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We show theoretically that a significant spin accumulation can occur in electric point contacts between two 
ferromagnetic electrodes with different magnetizations. Under appropriate conditions an inverse population of 
spin-split electronic levels results in stimulated emission of photons in the presence of a resonant electromagnet-
ic field. The intensity of the emitted radiation can be several orders of magnitude higher than in typical semicon-
ductor laser materials for two reasons. (1) The density of conduction electrons in a metal point conduct is much 
larger than in semiconductors. (2) The strength of the coupling between the electron spins and the electromagnet-
ic field that is responsible for the radiative spin-flip transitions is set by the magnetic exchange energy and can 
therefore be very large as suggested by Kadigrobov et al. [Europhys. Lett. 67, 948 (2004)].  

PACS: 73.40.–c Electronic transport in interface structures. 
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1. Introduction 

Typical metals are characterized by a high density of 
conduction electrons compared with other types of conduc-
tors. At the same time metals are linear electrical conduc-
tors in the sense that their response to an external electrical 
field is linear in the field strength. This means that it is 
very difficult to realize a highly nonequilibrium distribu-
tion of electrons in an ordinary metal. It is known, e.g., that 
strong electric fields inside a metal usually lead to melting 
due to Joule heating rather than to a significant excitation 
of the conduction electrons. Metal point contacts are re-
markable exceptions because of a spatial separation be-
tween the small volume in which the external power is 
transferred to the electrons and the much larger region 
where this power is dissipated. This is the case for nano-
meter sized microconstrictions (microbridges) joining two 
bulk metals, where the size of the constriction volume — 
where the electrical current density can be very high — is 
much smaller than the inelastic relaxation length of the 
electrons [1–3]. Unlike in bulk metals, current densities in 
such constrictions can reach 107–1010 A/cm2 without any 
significant heating of the material [4]. 

Point-contact spectroscopy is a well known method for 
studying phonons and other excitations in metals through 
their interaction with the “hot” electrons created in the 

constriction. Electrical point contacts made of magnetic 
metals bring a new dimension to point-contact spectrosco-
py through the possibility to study the influence of the 
electron’s spin degree of freedom on charge transport. Spin 
dependent tunneling and the possibility to inject “hot” 
spin-polarized electron’s into a point-contact have opened 
up the possibility to locally (on the nanometer length scale) 
control the magnetic ordering of the material [5,6]. In addi-
tion, by electrically controlled thermal heating of metals, 
fresh opportunities for thermoelectrically manipulating 
nanomagnets have been demonstrated [7–9]. 

A significant nonequilibrium spin accumulation togeth-
er with a highly inverted population of the spin-split elec-
tron levels such as may occur in nanosized heterocontacts 
between nonidentical magnets or in point contacts between 
a magnetic and a normal metal subject to an external mag-
netic field [10–14] offers a new area of research. Such an 
inverse level population makes it possible for the electrons 
to relax by a radiative spin-flip transition from the upper to 
the lower spin level as a photon is emitted. 

This paper is devoted to a detailed theory of stimulated 
light emission due to radiative electron spin-flip transitions 
in ferromagnetic point contacts. We will show that the opti-
cal gain optg  in a single point contact can reach values of 
107–108 cm–1, which is orders of magnitude higher than in 
the best semiconductor laser materials. As discussed in 
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Ref. 14 a laser device based on arrays of such point contacts 
is expected to have a gain of 106–107 cm–1. The high gain 
is due to an unconventional mechanism for the interaction 
between a spin and an electromagnetic field based on the 
magnetic exchange interaction and briefly discussed in 
Ref. 10. The exchange interaction also leads to a large 
spin-level splitting and hence to a high frequency of the 
emitted radiation. 

2. “Exchange–orbital” interaction between free 
electron spin and electromagnetic field 

The Hamiltonian for electrons in a magnetically ordered 
conductor can be written as 

 0 0
ˆ ˆ ˆ ˆ= ( , ) .H H σ − ⋅p r Iσ  (1) 

Here 0
ˆ ˆ( , )H p r  is the Hamiltonian of an electron in the ab-

sence of the exchange interaction, p̂  is the electron momen-
tum operator, r is the electron coordinate, 0σ̂  is the 2 2×  
unity matrix, = ( , , )x y zσ σ σσ  are Pauli matrices, and I is a 
vector directed along the magnetization with a magnitude 
given by the exchange energy. According to Eq. (1) the dis-
persion law for electrons with spins up/down is 

