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Abstract. The high-order Coulomb correlations described by T-matrix diagrams in both
carrier occupation and polarization functions are studied here with the Keldysh�Green�s
Functions formalism. Numerical applications for low dimensional semiconductor systems
illustrate the relevance of the effects and their importance for realistic nonlinear optical
spectra calculations. A frequency and momentum resolved numerical demonstration of the
Mott transition at the T-matrix level is presented.
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1. Introduction

Coulomb effects are now well established as the origin of
the near band-gap optical nonlinearities in semiconductors
[1], and many- body techniques are required for a realistic
description of their optical and transport properties, due to
the large number of charged carriers created.  Among the
current possibilities, non-equilibrium Keldysh�Green�s
functions allow the consistent description of both equi-
librium and non equilibrium situations [2].

As the temperature is reduced, and the effective Cou-
lomb interaction between charged carriers increases, espe-
cially in systems designed to enhance those effects, like
low dimensional semiconductors, many-particle corrections
of increasingly higher order are required to explain the elec-
tronic and highly non-linear optical properties of such sys-
tems, e.g. corrections beyond the Random Phase (RPA) and
GW approximations must be considered [3,4,5,6].

Numerical results for deviations beyond RPA and GW
have been given for the first time in Ref. 3, where exciton-
induced satellites in the one-particle spectral functions of
charged carriers in a bulk material are discussed.

In low-dimensional systems, quantum-confinement and
bandstructure effects add a further complication for realis-
tic numerics, and here we use as a model system, coher-
ently coupled semiconductor superlattices, in which such
complications are dealt with by means of an effective
dimensionality formalism that describes the evolution of
the system from quasi- two to quasi- three dimensions [7,8].

We discuss under which conditions the T-matrix leads
to deviations in the selfenergies that characterize the rel-
evant quasi-particles of the system, and show a frequency
and momentum resolve numerical demonstration of the Mott
transition at the T-matrix level.

The paper is organized as follows: In Section 2 the
main non-equilibrium Green�s functions expressions are
summarized.  In Section 3 the dephasing computation is
outlined.  Numerical results are presented in Section 4,
which is closed by a brief Summary.

2. Nonequilibrium Green�s functions
expressions

The interacting quasi- particles, which describe the excited
semiconductor in our Keldysh�Green�s, function ap-
proach, namely, carriers (G), photons (D), and plasmons
(W) [9], have their time-dependence dictated by Dyson
equations (sum over repeated indices is assumed),
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where δT is the transverse delta function. The labels
a,b,c � denote generically denote generically the sev-
eral conduction and valence sub bands. The inverse free
propagators read
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Here ε0 is the static dielectric function. The effective
one-particle Hamiltonian in the equation for the free-carrier
propagator reads,
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where effΦ and effA
r

denote, respectively, the expectation
values of the scalar and vector potentials. The selfenergies,
Σ, P and p are called, respectively the carrier selfenergy, the
transverse and longitudinal polarization functions. Detailed
band-structure and quantum-confinement effects are in-
cluded in the theory through effh  in the free-carrier propa-
gator, and also in the optical transition selection rules de-
scribed by the matrix elements of the velocity operator,
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The carrier self-energy Σ leads to bandgap renorma-
lization, includes dynamic effects such as corrections be-
yond Hartree-Fock, scattering rates in the carriers kinetics,
and enables the description of bound states (excitons) in
the spectral density of carriers, defining the degree of ioni-
zation. The longitudinal polarization function p is responsi-
ble for (plasmon) screening of the Coulomb interaction.
Furthermore, it describes dynamical screening, screening
by excitons, plasmon kinetics and the build up of screen-
ing, although, these issues will not be addressed in this
paper. The transverse polarization function P yields the
excitation dependent absorption coefficient and refractive
index, and defines scattering rates (generation/recombina-
tion, respectively absorption/emission) in the photon ki-
netics.  It is responsible for the inclusion of bound states
(excitons) in the photons spectral density.

Functional derivative or diagrammatic techniques allow
the consideration of increasingly higher order Coulomb
corrections in the self-energies.  In this paper, we consider
T-matrix correlation contributions (c) beyond the Random
Phase (RPA) and GW approximations. For the carrier
and photon self-energies, we obtain [4,5],
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where we have introduced the electron-hole quantity,
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Within screened ladder approximation, the T-matrix,
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satisfies the equation,
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The transverse and longitudinal polarization func-
tions are connected through
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3. Dephasing

The possibility of computing the dephasing and the cor-
responding bandgap shift that follows by Kramers-Kronig
allows for further predictability in the theory, in contrast
with a previous approach where formulas that simulate the
fully computed dephasing have been used [10].  They ap-
pear directly in the spectral function G, entering all equa-
tions presented above.  After suitable Fourier transforma-
tions,
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where { }),( ωε kE r
aaaa Σℜ−= h , and { }),( ωkr

aaa Σ−ℑ=Γh
denote, respectively, the renormalized energies and the
dephasing rate. The correlation functions are given by
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and )(ω<
af  is a Fermi function. Algebraic manipulations

lead to the GW dephasing,
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where )(ΩBn  is the Bose distribution function. Using the
Kramers-Kroning relation, the real part of the retarded
selfenergy is given by
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Here ∫P  denotes a Cauchy principal value integral. Using
the Optical theorem for the retarded potential,
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together with the retarded longitudinal polarization
function,

