37)

The FPs {a*} are defined by the zeros of the right hand sides of (35). A FP is stable if all stability
exponents w; are positive. The stability exponents w; are defined by the eigenvalues of the matrix

aﬂaz/é)aj |{a}={a*}

4.1. Statics

The one-loop static (-functions appear to be independent of the gauge determined by the
parameter ¢ and are the same as in [2]:

Bu = (—Eu — 6e%u + HTMUZ + 1864> , B2 = €2 (—E + %62> . (38)
These (B-functions have four FPs: (i) the Gaussian FP with u* = e*2 = 0, (ii) the FP of the
uncharged XY-model (u* = 6¢/(n + 8),e* = 0), (iii) the tricritical FP with u* = 0,e*? = 6¢/n
and (iv) the charged FP with both couplings u* # 0 and e*? = 6¢/n nonzero. In one loop order
the charged FP exists only for n > 365.9 [2]. However, in higher loop order and using summation
procedures, a charged FP is also found for n = 2 [4]. In one loop order for n < 365.9 starting with
e? # 0 and u # 0, the flow escapes to €2 — ¢*? and u — oo.
Critical exponents are calculated at a stable accessible FP. Expressions for the correlation
length critical exponent v, the specific heat exponent o and the pair correlation function critical
exponent 7 are correspondingly:

2
v = 2—Gr(ur, e, ¢) + Cplur,e*,q) =2 — %u*—&—?)e”, (39)
a = 2—dy, (40)
n = (yute,s)=3- g)e*Q. (41)

All other static critical exponents may be found from scaling relations. Since the FP values u*
and e* are gauge independent this is also valid for v and « although the gauge ¢ appears in the
¢-functions (39) explicitly. On the contrary, this dependence on the gauge remains in 7 (see (41)).
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All the other exponents become gauge dependent since they are in any case related to n by the
scaling laws. However, let us note that only at the charged FP (e*? # 0) a gauge dependence
enters the (-functions. This holds in all orders of the loop expansion due to the structure of the
interaction part of the Lagrangian (9).

From renormalization of ¢ in (17), the flow of the gauge parameter reads

ds n
g— = = 2762 42
= SGa=Tge (42)
reaching zero at the charged FP. This means only that the transverse gauge is invariant under
renormalization.

4.2. Dynamics

The FP values for the time scale ratio can be found from the zeros of the corresponding (-
function
9 w n (1 1

= _ — 3 [T (e . 43

Buw =w(lr, —(ra) €w< §+<1+w+2<3 2w>> (43)

These zeros depend in one loop order on the value of the minimal coupling (charge) e at a stable

static FP. Only for non-zero charge a specific value for a possible FP is found in this order (w
should be positive)

. =128 —¢)++/(n—12(3 —))? + 24n(18 + n)
v A(18 + n) ' (44)

The corresponding stability exponent w,,:

_86—6*2’11}*( S + n >’ (45)

Yo w T (14 w*)?  4w*?

turns out to be positive and thus the finite FP is stable. Another FP is the infinite FP. In order

to find out its stability we introduce
w

_ 46
=TT w (46)
mapping the range of w into the interval [0, 1]. The corresponding S-function reads
B, =p(l—p)e (3—ctepr (L 122 = (1= p)e* (B=)p+spt+5icp— 1) (47)
= p(1—p storty3- 3, =(1-p Dp+<p’+550— )

However, the FP p* = 1 corresponding to the infinite FP w*~! = 0 is unstable with the stability
exponent w, = —(1 4+ 18/n)e.
The dynamical critical exponents for the OP and the GF are calculated from

2y =24 (r, (u*,e*,w,g), 2a =24 (r, (v, e, w”). (48)

Whereas an explicit gauge dependence is found in (r, this is not the case for (r,, at least in
one loop order. This property is expected to hold in all orders. In general at the charged FP
(e*2 = 6/n) the exponents take the values

18 6 €
— 2422 49
= +n€ n 1w’ (49)
3e
= 2- . 50
Za et o (50)

Since w* depends on the gauge for finite FP, the dynamical exponent of the GF, za, depends on
the gauge in contradiction to the physical requirement that observable quantities should be gauge
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independent. Only in the case of infinite FP a gauge independent value is possible. Then the OP
exponent would be finite:

18
Zy =24 g (51)

as well as independent of the gauge but different from za. This result for z, has already been
obtained in another context [22,23], where the dynamics of the Bose field OP has been considered
by taking into account the renormalization of the Matsubara frequency term in the static functional
(3). In this way quantum correlations can be taken into account. The model considered here is
purely classical and the result is the consequence of the gauge field relaxing much faster than the
OP (w* — o0). However, the infinite FP is not stable in one loop order. It is dynamically unstable
for all n.

It should be noted that for the gauge ¢ = 1, the results of [17] are reproducible. It should also
be remarked that in one loop order the calculation of the field theoretic functions is simpler in
the transverse gauge (¢ = 0) due to the observation that less graphical contributions in the loop
expansion are nonzero [9]. To our knowledge, the gauge independence of the static FP values for
the minimal coupling and fourth order coupling has not been proven. As it has been shown here
the finite FP value of the dynamical time scale w is already gauge dependent in one loop order,
which leads to a gauge dependent critical dynamical exponent of the GF. In our opinion, this would
hold for every order for the finite nonzero FP value w*. At the uncharged FP, both dynamical
exponents would be independent of the gauge.