 ( ) = ( )E↑↓ εp p I∓ , (2) 

where ( )ε p  is eigenvalue of the spin-independent Hamil-
tonian 0

ˆ ˆ(p, ).H r  
The spin-split energy levels presented in the above equ-

ation allows a resonant electron–photon interaction in 
which a photon is emitted or absorbed by an electron un-
dergoing a spin-flip. As the photon momentum is negligi-
bly small, the electron momentum does not change in such 
a process and hence a radiative electron transition between 
the spin up E↑  and spin down E↓  energy bands is vertic-
al. According to Eq. (2) the energy conservation law for 
vertical transition of electrons with emission of photons of 
frequency ω  does not depend on the electron momentum: 

 ( ) ( ) = 2 = 0.E E I↓ ↑− − ω − ωp p  (3) 

It follows that if = 2 /Iω  all “hot” electrons are in re-
sonance with the electromagnetic field, and hence in a fer-
romagnetic metal with an inverse population of electrons 
(which can be created by injection of a spin-polarized cur-
rent [10,11,15,16]), stimulated emission of light due to 
transitions of electrons from filled states in the upper band 
to empty states in the lower band is possible. 

Conventional mechanisms of interaction of electron 
spins with an electromagnetic field are the Zeeman interac-
tion and spin-orbit interaction 

 = , = ,
2Z B em B
eE g
mc

μ ⋅ μh σ  (4) 

 -orb 2 2= ( )s em
eE

m c
× ⋅p σE , (5) 

where g  is the gyromagnetic ratio, Bμ  is the Bohr mag-
neton, ,e  m  are the electron charge and mass, respective-
ly, c  is the velocity of light, and emh  and emE  are the 
magnetic and electric components of the electromagnetic 
field. Both of these interactions are weak due to their rela-
tivistic nature. However, for practical applications it is 
desirable to use low magnetic and electric fields, and hence 
to have stronger interactions of the electromagnetic field 
with the spin. 

For ferromagnetic conductors we suggest a more effec-
tive “spin-orbital-exchange” mechanism for the direct inte-
raction between the electromagnetic field and the spins of 
conduction electrons [10]. This mechanism is electrostatic in 
origin and based on the dependence of the exchange interac-
tion (between conduction and localized electrons) on the 
conduction electron momentum p (see, e.g., Ref. 17). 

This exchange interaction, being a many-body effect, 
has to do with the overlap of the wave functions of the 
conduction electrons and the magnetic subsystem. A 
change of the conduction electron momentum affects the 
overlap and results in a change of the exchange energy. 
Therefore, the exchange energy in the Hamiltonian (1) may 
be written as ˆ( ),I p  where in the presence of an electro-
magnetic field described by a vector potential A the mo-
mentum operator p̂  must be changed to ˆ ( / )A.e c−p  

Expanding the exchange interaction to linear order in 
A, the Hamiltonian (1) is transformed into an effective 
Hamiltonian 

 (1)
eff eff

ˆ ˆ ˆ= pH H H+ , (6) 

where the perturbation term can be written as 

 (1)
eff

ˆ ˆ( ) ( )ˆ =
ˆ ˆ2 i i
i i

eH A A
c p p

⎛ ⎞∂ ∂
⋅ +⎜ ⎟∂ ∂⎝ ⎠

I p I p
σ , (7) 

if we omit the term 

 0 ˆˆ e
mc

σ ⋅A p   

which does not flip spins (summation over repeated indices 
is implied). 

Using the effective Hamiltonian (6) one finds the ener-
gy of an electron in a magnetically ordered conductor un-
der an electromagnetic field to be  

 ex-orb= ( ) ,emE E Eσ
σ +p  (8) 

where  

 0( ) = ( ) ( ).Eσ σ ε − ⋅p p J pσ  (9) 

The second term in Eq. (8), 

 ex-orb = ,i
i

eE A
p c
∂

⋅
∂

I
σ  (10) 
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couples the spin and the momentum of the electron, and 
being proportional to the exchange interaction gives rise to 
a relatively large peculiar spin-orbital interaction — “ex-
change spin-orbital interaction”. Taking = ( / ) emA c hω  and 
estimating the derivative in Eq. (10) as / iI p∂ ∂ ∼  0/I p  
where 0 = / Fp a m≈ v  ( m  is the mass of a free electron, 

8= 10Fv  cm/s is the Fermi velocity, and a  is an atomic 
length) one obtains 

 ex-orb B em
F

cE h≈ μ
v

 (11) 

which means that the exchange-spin-orbital interaction is 
two orders of magnitude stronger than the Zeeman interac-
tion Eq. (4). 

