Температурная зависимость ширины полосы делокализованных состояний в наноструктурах *n*-InGaAs/GaAs в режиме квантового эффекта Холла

Ю.Г. Арапов, С.В. Гудина, В.Н. Неверов, С.Г. Новокшонов, А.С. Клепикова, Г.И. Харус, Н.Г. Шелушинина, М.В. Якунин

Институт физики металлов УрО РАН, ул. С. Ковалевской, 18, г. Екатеринбург, 620041, ГСП-170, Россия E-mail: neverov@imp.uran.ru

Статья поступила в редакцию 13 сентября 2012 г.

Экспериментально исследованы продольное $\rho_{xx}(B)$ и холловское $\rho_{xy}(B)$ магнитосопротивления в режиме целочисленного квантового эффекта Холла (КЭХ) в наноструктурах *n*-InGaAs/GaAs с одиночной и двойной квантовыми ямами в диапазоне магнитных полей B = 0-16 Тл и температур T = 0,05-70 К, до и после ИК подсветки. Проведен анализ температурной зависимости ширины переходов плато–плато КЭХ и получены сведения о температурной зависимости ширины полосы делокализованных состояний вблизи середины подзон Ландау в режиме КЭХ.

Експериментально досліджено подовжнє $\rho_{xx}(B)$ та холлівське $\rho_{xy}(B)$ магнітоопори в режимі цілочисельного квантового ефекту Холла (КЕХ) в наноструктурах *n*-InGaAs/GaAs з поодинокою і подвійною квантовими ямами в діапазоні магнітних полів B = 0-16 Тл і температур T = 0,05-70 К, до і після IЧ підсвічування. Проведено аналіз температурної залежності ширини переходів плато–плато КЕХ та отримано дані про температурну залежність ширини смуги делокалізованих станів поблизу середини підзон Ландау в режимі КЕХ.

РАСS: 73.21.Fg Квантовые ямы;

73.40.-с Электронный транспорт в структурах с границами раздела;

73.43.- f Квантовые эффекты Холла.

Ключевые слова: квантовый эффект Холла, гипотеза скейлинга, масштаб потенциала.

1. Введение

Явление целочисленного квантового эффекта Холла (КЭХ), обнаруженного фон Клитцингом с соавторами [1], оказалось тесно связанным с проблемой локализации электронов в двумерной (2D) системе в квантующем магнитном поле *B*. В работах Лафлина [2] и Гальперина [3] было показано, что для существования КЭХ необходимо наличие узких полос делокализованных состояний вблизи середины каждой из подзон Ландау при условии, что все остальные состояния являются локализованными.

В работах Пруискена [4], а также Хмельницкого [5] для объяснения КЭХ была предложена гипотеза двухпараметрического скейлинга, приводящая к существованию как локализованных, так и делокализованных (вблизи середины подзон Ландау) состояний в спектре неупорядоченной 2D-системы в квантующем магнитном поле. Режим квантового эффекта Холла можно рассматривать как последовательность квантовых фазовых переходов диэлектрик-металл-диэлектрик при сканировании уровнем Ферми плотности состояний неупорядоченной 2D-системы в квантующем магнитном поле. В рамках концепции скейлинга [4,6] ширина перехода между соседними плато КЭХ, так же как и ширина соответствующего пика на зависимости $\rho_{xx}(B)$, должна стремиться к нулю по степенному закону T^{κ} . Здесь $\kappa = p/2v$, множитель p определяет температурную зависимость времени неупругого рассеяния $\tau_{in} \sim T^{-p}$, v = 7/3 — критический индекс длины ло-кализации.

Первые экспериментальные исследования на гетероструктурах In_{0,53}Ga_{0,47}As/InP с низкой подвижностью [7] показали справедливость скейлинговой гипотезы: температурные зависимости ширины пиков ρ_{xx} и величины, обратной максимальному наклону на ступеньках ρ_{xy} , $d\rho_{xy}/dB_{\text{max}}^{-1}$, для этих структур хорошо

© Ю.Г. Арапов, С.В. Гудина, В.Н. Неверов, С.Г. Новокшонов, А.С. Клепикова, Г.И. Харус, Н.Г. Шелушинина, М.В. Якунин, 2013

описываются степенным законом T^{κ} с показателем $\kappa = 0,42 \pm 0,05$ для уровней Ландау с номерами 0^{-} , 1^{+} и 1^{-} при T = 0,1-4,2 К. В более поздних работах также наблюдалась скейлинговая зависимость для переходов плато–плато в режиме КЭХ с показателем степени $\kappa = 0,42-0,46$ для гетероструктур GaAs/AlGaAs и квантовых ям *p*-SiGe. В некоторых экспериментальных работах ставился вопрос об универсальности данного значения κ (см. обзорную статью [6]).

Более того, в работе Шахара и др. [8] обнаружены зависимости, существенно отличающиеся от критического поведения, предсказанного теорией скейлинга, вплоть до самых низких температур. При изучении перехода плато КЭХ–изолятор на серии гетероструктур GaAs/AlGaAs и InGaAs/InP при температурах до 70 мК найдено, что эффективная ширина перехода меняется с изменением температуры по *линейному* закону ($\alpha T + \beta$) с $\beta \neq 0$. Это означает, что при $T \rightarrow 0$ ширина перехода остается конечной, что не соответствует концепции квантового фазового перехода.