5. Conclusion and outlook

For the dynamical model suggested by Lannert, Vishveshwara and Fisher [17] we have demon-
strated that the OP dynamical exponent is gauge dependent. Therefore, the exponent for the
divergence of the electric conductivity is also gauge dependent at the stable strong scaling FP
where the dynamical critical exponents of the OP, z,,, and the GF, z,, are the same. The only way
out in a higher loop order calculation is for the stability of the strong scaling FP to be changed
and for the infinite weak scaling FP to become a stable one. As one knows from other examples,
one loop order calculations may not be conclusive and lead to the results which have to be taken
with care. In higher order perturbation expansion, the stability of the FPs may be changed. A
two loop calculation may clarify the situation. Recent progress [24] in the nonperturbative ver-
sion of dynamical renormalization theory applied to this more complicated model would be also
worthwhile.
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Appendix
A. Diagrams for the one loop order calculation

Expressions for vertex functions are calculated using the Feynman diagrams. They are con-
structed from the corresponding propagators and vertices. In our case the propagators are de-

scribed by Gaussian part Lo (8) of Lagrangian and shown in figure 1. Response propagators G(k)

and H(k) are equal to

_ 1 - P, S - P,
G(k) = - and  H(k) = o 1 SOen= Pap) (52)
(—iw + Ty (7 + k2)) (—iw +Tak?)  (—iws 4+ Tak?)
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%_4)_]{ = Lt G(k)s(k+k")d; ; S f, H(k)o(k+k")d; ;

Figure 1. Propagators for constructing Feynman graphs. G(k) are response propagators for
(m(lzz)qﬂj*(l_c')) and (1F (k) (k")) (solid line), H (k) are response propagators for (A (k)Ag(k'))
(wavy line), while C(k) and D(k) are correlation propagators. As small circle ‘o’ in the figure
denotes complex conjugated field ", while a small vertical line ‘|’ denotes the auxiliary fields

1 and A.

while the correlation propagators C(k) and D(k) are equal to

snd  D(F) = PIN I 220 Ak (60p — Pap) (53)
| —iw + Lak?|? | —iw¢ +Tak2)2

B 2r
| —iw + D(F + k2|2
where P, is projection operator Png = 645 —kaks/k?. In the above equations, we use the notation

k= (kw).
The vertices described by interaction part £1 (9) of Lagrangian are presented in figure 2.

J k j k
0% %
a  _ b
%/// ; }///
! i !
FwX(S(k +E+E+E

J J

k o k

EII E ];//
i i

oy k!0 (k+k +k")dy;

C(k)

o
| R
(oW
> R

Taé/2(k, k) (R+K+K")0y;  —2 yék! s (k+k'+k")8;
i J i J i J
k/X k” %/ %// k,X %//
o g h
k %/// k 7{/// k EIII
a B [e4 B 04 B

0y é20(k + K + k")0,;0ap Uy é20(k + K + k")8,;00p Taé20(k + K +E")8ij00s

Figure 2. Vertices for our model. In vertices a and b notation X 1is equal

@/3 (8i,;0k,1 4 0:.105.%) /2.

The one-loop diagrams for vertex functions wa)Jr and T’ 44 are depicted in figure 3.
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Figure 3. One-loop contributions to the vertex functions Io‘ww (first line) and ", ; (second line).
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KaniopyBasibHa 3aneXHiCTb KPUTUYHOT ANHAMIKU
HaAMNpoOBIAHOIO Nepexony

M.Oynkal?, Pdonbk,?, Mosep®

1 IHCTUTYT di3MKM KOHAEHCOBaHMX cucteM, HauioHanbHa akagemis Hayk Ykpainm, UA-79011 JibBiB, YkpaiHa
IHCTUTYT TeopeTnuHoi diauku Yhisepcutety Morana Kennepa micta JliHu, A-4040 JliHu, ABCTpis
IHCTUTYT di3ukn | Biodisnkm YHiBepcuTeTy MicTa 3anbubypr, A-5020 3anbubypr, ABCTpIs

w N

OTpumaHo 27 rpyaHs 2006 p., B ocTaTo4HOMY BUrnsai — 7 TpaBHs 2007 p.

MepernagaeTbca guHamika HaanpPOoBIOHUKIB B 3apSAKEHOMY PEXUMI B MexXax Teopii nons. 3anponoHoBa-
Ha paHiwe [Lannert et al. Phys. Rev. Lett. 92, 097004 (2004)] mogens Tuny lNH3bypra-JlaHaay 3 komnnekc-
HUM NapamMeTpoM NOPSAKY 3B'A3aHNM 3 KanibpyBasiibHUM NOSEM BUKOPUCTOBYETLCS AJ151 AOCTILXKEHHS AN-
Hamiku. MNpuiimaloum penakcauiiHy AnHamiky ans o60ox BennmymH, PpEHOPM-rpynoBi GyHKLT 064MCNoTLCS
B paMkax OZHOMEeTNeBOro HabnmxeHHs ons PisHUX BMOOPIB KanibpyBaHHs. KanibpyBanbHO He3anexHi pe-
3ynbTaTv AN po306iXKHOCTI BUMIPIOBAHOT €N1EeKTPUYHOI MPOBIAHOCTI OTPUMYIOTBCS TiNbKM B HEPYXOMIl TOYLL
cnabkoro CKerniHry, HecTilikili B o4HONENeBOMy NopsaKy, e YacoBi MacluTabu napameTpa Nnopsiaky Ta
KanibpyBasbHOro MoJsis BioPIi3HATLCS.

KniouoBi cnoBa: kputnyHa aAvHamika, HaarnpoBiaHWI nepexia

PACS: 05.70.Jk, 64.60.Ak, 64.60.Ht, 74.20.-z
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