If the injected electrons are prepared in such a way that 
their spins are not parallel to the magnetization in the ac-
tive region, the Hamiltonian (6) produces spin-flips and 
hence stimulates radiative transitions of hot electrons from 
the upper to the lower energy band. 

A microcontact between two different magnetic metals 
results in a “focusing” of injected hot electrons in spin 
space — an effect known as spin-dependent electron 
tunneling [18–21]. Due to this effect an excess spin density 
is accumulated in the point-contact region in conjunction 
with a concentration of the current. Under certain condi-
tions such an accumulation is accompanied by an inverse 
populations of the spin-split energy levels [10,11,15,16]. If 
this is the case, we show that electron–photon scattering 
results in generation of coherent photons, which leads to an 
enhancement of the electromagnetic field propagating 
through the point contact. This effect has been observed 
experimentally [11]. Recently, photon emission from fer-
romagnetic metal junctions was also observed [22,23]. 

In Sec. 3 below we will outline the formalism to be 
used for calculating the electrical current through a point 
contact. 

3. Formulation of the problem 

  The system under consideration is a point contact be-
tween two ferromagnetic metals (labelled 1 and 2 in Fig. 1) 
under electromagnetic irradiation. The exchange energies 
and magnetization directions in the metals are assumed to 
be different as is illustrated in Fig. 1. We furthermore con-
sider the point contact to be in the diffusive transport re-
gime, so that the elastic mean free path 0l  is much shorter 
than the characteristic size d  of the contact. 

In order to calculate the electrical current through the 
point contact (PC) one needs to find the distribution func-
tions (1,2) ( )fσp r  of electrons in metals 1 and 2 to the left 
and right of the constriction, respectively (see Fig. 1), 
where p  is the electron momentum and = 1σ ±  is the elec-
tron spin. In each of the metals these functions satisfy the 
Boltzmann equations: 

 
( ) ( ) ( ) ( )( )

( )
( )

s s s ss ss
s

f f f f
e

t
σ σ σ σ

σ
σ

∂ ∂ − 〈 〉∂Φ
− + =

∂ ∂ ∂
p p p pv
r r p

  

 ( ) ( ) ( )
ph= { , }, = 1, 2.s s sw f f s

↑ ↓
σ p p  (12) 

Here ( ) ( )s
σv p  is the electron velocity in each metal, which 

is given by a momentum derivative of the electron energy 
as ( ) ( )= ( ) / ,s sEσ σ∂ ∂v p p  where 

 (1,2)
1,2 1,2( ) = ( ) ( )Eσ ε −p p I pσ  (13) 

are the electron dispersion laws inside metals 1 and 2; 1,2I  
are the electron exchange energy in metal 1 and 2, 

( ) ( )
0= / | |s st lσ σv  is the electron free path time and 0l  is the 

electron elastic relaxation length, ( )sΦ  is the electric po-
tential; the notation s〈 〉…  implies an average of the brack-
eted quantity over the relevant Fermi surface, 

 ( ) ( )... = (...) .
| | | |

s s s

dS dS
〈 〉 ∫ ∫p p

v v
 (14) 

The electrical potential ( ) ( )sΦ r  can be found from the 
electrical neutrality condition, 

 ( )( ) ( )( ) ( ) = 0,s s
F

s
f n Eσ σ

σ
−∑ p r p  (15) 

supplemented with the boundary conditions 

 ( ) 1( ( 1) ) = ( 1) /2,s s sz V+Φ → − ∞ −  (16) 

where Fn  is the Fermi function and V is the bias voltage. 
In the case that the electromagnetic field has a large 

amplitude the interaction of electrons with photons may be 
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Fig. 1. (Color online) Diffusive point contact under irradiation. A 
voltage bias V injects a spin-polarized current from ferromagnetic 
metal 1 with magnetic moment M1 into ferromagnetic metal 2 with 
magnetic moment M2. A spin-up electron is shown to move along 
a diffusive trajectory from metal 1 to metal 2 (red line a) where it 
resonantly interacts with the electromagnetic field, which results in 
a spin-flip and the emission of a photon. Continuing along its diffu-
sive path with spin down (blue line b) the spin-dependent contact 
resistance implies that the radiation induced spin-flip contributes to 
a change of the magnetoresistance of the point contact. 
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treated semi-classically, which allows the electron–photon 
collision integral to be written as 