В работе [9] нами проведен сравнительный анализ температурных зависимостей ширины переходов плато-плато в режиме КЭХ для двойных квантовых ям n-InGaAs/GaAs и гетероструктур p-Ge/GeSi. В то время как истинно скейлинговое поведение со значением критического индекса $\kappa = 0.48 \pm 0.04$, близким к теоретическому значению, обнаружено в системе InGaAs/GaAs, в системах Ge/GeSi, как и в работе Шахара и др. [3], наблюдалась линейная по температуре зависимость $v_0(T)$. Мы связали разницу в поведении $v_0(T)$ с разным характерным масштабом примесного потенциала в этих системах: короткодействующий примесный потенциал в InGaAs/GaAs (сплавное рассеяние в слоях твердого раствора InGaAs) и сравнительно плавный потенциал для электронов в слоях Ge (рассеяние электронов на удаленных примесях в барьерах).

Цель данной работы — более подробное исследование области переходов плато-плато квантового эффекта Холла в наноструктурах *n*-InGaAs/GaAs с одиночной и двойной квантовыми ямами до и после подсветки образцов инфракрасным излучением.

2. Характеристика образцов

Исследованы 2D-структуры с одиночной и двойной квантовыми ямами GaAs/In_xGa_{1-x}As/GaAs, выращенные методом металлоорганической газофазной эпитаксии на полуизолирующей подложке GaAs в НИФТИ Нижегородского университета группой Б.Н. Звонкова. Гетероструктуры представляли собой последовательность эпитаксиальных слоев, формирующих одну или две квантовые ямы $In_xGa_{1-x}As$. Структуры симметрично δ-легированы Si в барьерах на расстоянии 19 нм от гетерограниц. Технологические параметры образцов и профили структур приведены в табл. 1.

Таблица 1. Технологические параметры образцов (d_w — ширина ямы, d_b — ширина барьера, L_s — ширина спейсера)

		, Ç			1,5 1 1,
N₂	Ls, Å	$d_w, Å$	d _b , Å	x	Профиль
3892	190	2×50	100	≈ 0,20	
2982	190	100	0	≈ 0,18	

Проведены измерения продольной и холловской компонент тензора сопротивления $\rho_{xx}(B,T)$ и $\rho_{xy}(B,T)$ в магнитных полях $B \le 16$ Тл в интервале температур T = 0,05-70 К при разной концентрации электронов, которая изменялась путем подсветки образцов инфракрасным (ИК) излучением. Электрофизические параметры исследованных образцов приведены в табл. 2.

Таблица 2. Концентрация *n* и подвижность носителей заряда µ в структурах в зависимости от воздействия ИК излучения

05		<i>n</i> , 1	10 ¹⁵ м	$(1, 2)^{2}/(\mathbf{D}_{12})$	
Ооразец	1, К	1	2	3	μ, м /(Б·с)
2982a	1,8	2,1	2,1	2,1	1,2
2982b	$0,4({}^{3}\text{He})$	3,8	3,8	3,9	3,0
	1,8 (⁴ He)	3,6	3,7	3,7	2,9
3892a	1,7	2,2	2,1	2,3	1,2
3892b	$0,05 (^{3}\text{He}-^{4}\text{He})$	5,0	4,7	4,8	2,7
	1,6 (⁴ He)	5,1	4,9	5,0	2,8

Примечания: а — темновой образец; b — засвеченный образец. Приведены значения концентрации, определенные разными методами: 1 — квантовый эффект Холла; 2 — осцилляции Шубникова-де Гааза; 3 — коэффициент Холла в слабом поле. Во второй колонке указаны температуры, при которых определялись параметры образцов, в скобках — способ получения температуры для засвеченных образцов: жидкий ⁴Не; жидкий ³Не; рефрижератор растворения ³Не-⁴Не.

Обратим внимание на резкое возрастание как концентрации, так и подвижности носителей тока в образцах после воздействия ИК подсветки.

2.1. Образец n-InGaAs/GaAs с одиночной квантовой ямой

На рис. 1 приведены зависимости компонент тензора сопротивления $\rho_{xx}(B,T)$ и $\rho_{xy}(B,T)$ от магнитного поля в режиме квантового эффекта Холла при T = 1,8 К и рассчитанная картина уровней Ландау для темнового образца с одиночной квантовой ямой 2982а.

На рис. 2 представлены зависимости компонент тензора полного сопротивления $R_{xx}(B,T)$ и $R_{xy}(B,T)$ от магнитного поля в режиме квантового эффекта Холла при T = 0,05 К и рассчитанная картина уровней

Рис. 1. Зависимости компонент тензора сопротивления $\rho_{xx}(B,T)$ и $\rho_{xy}(B,T)$ от магнитного поля в режиме квантового эффекта Холла при T = 1,8 К (а) и рассчитанная картина уровней Ландау для образца 2982а (б).

Ландау для образца с одиночной квантовой ямой после максимальной засветки.