,
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the self energies can be computed iteratively together with
the corresponding quasi-chemical potentials, which char-
acterize the distribution functions.  In order to understand
the full process and make a connection to less advanced
iteration schemes, note that the average number of parti-
cles in a system of particles of type a (electrons or holes)
reads

dRRRN aaa ∫ ΨΨ= + )()( , (16)

which can be written as
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In the quasi-particle approximation 0→Γah , we ob-

tain the usual ))((2 kEfN a
k
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v
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At this point we include higher-order T-matrix cor-
rections, following the prescription presented in the pre-
vious section. We must then include the terms below in
the iterative scheme. The Fourier-transformed ladder or
correlation T-matrix self energy has Keldysh components
given by
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with analogous expressions for the �>� Keldysh compo-
nents. For cases in which effective masses can be defined,
as in the superalattice data used for the numerics used
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In the statically screened ladder approximation, the Fou-
rier-transformed T-matrix, ),,',( ωPppT r
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where the uncorrelated two-particle Green�s function reads,
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4. Numerical results and discussion

In this section, we apply our theory for coherently coupled
superlattices, treated   within the anisotropic medium ap-

proach, in which the motion of electrons and holes is char-
acterized by angle-averaged effective masses. Structures
designed to increase the carriers confinement lead to
larger effective masses [7,8].

Figure 1 displays the GW dephasing of electrons ob-
tained from the imaginary part of the corresponding retarded
selfenergy for a II�VI superlattice. Higher order corrections
are due to T-matrix corrections and are depicted in Fig. 2.
The GW dephasing follows the electronic dispersion (free
carrier energy plus Fock and GW self energies), while
the T-matrix dephasing is mainly centered about the
excitonic dispersion. The correlations described by the
T-matrix also lower the potential energy of the unbound
carriers, thus increasing the damping on the low-energy
side of the free dispersion and decreasing it on the high-
energy side. This effectively shifts the spectral weight to
lower energies.  In all plots the energy axis is the detuning
with respect to the fundamental band gap (including the
quantum confinement correction) and measured in units
of the superlattice binding energy.

Figure 3 illustrates the bleaching of the excitonic
absorption (Mott transition) at the T-matrix level for
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Fig. 1. GW dephasing for a 5Å  ZnSe / 75Å ZnMgSe superlattice at

T = 77 K and N = 1015 carriers/cm3.
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15Å / 5Å GaAs superlattice at 150 K. The lowest density
plot clearly displays contributions from the 1s bound
excitonic state, as well as the combined contribution of
the 2s and 2p states, which already overlaps with the
continuum. The k-dependence of these features reflects
the corresponding hydrogen wavefunctions, thus the 2s
and 2p features have a maximum at k > 0.  While the 2p
contribution is suppressed in the optical properties like
the polarization function, it does appear in the T-mat-
rix in forward scattering, which enters the T-matrix self-
energy. It occurs in our numerical calculations only be-
cause no further angle averaging is performed upon the
T-matrix elements. As the carrier density increases from
N = 1015 to 1018 carriers/cm3, the band-gap shrinkage
shifts the continuum towards lower energies, where it joins
the excitonic features (Mott transition). Our calculations
are capable of displaying a frequency- and momentum
resolved numerical demonstration of the Mott transition.

The sign change in the T-matrix at 1018 carriers/cm3

corresponds to the appearance of gain in the optical spectra.
Figure 4 shows distribution functions for a 5Å / 15Å

ZnSe-ZnMgSe superlattice.
The top, central and lower plots are, respectively for

T = 77, 150 and 300K.  On the left and right, N = 1015

and 1016 carriers/cm3. The solid curves and circles are,
respectively, for Fermi and Wigner distributions. For
comparison, exciton distributions are also shown as dot-

dashed curves. They are defined as the convolution of the
squared 1s wavefunction with the center-of-mass
Boltzmann distribution.

Note that, as the temperature increases, the Fermi
and Wigner distributions become indistinguishable.  In
other words, in this case, we can compute optical spectra
without the T-matrix diagram in the carrier�s self-energy,
which justifies successful calculations by the present au-
thors and several others in the literature for high tem-
peratures considering Fermi distributions only.

Figure 5 displays the optical absorption with the T-ma-
trix included on both polarization and self-energy diagrams.
No phenomenological parameters are needed here in order
to give a consistent broadening to the low-density spectra.
Even if fully computed within the GW approximation, the
broadening would be unrealistically small at low densities
and an arbitrary dephasing would have to be added.  In
other words, our calculations add further predictability to
previous approaches, extending rather successful ap-
proaches, which at high densities could reproduce several
important experimental findings [11], to the low-density re-
gime dominated by excitonic features.

In summary, the microscopic theory for the nonlinear
optical properties of semiconductors presented here pro-
vides a technique to study Coulomb effects beyond RPA
and GW, by analyzing their influence on optical spec-
tra. Unphysical features, like a spurious absorption for

Fig. 3. Evolution with increasing density of the T-matrix for a 5Å /15Å  ZnSe-ZnMgSe superlattice.
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photon frequencies below those in the gain range do not
appear, since our polarization function satisfies the KMS
sum rule. The numerical results show that the actual car-
rier occupation functions (Wigner distributions) differ
from the commonly used Fermi distributions for suffi-
ciently low carrier densities and temperatures.  Our iter-
ated GW and T-matrix dephasing adds further predict-
ability to the approach and for multi-sub-band quantum
wells provides important insight on high-density gain
operation, which may be important for high-power semi-
conductor laser applications.

The numerics presented can also be used as the start-
ing point for the realistic simulation of more complicated
light emitting and processing devices.
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