 ( ) ( ) ( ) ( ) ( )2
ph

2{ , } = | |s s s s s
sw f f W f f

↑ ↓ − ↓ ↑
π ⎡ ⎤− ×⎢ ⎥⎣ ⎦p p p q p   

 
( )

1

2( ) ( ) 2( ) ( )

sf

s s
sfE E

−

↑ ↓

π ν
×

− − − ω + νp p q
. (17) 

Here (1)
eff ,

ˆ= | |s i fsW H〈Ψ Ψ 〉  is the matrix element cor-
responding to the transition of an electron in metal s  from 
the initial state iΨ  (corresponding to the initial energy 

)iE  to the final state fΨ  (corresponding to the final 
energy ),fE  which describes the coupling between the 
electron spin and an electromagnetic field of frequency ω  
and momentum q; Hamiltonian (1)

eff ,
ˆ

sH  is given by Eq. (7) 
with the change ˆ ˆ( ) ( ).s→I p I p  While writing Eq. (17) we 
assumed the energy δ-function to be broadened due to the 
spin-flip processes of the spin relaxation rate .sfν  Accord-
ing to Eqs. (7) and (11), the modulus of the matrix element 

sW  is equal to 

 1 2| | = | [ ] | s
s B em

F

IcW b h⋅ μ
ω

e e
v

, (18) 

where the constant 1,b∼  the unit vectors 1e  and 2e  are 
directed along the magnetization in metals 1 and 2. 

To facilitate explicit calculations we will consider a 
simplified geometry, approximating the point contact by a 
cylindrical channel of length L  and diameter d, with 

0.L d l  The boundary conditions for electron distri-
bution functions ( )sfσp  at the interface between metals 1 
and 2 can be written as 

 (1) (2)(1) = (1 ) ,
R

f D f D fσ σ σ σσ− +p pp   

 (1) (2)(2) = (1 ) .
R

f D f D fσ σ σ σσ + −p pp  (19) 

Here = ( , )D Dσ σ p p  is the spin-dependent transparency of 
the interface; = ( , )zpp p  and = ( , )R zp−p p  (here 

= (( , ))x yp p p , the z axis is along the channel) are the 
momenta of the incident and reflected electrons, respectively; 
the momentum of the transmitted electron p  is determined 
by the energy conservation condition, 1,2 2,1( ) = ( ).E Eσ σp p  

Away from the contact region, the current spreads over 
a large volume so that its density decreases and the elec-
tron system is essentially in equilibrium at distances 
| | .dr  As d L  we will use the additional boundary 
conditions (1,2) (1,2)( = / 2) = ( ( )).Ff z L n Eσ σ±p p  

We consider the limit of a weak electron–photon scatter-
ing ph/ 1,d l  where phl  is the electron–photon scattering 
length. In this limit it is possible to solve the Boltzmann 
equation. This allows us to solve the Boltzmann equa-
tion (12) by perturbation theory expanding ( )

ph ,sw  ( ) ,sfσp  and 
( )sΦ  in powers of the small parameter ph/ .d l  

In order to solve the kinetic equation (12) to zeroth order 
in ph/d l  we generalize the procedure developed in 
Refs. 3, 24, 25 to allow for spin dependent electron dynam-
ics. To zeroth order, the distribution functions ( )sfσp  can be 
written as 

 ( ) ( ) ( )
0= ( ( ) ( ) /2)s s s

Ff n E e eVσ σ σα + φ − +p p p r   

 ( ) ( )
0(1 ) ( ( ) ( ) /2) ,s s

Fn E e eVσ σ+ −α + φ +p p r  (20) 

where ( ) ( )s
σα p r  is the probability that an electron emanat-

ing from far inside the ferromagnet ( =z −∞ ) diffuses elas-
tically to reach point r  in metal s  with momentum p, the 
concrete form of the electrical potential 0 ( )φ r  inside the 
point contact is not important in the limit .FeV ε  The 
distribution functions (2)fσp  are sketched in Fig. 2. 