2.2. Образец n-InGaAs/GaAs с двойной квантовой ямой

В структуре с двойной сильно связанной квантовой ямой присутствуют два типа носителей от подзон симметричных и антисимметричных состояний, разделенных энергетической щелью $\Delta_{SAS} = 3 \text{ мэB}$. После воздействия ИК излучения структура оказывается выведенной из баланса, туннельный эффект ослабевает и система представляет собой две почти независимые ямы с энергетической щелью $\Delta = 4 \text{ мэB}$ между уровнями пространственного квантования в отдельных ямах [10].

На рис. 3 приведены зависимости компонент тензора магнитосопротивления $\rho_{xx}(B,T)$ и $\rho_{xy}(B,T)$ в ре-

Рис. 2. Зависимости компонент тензора полного сопротивления $R_{xx}(B,T)$ и $R_{xy}(B,T)$ от магнитного поля в режиме квантового эффекта Холла при T = 0,05 К (а) и рассчитанная картина уровней Ландау для образца 2982b (б).

жиме квантового эффекта Холла при T = 0,05 К и рассчитанная картина уровней Ландау для темнового образца с двойной квантовой ямой. Жирной линией схематически показано движение уровня Ферми E_F по уровням Ландау с изменением магнитного поля. $\Delta_{SAS} = 3$ мэВ — энергетическая щель между симметричным (S) и антисимметричным (AS) подуровнями пространственного квантования.

На рис. 4 показаны зависимости компонент тензора магнитосопротивления $\rho_{xx}(B,T)$ и $\rho_{xy}(B,T)$ в режиме квантового эффекта Холла при T = 0.05 К и рассчитанная картина уровней Ландау для образца с двойной квантовой ямой после освещения 3892b. Жирной линией схематически показано движение уровня Ферми по уровням Ландау с изменением магнитного поля. $\Delta = 4$ мэВ — энергетическая щель между уровнями пространственного квантования.

Рис. 3. Зависимости компонент тензора магнитосопротивления $\rho_{XX}(B,T)$ и $\rho_{XY}(B,T)$ в режиме квантового эффекта Холла при T = 0,05 К (а) и рассчитанная картина уровней Ландау для темнового образца с двойной квантовой ямой 3892a (б). На вставках: закон дисперсии E(k) для симметричной и антисимметричной подзон пространственного квантования и соответствующие изоэнергетические кривые при $E = E_F$.

3. Экспериментальные результаты

Квантовые фазовые переходы плато-плато в режиме КЭХ происходят при строго определенных критических полях $B_c^i = (h/ie)n$, где i — целое число, n концентрация электронов. При этих значениях магнитного поля уровень Ферми совпадает с энергией делокализованных состояний E_c в центре подзоны Ландау, и проводимость $\sigma_{xx}(B)$ достигает максимального (пикового) значения. Равенство $E_F = E_c$ соответствует полуцелым значениям степени заполнения $v = v_c = i + 1/2$, а также полуцелым значениям σ_{xy} (в единицах e^2/h). В этой работе исследованы области переходов плато-

Рис. 4. Зависимости компонент тензора магнитосопротивления $\rho_{XX}(B,T)$ и $\rho_{XY}(B,T)$ в режиме квантового эффекта Холла при T = 0,05 K (а) и рассчитанная картина уровней Ландау для образца с двойной квантовой ямой после максимальной засветки 3892b (б). На вставках: закон дисперсии для первой и второй подзон пространственного квантования и соответствующие изоэнергетические кривые при $E = E_F$.

плато КЭХ в окрестности критических значений магнитного поля.

При изучении перехода плато–плато в наших образцах использована методика описания $\sigma_{xy}(B)$ с помощью параметра экранирования [11]:

$$s(\mathbf{v}) = \exp\left(-\Delta \mathbf{v}/\mathbf{v}_0(T)\right). \tag{1}$$

Здесь фактор заполнения $v = n/n_B$ ($n_B = eB/h$), $\Delta v = |v - v_c|$ — отклонение фактора заполнения от критического значения v_c , а $v_0(T)$ — ширина полосы делокализованных состояний при температуре *T*. Для перехода между плато КЭХ с номерами (*i*-1) и *i* ($v_c = i + 0,5$) недиагональная компонента тензора проводимости зависит от параметра экранирования следующим образом (в единицах e^2/h):

$$\sigma_{xy} = i - \frac{s^2}{1+s^2} \,. \tag{2}$$

Таким образом, анализируя зависимость $\sigma_{xy}(v)$ в окрестности точки v_c , можно получить зависимость s(v), а из нее определить ширину полосы делокализованных состояний при данной температуре $v_0(T)$.

3.1. Образец n-InGaAs/GaAs с одиночной квантовой ямой

Проведена серия экспериментов на образце *n*-InGaAs/GaAs с одиночной квантовой ямой (2982) для получения зависимостей $\rho_{xx}(B)$ и $\rho_{xy}(B)$ при фиксированных температурах от 0,4 до 4,2 К и магнитных полях до 12 Тл. Концентрация носителей заряда в образце изменялась путем максимального засвечивания (максимальная концентрация) и последующего ее снижении при высоких температурах.