To linear approximation in the parameter 0 / 1,l d  it 
follows from Eqs. (12) and (19) that this probability can be 
written as ( ) ( ) ( )

0= ( / | |) / .s s s
zl d dzσ σ σα 〈α 〉 − αp p pvv  The iso-

tropic part of ( )s
σα p  satisfies the diffusion equation 

 
2

( )
2 = 0,sd

dz
σ〈α 〉p  (21) 

with the boundary conditions (1) ( = / 2) = 1z Lσ〈α − 〉p  and 
(2) ( = /2) = 0;z Lσ〈α 〉p  in the vicinity of the interface be-

tween the two magnetic metals the effective boundary 
conditions are [3,11] 

Fig. 2. (Color line) Zero-temperature energy distributions for (a) 
magnetic moment-up (spin-down), ,f ↑p  and (b) magnetic mo-
ment-down (spin-up) electrons, ,f ↓p  at point r in ferromagnetic 
metal 2 of the point contact. The inset (c) shows the Zeeman energy 
splitting and the magnetization direction M2. All states are occu-
pied up to = / 2f eV I↑ε ε − −  and = / 2 ,f eV I↓ε ε − +  respec-
tively (blue rectangles, 1), but in the intervals ( , )eV↑ ↑ε ε +  and 
( , )eV↓ ↓ε ε +  the states are only partly occupied (red rectangles, 2) 
and to an extent that is determined by the probabilities ( )↑α p r  and 

( )↓α p r  for “hot” electrons in the ferromagnetic metal to reach r . 
Clearly, the difference between the densities of spin-down and 
spin-up electrons, (2) (2)( ) ( ) [( ) 2 ],n n eV I↑ ↓ ↑ ↓

− ∝ α − α −r r  depends 
on the bias voltage V. It follows that the spin population can be 
inverted, so that ( ) > ( ),n n↑ ↓r r  for large enough V if (2) (2)> .

↑ ↓
α α

M2
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(1)

(2) (1) 0= ;
dl

D dz
σ

σ σ
σ

〈α 〉
〈α 〉 − 〈α 〉

〈 〉
p

p p   

 
(1) (2)

= ;
d d

dz dz
σ σ〈α 〉 〈α 〉p p  (22) 

if the transparency of the interface is assumed to be small, 
1.Dσ〈 〉  Solving the diffusion equation (21) with these 

boundary conditions one finds 

    (1) (1) (2) (2)2 2= 1 1 ; = 1 ,z z
L Lσ σ σ σ

⎛ ⎞ ⎛ ⎞〈α 〉 −β + 〈α 〉 β −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (23) 

where 

 
( )

( ) ( )
(1) (2)

0
= ; = .

21

s
s s LD

l
σ

σ σ σ
σ σ

κ
β κ 〈 〉

+ κ + κ
 (24) 

4. Spin accumulation in the point contact 

If electrons are injected from metal 1 (i.e., if > 0)eV  
the numbers of “hot” electrons with spin up and down are 

 
3

3
3

(2)
=

(2 )
PC

dn dσ

Ω

δ ×
π∫ ∫

pr   

 (2) (2)
0,0 ( ) ( ) ( ) ,

2F
eVf n E eσσ

⎡ ⎤⎛ ⎞× − + Φ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
p r p r  (25) 

where (2)
PCΩ  is the volume of the normal-metal part of the 

contact (“active” zone). Using Eqs. (20), (21), and (23) in 
Eq. (25) one finds 

 ( )
(2)

(2)
0= ,

4 PC
F

eVn nσ
σ

β
δ Ω

ε
 (26) 

where 0 F Fn ≈ ν ε  is the conduction electron density in the 
normal metal ( Fν  is the electron density of states at the 
Fermi level ).Fε  Therefore the total number of “hot” elec-
trons in the normal-metal side of the contact is 

 
(2) (2)

(2)
tr 0 tr= ( ) , = .

4PC
F

eVn n ↑ ↓
β +β

δ γ Ω γ
ε

 (27) 

As can be seen from Eq. (26) the induced magnetic mo-
ment corresponding to the net spin density accumulated in 
the same region is 

 
(2) (2)

(2)
tr 0 tr= ( ) , = .

4B PC
F

eVM n ↑ ↓
β −β

δ μ β Ω β
ε

 (28) 

Notice, that the ratio tr tr/β γ  determines the effective spin 
of an injected electron, 

 
(2) (2)

(2) (2)= = ,
n n

S
n

↑ ↓ ↑ ↓

↑ ↓

β −βδ − δ

δ β +β
 (29) 

and, therefore, is a measure of the spin polarization of the 
“hot” electrons. 

Thus the spin accumulation inside PC by the applied vol-
tage V  produces an additional magnetic moment inside the 
PC. If d  is of the size of several hundred nm and tr 0.3,β ≈  
which corresponds to a nearly ballistic PC, ,l d∼  and the 
spin polarization of 30% at the ferromagnetic/nonmagnetic 
(F/N) interface, one has 

 6 910 ; 10 .B
F F

eV eVM nδ μ δ
ε ε

∼ ∼  (30) 

As one sees from Eq. (24), the dependence of (2)
σβ  on 

the spin polarization is much weakened if ( ) 1,s
σκ  which 

prevents spin accumulation. 

5. Photocurrent 

As the photon momentum is orders of magnitude small-
er than that of electrons in metals the change of the elec-
tron momentum under electron–photon scattering can be 
neglected and hence the main contribution to the photocur-
rent flowing through the point contact under electromag-
netic irradiation is due to the changes in the electron densi-
ty of states produced by vertical spin-flip transitions (in the 
energy-momentum space) by the photon field (see Fig. 1). 

In order to find the photocurrent we first solve the 
Boltzmann equation (12) for the photon-induced change 

( )
,1( )sfσp r  in the electron distribution function. We do so to 

lowest (linear) order in the small parameter ph/d l  and with 
the boundary conditions (1,2)

,1 ( = / 2) = 0.f z Lσp ∓  The 
matching conditions at the F/N interface are given by Eq. 
(19) with the change ( )( )

,1.ssf fσ σ→p p  Using these solutions 
one finds the photocurrent as 

 ph 3
=1,2 ( )

=
(2 )s s

PC

dI e d
Ω

×
π

∑ ∫ ∫
pr   

 ( ) ( ) ( ) ( ) ( )
ph, , 0 0[ ( ) ( )] { , }.s s s s sw f f

↑ − ↓ − ↑ ↓
× α −αp p p pr r  (31) 

Using Eqs. (23) and (24) in Eq. (31) one obtains the total 
current ( )I V  in a diffusive point contact under irradiation as 

 ph( ) = ( );VI V j V
R
+   

 * *1 2
ph 1 22 2

1 2
( ) = ( ) ( )

R R
j V V V V V

R R
Δ Δ

− − + − . (32) 

Here sR  ( = 1,2s ) is the “dark” contact resistance due 
mainly to the impurities, while the relative change of the 
point-contact resistance caused by the irradiation is  
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( ) 2 2 2

(2)tr
0

(4 ) | | 2= ( )
3

s
s s

PC
s F F

R Wc en R
R v h

⎛ ⎞πβΔ
Ω ×⎜ ⎟⎜ ⎟ε ω ⎝ ⎠

  

 
2 2

2arctan
1 [( 2 ) / ]s sfI

ξ
×

− ξ + ω− ν
, (33) 

where ( ) ( ) ( )
tr = | | /4,s s s

↑ ↓
β β −β  ( )*

tr= (3/4) / s
seV ω β  and 

= / .F sfcξ ω νv  According to Eq. (32) the dependence of 
the photocurrent on the irradiation frequency has a sharp 
peak corresponding to the resonant interaction of the elec-
tron spin and the electromagnetic field (see Fig. 3). 

A comparison between Eq. (31) and the rate equation 
for photons generated by electronic spin-flip transitions 
induced by the electromagnetic field (see Ref. 10), 

 
( ) 3ph ( ) ( ) ( )

ph 3= { , } ,
(2 )

s
s s sdn dw f f

dt ↑ ↓
−

π∫ p p
p  (34) 

where phn  is the photon density, shows that the photocur-
rent may be rewritten in the form 

 
( )
ph( ) ( )

ph , ,
=1,2

= ( ) ,
s

s s

s s

dn
I e d

dt↑ ↓
Ω

− 〈α 〉 − 〈α 〉∑ ∫ p pr  (35) 

which makes it clear that its magnitude depends on the net 
rate of photon absorption/emission in combination with the 
spin dependence of the effective transparency of the point 
contact. From Eq. (32) one notes that the microwave-
induced current changes sign at *= ,V V  i.e., when the rate 
of photon emission by “hot” electrons begins to exceed the 
rate of photon absorption. (For the sake of definiteness, 
here and below we consider the case that the resonance 
takes place in metal 2 and we also drop the subscript 

= 2).s  
The close association between the electron transport 

and photon radiation processes allows us to express the 
photocurrent in terms of the power of emission and absorp-

tion of photons by electrons in the point contact. Using 
Eqs. (17), (20), and (23) one finds that the net emitted 
power due to resonant ( = 2 )sIω  absorption and emission 
of photons in the irradiated point contact, defined as 

ph( ) = / ,P V d dn dtω∫ r  can be expressed as 

 0 *
3( ) = 1 .
2

VP V P
V

⎛ ⎞
− +⎜ ⎟
⎝ ⎠

 (36) 

Here 

 (2) 2
0 0 2

2= ( ) | | arctan
2 1PC

F F

cP n Wπ ω ξ
Ω

ε − ξv
 (37) 

is the absorbed power due to photon absorption, while the 
second term in Eq. (36) is the emitted power due to photon 
emission from the point contact. 