Сложность экспериментов с засветкой заключалась в том, что при разных циклах охлаждения (измерения в разных температурных вставках) трудно получить одинаковую концентрацию электронов *n*. Концентрации в разных сериях экспериментов: $n = 3,8 \cdot 10^{11}$ см⁻² для вставки ³ Не и $n = 3,7 \cdot 10^{11}$ см⁻² для вставки ⁴ Не.

Для оценки ширины полосы делокализованных состояний в нашем образце проанализированы данные по магнитосопротивлению в области перехода между первым и вторым плато КЭХ. Из (2) определены значения параметра экранирования

$$s^2 = \frac{2 - \sigma_{xy}}{\sigma_{xy} - 1} \tag{3}$$

и из аппроксимации зависимости $s(v-v_c)$ при помощи выражения (1) получены значения $v_0(T)$ для темнового образца и образца с промежуточной засветкой.

На рис. 5 представлены зависимости ширины полосы делокализованных состояний от температуры для незасвеченного образца *n*-InGaAs/GaAs с одиночной квантовой ямой (2982а) и при промежуточной засветке (2982b) в линейном и двойном логарифмическом масштабах.

На рис. 5(а) видно, что зависимости $v_0(T)$ носят линейный характер. То, что не наблюдается степенная зависимость ширины делокализованных состояний от температуры, предсказанная теорией скейлинга, наглядно демонстрирует рис. 5(б) в двойном логарифмическом масштабе.

Полученные экспериментальные данные описываются линейной зависимостью

$$v_0(T) = \alpha T + \beta \tag{4}$$

с параметрами $\alpha = 0.031 \pm 0.002$ и $\beta = 0.034 \pm 0.007$ для темнового образца (2982а) и $\alpha = 0.038 \pm 0.001$ и $\beta = 0.082 \pm 0.003$ для засвеченного образца (2982b). Ли-

Рис. 5. Зависимость ширины полосы делокализованных состояний от температуры для незасвеченного образца *n*-InGaAs/GaAs с одиночной квантовой ямой (2982a) (Δ) и при промежуточной засветке (2982b): вставки ³He (\bullet) и ⁴He (\bullet), в линейном (а) и двойном логарифмическом (б) масштабах.

нейная по температуре зависимость ширины полосы делокализованных состояний является квазиклассической по природе и может наблюдаться в образцах с медленно меняющимся потенциалом (крупномасштабный потенциал) [9,12] или в неоднородных по концентрации образцах [13].

3.2. Образец n-InGaAs/GaAs с двойной квантовой ямой

Анализ данных для образца 3892 проведен по описанной выше схеме для перехода $1 \rightarrow 2$ в темновом образце (3892а) и переходов $1 \rightarrow 2$; $2 \rightarrow 3$; $3 \rightarrow 4$ в максимально засвеченном (3892b). Данные для двойной квантовой ямы *n*-InGaAs/GaAs при максимальной

Low Temperature Physics/Физика низких температур, 2013, т. 39, № 1

Рис. 6. Зависимость ширины полосы делокализованных состояний от температуры для темнового образца *n*-InGaAs/GaAs с двойной квантовой ямой (3892а) для перехода $1 \rightarrow 2$ в двойном логарифмическом масштабе. На вставке: $v_0(T)$ для перехода $1 \rightarrow 2$ для образца с двойной квантовой ямой *n*-InGaAs/GaAs в линейном масштабе: в темновом случае (3892а) (•); при максимальной засветке (3892b) (○).

концентрации электронов получены в Институте Ван дер Ваальса Амстердамского университета.

Для темнового образца температурная зависимость ширины полосы делокализованных состояний хорошо описывается с помощью степенной зависимости $v_0(T) \sim T^{\kappa}$ с показателем степени $\kappa = 0.48 \pm 0.04$ (рис. 6), что соответствует предсказаниям теории скейлинга, развитой для δ -образного рассеивающего потенциала [4,6].

В противоположность этому, в случае засвеченного образца с двойной квантовой ямой, для перехода $1 \rightarrow 2$ наблюдается линейная зависимость ширины полосы делокализованных состояний от температуры (4) с параметрами $\alpha = 0,045 \pm 0,003$ и $\beta = 0,049 \pm 0,002$ (см. вставку на рис. 6).

При исследовании переходов $2 \rightarrow 3$ и $3 \rightarrow 4$ в образце 3892b с максимальной концентрацией электронов наблюдалась степенная зависимость $v_0(T) \sim T^{\kappa}$ со значениями показателя степени $\kappa = 0.22 \pm 0.01$ для перехода $2 \rightarrow 3$ и $\kappa = 0.21 \pm 0.01$ для $3 \rightarrow 4$ (рис. 7).