Comparing Eqs. (32) and (37) one finds that 

 
*

ph 0*2
3( ) = ,
4

V Vj V P
V
−  (38) 

which makes it possible to find the power 0P  absorbed 
from the electromagnetic field by measuring ph ( )/dj V dV  
(see Eq. (32)) after first having determined *V  from the 
condition *

ph ( ) = 0.j V  Furthermore, the net emitted pow-
er ( )P V  can be determined by measuring ph ( )j V  with the 
help of Eqs (38) and (36). 

It follows from Eq. (36) that the radiation field is en-
hanced by the stimulated emission of photons if the pro-
portionality coefficient is greater than zero, that is at 

*> (2/3) .V V  From here it follows that the point contact 
may be considered as an active element with the increment 
of the electromagnetic field given by 

 
3

2 20
2*

2 2= 3 arctan .
3 1

B
F F

nc V
V

⎛ ⎞ ξ⎛ ⎞
γ π μ −⎜ ⎟ ⎜ ⎟ε − ξ⎝ ⎠⎝ ⎠v

 (39) 

Inserting typical parameters for the metal electrodes, one 
finds *10( / 2/3)V Vγ −∼  for 1/ = 10 ,sf I −ν  and */V V  
can reach as high as ≈103–104 in realistic structures; there-
fore, the optical gain opt = /g cγω  can reach values 

6 7
opt 10 –10g ∼  cm 1− . This exceeds the increment and 

the optical gain that can be achieved in conventional semi-
conductor lasers by orders of magnitude and hence an ar-
ray of such magnetic point contacts can be used as the ac-
tive area of powerful lasers [14]. 

6. Conclusions 

In conclusion we have shown that by employing a fer-
romagnetic metal point contact as the optically active me-
dium in a laser device the frequency of the generated cohe-
rent light can be in the desirable terahertz region while at 
the same time the optical gain can be increased by several 
orders of magnitude compared to conventional semicon-
ductor laser materials. A possible problem is a too strong 
probability for a nonradiative decay of the population in-

Fig. 3. Dependence of the relative resistance change under irradi-
ation on the irradiation frequency ω  normalized by the electron
spin-flip relaxation frequency sfν  for 1/ = 10sf I −ν  (here I  is
the exchange energy). 
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version of spin-split electron energy levels through the 
excitation of magnons. In order to avoid this problem we 
suggest to use ferromagnets with a sufficiently low mag-
netic exchange energy (Curie temperature) so that the elec-
tron–magnon relaxation length exceeds the point-contact 
diameter. 

We emphasize that the theoretical approach used here is 
only valid in the weak electron–photon scattering limit and 
hence not strictly applicable if the intensity of the electro-
magnetic field is too high. Nevertheless, a preliminary 
analysis shows that the inverse spin population is pre-
served and that coherent laser light is generated also in this 
limit. However, since in this case many electron–photon 
scattering events can take place as an injected electron 
moves diffusively back and forth in the contact region, 
Eqs. (34)–(38) which relate the rate of photon generation 
to the electronic transport characteristics do not hold. A 
new theoretical approach should be developed in this limit 
of intensive electron–photon scattering which should assist 
the analysis of strong laser generation in ferromagnetic 
point contacts. 

Acknowledgments 

Financial support from the European Commission 
(FP7-ICT-FET-225955 STELE), the Swedish VR, and the 
Korean WCU program funded by MEST/NFR (R31-2008-
000-10057-0) is gratefully acknowledged. 

 
1. I.O. Kulik, R.I. Shekhter, and A.N. Omelyanchouk, Solid 

State Commun. 23, 301 (1977). 
2. A.N. Omelyanchouk, I.O. Kulik, and R.I. Shekhter, JETP 

Lett. 25, 437 (1977). 
3. R.I. Shekhter and I.O. Kulik, Fiz. Niz. Temp. 9, 46 (1983) 

[Sov. J. Low Temp. Phys. 9, 22 (1983)]. 
4. Y.G. Naidyuk and I.K. Yanson, Point-Contact Spectroscopy 

Springer Series in Solid-State Sciences 145 Springer, New 
York (2005). 

5. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); 
ibid. 195, L261 (1999). 

6. L. Berger, Phys. Rev. B 54, 9353 (1996). 
7. A.M. Kadigrobov, R.I. Shekhter, M. Jonson, and V. 

Korenivski, Phys. Rev. B 74, 195307 (2006). 
8. A.M. Kadigrobov, S. Andersson, D. Radić, R.I. Shekhter, M. 

Jonson, and V. Korenivski, J. Appl. Phys. 107, 123706 
(2010). 

9. A.M. Kadigrobov, S. Andersson, H.-C. Park, D. Radić, R.I. 
Shekhter, M. Jonson, and V. Korenivski, J. Appl. Phys. 111, 
044315 (2012). 

10. A. Kadigrobov, Z. Ivanov, T. Claeson, R.I. Shekhter, and M. 
Jonson, Europhys. Lett. 67, 948 (2004). 

11. A.M. Kadigrobov, R.I. Shekhter, S.I. Kulinich, M. Jonson, 
O.P. Balkashin, V.V. Fisun, Yu.G. Naidyuk, I.K. Yanson, S. 
Andersson, and V. Korenivski, New J. Phys. 13, 023007 
(2011). 

12. Yu.G. Naidyuk, O.P. Balkashin, V.V. Fisun, I.K. Yanson, 
A.M. Kadigrobov, R.I. Shekhter, M. Jonson, V. Neu, M. 
Seifert, S. Andersson, and V. Korenivski, New J. Phys. 14, 
093021 (2012). 

13. A.M. Kadigrobov, R.I. Shekhter, I. Aronov, S.I. Kulinich, A. 
Pulkin, and M. Jonson, Fiz. Nizk. Phys. 37, 1163 (2011) 
[Low Temp. Phys. 37, 925 (2011)]. 

14. R.I. Shekhter, A.M. Kadigrobov, M. Jonson, E.I. Smotrova, 
A.I. Nosich, and V. Korenivski, Opt. Lett. 36, 2381 (2011). 

15. Yu.V. Guliaev, P.E. Zilberman, A.I. Krikunov, A.I. Panas, 
and E.M. Epstein, JETP Lett. 85, 160 (2007). 

16. X.R. Wang, Res. Lett. Phys., Article ID, 434936 (2008). 
17. S.V. Vonsovskii, Magnetism, Wiley, New York (1974), Vol. 

2, Ch. 3, p. 635; H.J. Zeiger and G.W. Pratt, Magnetic 
Interactions in Solids, Clarendon Press, Oxford (1973). 

18. E.I. Rashba, Phys. Rev. B 62, R16267 (2000). 
19. R.M. Potok, J.A. Folk, C.M. Markus, and V. Umanski, Phys. 

Rev. Lett. 89, 266602 (2002). 
20. S.H. Chun, S.J. Potashnik, K.C. Ku, P. Schiffer, and N. 

Samarth, Phys. Rev. B 66, 100408 (2002). 
21. A.T. Hanbicki, B.T. Jonker, G. Itskos, G. Kioseoglou, and A. 

Petrou, Appl. Phys. Lett. 80, 1240 (2002). 
22. Yu.V. Gulyaev, P.E. Zilberman, I.V. Malikov, A.I. Panas, 

S.G. Chigarev, and E.M. Epstein, Pis'ma v ZhETF 93, 289 
(2011). 

23. Electromagnetic radiation from a planar contact between a 
ferromagnetic and a nonmagnetic semiconductor in an 
external magnetic field was detected, N.A. Viglin, V.V. 
Osipov, A.A. Samokhvalov, and O.G. Reznitskikh (eds.), 
Phys. Low-Dimens. Str. 1–2, 89 (1997). 

24. I.O. Kulik, A.N. Omel’yanchuk, and R.I. Shekhter, Fiz. Nizk. 
Temp. 3, 1543 (1977) [Sov. J. Low Temp. Phys. 3, 740 (1977)]. 

25. I.O. Kulik, R.I. Shekhter, and A.G. Shkorbatov, Sov. Phys. 
JETP 54, 1130 (1981). 

 

 