Таким образом, мы наблюдали степенную зависимость ширины полосы делокализованных состояний от температуры для перехода $1 \rightarrow 2$ в темновом образце и переходов $2 \rightarrow 3$ и $3 \rightarrow 4$ в засвеченном образце. Для перехода $1 \rightarrow 2$ в засвеченном образце наблюдается линейная зависимость $v_0(T)$. В табл. 3 представлены значения критических магнитных полей B_c для исследованных переходов плато-плато КЭХ, оценка магнитной длины l_B для этих полей, а также наблюдаемый тип температурной зависимости $v_0(T)$ в системе

Рис. 7. Зависимость ширины полосы делокализованных состояний от температуры для переходов 1→2 (**■**); 2→3 (Δ) и 3→4 (\circ) в засвеченном образца *n*-InGaAs/GaAs с двойной квантовой ямой (3892b) в линейном (а) и двойном логарифмическом (б) масштабах.

с двойной квантовой ямой до (3892a) и после (3892b) подсветки.

Таблица 3. Критические магнитные поля B_c для исследованных переходов плато-плато КЭХ, величины магнитных длин l_B для этих полей и вид температурной зависимости $v_0(T)$ в образцах 3892a,b

Образец	Переход	<i>В</i> _с , Тл	<i>l</i> _{<i>B</i>} , Å	$v_0(T)$	Значение параметра
3892a	1→2	7,0	97	T^{κ}	$\kappa=0,\!48\pm0,\!04$
3892b	2→3	7,8	92	T^{κ}	$\kappa = 0,22 \pm 0,01$
3892b	3→4	6,0	105	T^{κ}	$\kappa = 0,21 \pm 0,01$
3892b	1→2	14,1	68	$\alpha T + \beta$	$\alpha=0,045\pm0,003$
					$\beta=0,049\pm0,002$

4. Обсуждение экспериментальных результатов

В теоретических и экспериментальных работах [12–16] отмечена существенная роль *короткодействующего* случайного примесного потенциала для экспериментального обнаружения скейлинговых зависимостей, тогда как *крупномасштабный* (по сравнению с магнитной длиной) примесный потенциал значительно усложняет наблюдение критических квантовых явлений.

Заметим также, что наличие в образце макроскопических неоднородностей, несомненно, может препятствовать наблюдению истинной низкотемпературной асимптотики квантового фазового перехода [13]. Так, например, пространственные неоднородности электронной плотности приводят к пространственной вариации фактора заполнения уровней Ландау ν , что затрудняет наблюдение критического поведения электронного газа (скейлинговых зависимостей) в пределе $T \rightarrow 0$, и, следовательно, ширина перехода плато–плато КЭХ $\nu_0(T)$ должна стремиться к нулю.

Кроме того, нарушение универсального скейлингового поведения ширины перехода КЭХ может быть вызвано тем, что при небольших неоднородностях электронной плотности переход происходит при несколько различных значениях магнитного поля в разных частях образца [6]. Поскольку при измерении ρ_{xx} или ρ_{xy} токи текут по различным частям образца, становится возможным нерегулярное поведение σ_{xx} и σ_{xy} вблизи перехода.

Объяснение конечности ширины перехода платоплато в режиме КЭХ при $T \to 0$ в рамках квазиклассической модели протекания может быть найдено в работах, где рассмотрено влияние кулоновского взаимодействия на экранирование крупномасштабных флуктуаций примесного потенциала [17]. Помимо локальных областей с заполненными и пустыми уровнями Ландау, существующих при критическом значении магнитного поля в системе без взаимодействия, влияние межэлектронного взаимодействия приводит к возникновению в образце областей третьего («металлического») типа. В новых металлических областях локальная плотность электронов соответствует частичному заполнению уровней Ландау. Следует пересмотреть перколяционное описание перехода, так как металлические области проникают через весь образец в конечной области магнитных полей вблизи критического значения. В соответствии с этой моделью переход плато-плато в режиме КЭХ будет иметь конечную ширину даже в низкотемпературном пределе.

С другой стороны, линейная по температуре зависимость ширины полосы делокализованных состояний $v_0(T)$ является квазиклассической по природе и может наблюдаться в образцах с медленно меняющимся потенциалом. Большинство простых физических причин линейной зависимости $v_0(T)$, например температурное уширение квантового фазового перехода, рассмотрено в работе Кольриджа и Завадского [18].

Мы полагаем, что как конечная величина $v_0(T = 0)$, так и линейная по температуре зависимость ширины полосы делокализованных состояний в образце с одиночной квантовой ямой (как до, так и после подсветки) являются квазиклассическими по природе и могут быть связаны с недостаточной однородностью образцов и/или с крупномасштабными флуктуациями рассеивающего потенциала.

Напротив, для системы с двойной квантовой ямой даже в отсутствие подсветки для перехода $1 \rightarrow 2$ наблюдается реальное скейлинговое поведение с показателем степени $\kappa = 0,48 \pm 0,04$, что близко к теоретическому значению $\kappa = 0,42$, соответствующему значению p = 2(т.е. обычному электрон-электронному рассеянию с $\tau_{in} \sim T^{-2}$). Такое поведение, как и в работе Ли с соавторами [16], может быть обусловлено решающей ролью короткодействующего потенциала сплавного рассеяния, в данном случае на атомах In в твердом растворе InGaAs.

Уникальные результаты получены для системы n-InGaAs/GaAs с двойной квантовой ямой с максимальной концентрацией электронов и максимальной подвижностью после инфракрасной подсветки (см. рис. 7). Критическое поведение $v_0(T)$ для переходов $2 \rightarrow 3$ и $3 \rightarrow 4$ прекрасно соответствует значению $\kappa = 0,21$, что ранее наблюдалось лишь для перехода между нерасщепленными по спину уровнями Ландау (переход $2 \rightarrow 4$ в гетероструктурах In_xGa_{1-x}As/InP [19]). Напомним, что $\kappa = p/2\xi$ — комбинация двух микроскопических параметров: коэффициента p, определяющего температурную зависимость времени неупругого рассеяния, $\tau_{in} \sim T^{-p}$, и критического индекса длины локализации ξ. В связи с этим в работе [19] обсуждается вопрос, на какой из процессов (неупругое рассеяние или локализация) оказывает влияние изменение спинового вырождения.

Поскольку мы наблюдаем скейлинговое поведение для переходов между *расщепленными* по спину уровнями Ландау как в темновом образце (переход $1 \rightarrow 2$ с $\kappa \approx 0,48$), так и в образце после подсветки (переходы $2 \rightarrow 3$ и $3 \rightarrow 4$ с $\kappa \approx 0,21$), полагаем, что изменение к обусловлено изменением коэффициента p, т.е. изменением механизма неупругого рассеяния. Значение $\kappa = 0,21$ (при $\xi = 7/3$) дает p = 1, т.е. $\tau_{in} \sim T^{-1}$, что соответствует механизму Найквиста для электрон-электронного рассеяния [20], который обычно реализуется в однородных 2D-системах с высокой подвижностью носителей.

В системе с двойной квантовой ямой скейлинговый закон нарушается в сильных магнитных полях $B \approx 14$ Тл, и для перехода $1 \rightarrow 2$ наблюдается линейная зависимость $v_0(T)$ (см. рис. 7). В данном случае мы полагаем, что переход от степенной к линейной зависимости с ростом магнитного поля обусловлен изменением соотношения магнитной длины $l_B = (\hbar c/eB)^{1/2}$ и корреляционной длины случайного потенциала *a* в соответствии с *квантовой* моделью двумерной перколяционной сетки, развитой Пруискеном с соавторами [12].

В работе [12] показано, что для плавного случайного потенциала с $a > l_B$ эффективная ширина полосы состояний $W_{\rm eff}$, вносящая вклад в проводимость, остается конечной даже при $T \to 0$ вследствие квантового туннелирования в окрестности седловых точек. При конечной температуре, согласно [12],

$$W_{\rm eff} = W_0 + \tau_{\rm in}^{-1}$$
, (5)

где $W_0 \approx (l_B/a)^2 W$ — ширина полосы делокализованных состояний при T = 0 и W — полная ширина уровня Ландау. Результат (5) соотносится с экспериментальной подгонкой (4) как $\beta = W_0/W$, а наблюдаемая линейная температурная зависимость соответствует $\tau_{\rm in} \sim T^{-1}$ (механизм Найквиста) в соответствии с оценкой *p* из скейлингового поведения с $\kappa \approx 0,21$ для переходов $2 \rightarrow 3$ и $3 \rightarrow 4$.

Из данных, приведенных в табл. 3, видно, что магнитная длина для перехода $1 \rightarrow 2$ в образце с подсветкой по крайней мере в ~1,5 раза меньше, чем для всех остальных случаев. Более того, возможно, что в сильном магнитном поле происходит смена доминирующего механизма рассеяния: вместо *короткодействующего* механизма рассеяния: вместо *короткодействующего* потенциала сплавного рассеяния на атомах In основным становится рассеяние на *крупномасштабных* флуктуациях потенциала удаленных примесей Si в δ-легированных слоях (с пространственным масштабом *а* порядка размера спейсера [21]).

Действительно, можно показать, что в модели линейного экранирования в 2D-системе в квантующем магнитном поле *B* (как и в отсутствие поля [22]) обратный радиус экранирования r_s^{-1} пропорционален плотности состояний на уровне Ферми $g(\varepsilon_F)$. В ультраквантовом (УКВ) пределе магнитных полей плотность состояний в центре последнего уровня Ландау растет с ростом *B* [23], а следовательно, радиус экранирования уменьшается. Поэтому полагаем, что в сильном поле *B* = 14 Тл (соответствующем переходу $1 \rightarrow 2$) в образце 3892b рассеивающие центры в проводящем 2D-слое предельно заэкранированы, и на этом фоне проявляется рассеяние на удаленных примесях Si в δ -слоях (для которых приближение линейного экранирования не работает).

Полагая, что в УКВ пределе рассеивающий потенциал плавный, по формулам (4), (5) оцениваем $l_B/a = \sqrt{\beta} \approx 0,022$, что для $l_B \approx 70$ Å (см. табл. 3) дает $a \approx 300$ Å в хорошем соответствии с величиной эффективного спейсера $s = L_s + d_w + d_b/2 = 290$ Å. Таким образом, действительно можно полагать, что смена степенной зависимости $v_0(T)$ на линейную в образце 3892b связана с переходом к движению электронов в плавном случайном потенциале с $a/l_B >> 1$.

В исследуемой системе n-InGaAs/GaAs с максимальной концентрацией и подвижностью после ИК подсветки уникальные результаты получены также и для продольной проводимости σ_{xx} в режиме КЭХ. На рис. 8 представлены зависимости $\sigma_{xx}(B)$ при низких температурах, $T \le 1$ К, для образца 3892b с $n = 5,1\cdot10^{15}$ м⁻² и $\mu = 2,7 \text{ м}^2/(B \cdot c)$. Примечательно, что для спин-расщепленных пиков 1⁻ и 1⁺ (соответствующих переходам $2 \rightarrow 3$ и $3 \rightarrow 4$ между плато КЭХ) при $T \le 0,05$ К имеем $\sigma_{xx}^c = (0,5 \pm 0,05) e^2/h$ для максимальных (критических) значений σ_{xx} : $\sigma_{xx}^c \equiv \sigma_{xx}(B_c)$. Это наблюдение находится в прекрасном соответствии как с предсказаниями теории двухпараметрического скейлинга: $\sigma_{xx}^c = 0.5 e^{2}/h$ [4,5], так и с результатами численного моделирования для различных моделей примесного потенциала: $\sigma_{xx}^c = (0.5 \pm 0.05) e^2 / h$ [6,24,25]. Эти теоретические предсказания обычно плохо подтверждаются экспериментом, большинство исследователей сообщают о критических значениях амплитуды пиков σ_{xx} в режиме КЭХ, $\sigma_{xx}^c(T \rightarrow 0)$, на 40-80% меньше теоретически ожидаемого значения $0.5 e^2/h$ (см., например, обзоры [26,27]).

На рис. 8 видно, что в пределе сильных магнитных полей для 0⁻ пика имеем $\sigma_{xx}^c \cong 0.35 \ e^2/h$, что также существенно меньше теоретического значения $0.5 \ e^2/h$, как и во многих других экспериментальных работах. Такое расхождение, как и наблюдаемые отклонения от скейлингового поведения температурной зависимости ширины перехода $1 \rightarrow 2 \ v_0(T)$ в исследуемой системе

Рис. 8. Низкотемпературные зависимости продольной проводимости от магнитного поля для ИК засвеченного образца InGaAs/GaAs (3892b) при температурах *T*, K: 0,05 (——); 0,2 (----); 0,5 (-----).

n-InGaAs/GaAs с двойной квантовой ямой после ИК подсветки, мы связываем с решающей ролью крупномасштабного рассеивающего потенциала удаленных примесей Si в ультраквантовой области магнитных полей.

5. Выводы

Экспериментально изучены магнитополевые зависимости продольного $\rho_{xx}(B)$ и холловского $\rho_{xy}(B)$ сопротивлений в режиме целочисленного квантового эффекта Холла в наноструктурах *n*-InGaAs/GaAs с одиночной и двойной квантовыми ямами в широком диапазоне магнитных полей и температур, до и после ИК подсветки. Исследована температурная зависимость ширины переходов плато–плато КЭХ и получены сведения о температурной зависимости ширины полосы делокализованных состояний $v_0(T)$ вблизи середины подзон Ландау в квантующем магнитном поле.

В образце с одиночной квантовой ямой *n*-InGaAs/GaAs как до, так и после ИК подсветки наблюдалась линейная по температуре зависимость ширины полосы делокализованных состояний, которая является квазиклассической по природе и связана с недостаточной однородностью образцов и/или крупномасштабными флуктуациями рассеивающего потенциала.

В структуре с двойной квантовой ямой обнаружено реальное скейлинговое поведение $v_0(T) \sim T^{\kappa}$ для перехода $1 \rightarrow 2$ в неосвещенном образце ($\kappa = 0,48 \pm 0,04$) и для переходов $2 \rightarrow 3$ ($\kappa = 0,22 \pm 0,01$) и $3 \rightarrow 4$ ($\kappa = 0,21 \pm 0,01$) в образце после воздействия ИК излучения. Найденные значения κ близки κ теоретически предсказанным для обычного ферми-жидкостного механизма неупругого *е*-*е*-рассеяния ($\tau_{in} \sim T^{-2}, \kappa = 0,42$) или для найквистовского механизма *е*-*е*-рассеяния ($\tau_{in} \sim T^{-1}, \kappa = 0,21$) в 2D-системах. Эти результаты замечательно соответствуют предсказаниям теории двухпараметрического скейлинга, что позволяет сделать вывод о хорошем качестве (однородности) исследованных образцов с двойной квантовой ямой, особенно после ИК подсветки.

Наблюдаемую для перехода $1 \rightarrow 2$ в структуре с двойной квантовой ямой линейную зависимость $v_0(T) = \alpha T + \beta$ (с конечным значением β) мы связываем с изменением соотношения масштаба случайного потенциала и длины волны электрона (магнитной длины) и с эффективным переходом к крупномасштабному потенциалу ($a > l_B$) в ультраквантовой области магнитных полей.

Работа выполнена по Программе президиума РАН 12-П-2-1051 и при частичной поддержке РФФИ, гранты 11-02-00427, 12-02-00202.

- K. von Klitzing, G. Dorda, and M. Pepper, *Phys. Rev. Lett.* 45, 494 (1980).
- 2. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981).
- 3. B.I. Halperin, Phys. Rev. B 25, 2185 (1982).
- A.M.M. Pruisken, *Phys. Rev. B* 32, 2636 (1985); A.M.M. Pruisken, *Phys. Rev. Lett.* 61, 1297 (1988); A.M.M. Pruisken, *The Quantum Hall Effect*, R.E. Prange and S.M. Girvin (eds.), Springer Verlag, Berlin (1990), p. 117.
- Д.Е. Хмельницкий, Письма в ЖЭТФ 38, 454 (1983) [JETP Lett. 38, 552 (1983)].
- 6. B. Huckestein, Rev. Mod. Phys. 67, 367 (1995).
- H.P. Wei, D.C. Tsui, M.A. Paalanen, and A.M.M. Pruisken, *Phys. Rev. Lett.* 61, 1294 (1988).
- D. Shahar, M. Hilke, C.C. Li, D.C. Tsui, S.L. Sondhi, J.E. Cunningham, and M. Razeghi, *Solid State Commun.* 107, 19 (1998).
- Yu.G. Arapov, G.I. Harus, I.V. Karskanov, V.N. Neverov, N.G. Shelushinina, and M.V. Yakunin, *Physica B* 404, 5192 (2009).
- Ю.Г. Арапов, И.В. Карсканов, В.Н. Неверов, Г.И. Харус, Н.Г. Шелушинина, М.В. Якунин, ФНТ 35, 44 (2009) [Low Temp. Phys. 35, 32 (2009)].
- 11. P.T. Coleridge, Phys. Rev. B 60, 4493 (1999).
- A.M.M. Pruisken, B. Šcorić, and M.A. Baranov, *Phys. Rev.* B 60, 16838 (1999).
- B. Karmakar, M.R. Gokhale, A.P. Shah, B.M. Arora, D.T.N. de Lang, A. de Visser, L.A. Ponomarenko, and A.M.M. Pruisken, *Physica E* 24, 187 (2004).
- A. de Visser, L.A. Ponomarenko, G. Galistu, D.T.N. de Lang, A.M.M. Pruisken, U. Zeitler, and D. Maude, *cond-mat/0608482* (и ссылки там).
- A.M.M. Pruisken, D.T.N. de Lang, L.A. Ponomarenko, and A. de Visser, *Solid State Commun.* 137, 540 (2006).
- W. Li, G.A. Csáthy, D.C. Tsui, L.N. Pfeiffer, and K.W. West, *Phys. Rev. Lett.* 94, 206807 (2005).
- 17. N.R. Cooper and J.T. Chalker, Phys. Rev. B 48, 4530 (1993).
- 18. P. Coleridge and P. Zawadzki, cond-mat/9903246.
- S.W. Hwang, H.P. Wei, L.W. Engel, D.C. Tsui, and A.M.M. Pruisken, *Phys. Rev. B* 48, 11416 (1993).
- B.L. Altshuler and A.G. Aronov, in: *Electron–Electron* Interactions in Disorder Systems, Amsterdam (1985).
- 21. A.L. Efros, F.G. Pikus, and V.G. Burnett, *Phys. Rev. B* 47, 2233 (1993).
- 22. T. Ando, A.B. Fowler, and F. Stern, *Rev. Mod. Phys.* 54, 438 (1982).
- E. Brésin, D. J. Gross, and C. Itsykson, *Nuclear Physics B* 235 [FSII], 24 (1984).
- Y. Huo, R.E. Hetzel, and R.N. Bhatt, *Phys. Rev. Lett.* 70, 481 (1993).
- D.H. Lee, Z. Wang, and S. Kivelson, *Phys. Rev. Lett.* 70, 4130 (1993).
- S.L. Sondhi, S.M. Girvin, J.P. Carini, and D. Shahar, *Rev. Mod. Phys.* 69, 315 (1997).
- 27. S. Das Sarma, in: *Perspectives in Quantum Hall Effect*, S. Das Sarma, and A. Pinczuk (eds.), Wiley (1997), p. 1.

Temperature dependence of band width of delocalized states for *n*-InGaAs/GaAs in the quantum Hall effect regime

Yu.G. Arapov, S.V. Gudina, V.N. Neverov, S.G. Novokshonov, A.S. Klepikova, G.I. Kharus, N.G. Shelushinina, and M.V. Yakunin

Temperature and magnetic-field dependences of longitudinal $\rho_{xx}(B,T)$ and Hall $\rho_{xy}(B,T)$ resistivities of *n*-In_xGa_{1-x}As/GaAs nanostructures with single and double quantum wells are investigated in the quantum Hall effect (QHE) regime at B = 0-16 T and T =

= 0.05-70 K, before and after IR illumination. The temperature dependence of the QHE plateau-to-plateau transition width are analyzed and information about temperature dependences of the width of delocalized state stripes in the center of Landau subbands is obtained.

PACS: 73.21.Fg Quantum wells; 73.40.-c Electronic transport in interface structures;

73.43.–f Quantum Hall effects.

Keywords: quantum Hall effect, the scaling hypothesis, the scale of potential.