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Previous experimental studies of the thermal conductivity of plastically deformed lead crystals in the super-
conducting state have shown strong anomalies in the thermal conductivity. Similar effects were also found for 
the thermal conductivity of bent 4He samples. Until now, a theoretical explanation for these results was missing. 
In this paper we will introduce the process of phonon–kink scattering and show that it qualitatively explains the 
anomalies that experiments had found. 

PACS: 72.10.–d Theory of electronic transport; scattering mechanisms; 
72.15.Eb Electrical and thermal conduction in crystalline metals and alloys; 
66.70.–f Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves; 
61.72.Lk Linear defects: dislocations, disclinations; 
67.80.–s Quantum solids. 
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1. Introduction 

Previous studies of the thermal conductivity of lead 
crystals in the superconducting state, which were deformed 
plastically by low-temperature stretching of the initially 
perfect samples, and observation of the recovery processes 
on annealing of the samples at room temperatures, had 
demonstrated strong anomalies in the thermal conductivity 
of the deformed Pb crystals below 4 K [1]. The same ef-
fects were also seen in weakly bent Bi crystals [2]. Fur-
thermore, experiments on the thermal conductivity of hcp 
4 He  crystals grown from high pure 4 He  in a long capil-
lary had also revealed strong anomalies in thermal conduc-
tivity of samples that were weakly deformed by bending 
them at temperatures near and above 0.4 K [3,4]. 

Several attempts for a theoretical explanation of these 
results have been made, but none have unfortunately been 
completely successful [5]. In this primer paper however, 
we introduce a new model for explaining the observed 
anomalies in the thermal conductivity of the weakly de-
formed crystals from high pure matter. This model is based 
on phonon scattering on mobile kinks on the newly in-

duced dislocation lines. Previously, a similar model, based 
on scattering of electrons by mobile kinks, has been intro-
duced for the explanation of the anomaly in the electronic 
contribution to the thermal conductivity of plastically de-
formed copper crystals [6]. In systems where the phonon 
thermal conductivity is the main contribution to the trans-
fer of heat flux, such as quantum crystals, metal crystals in 
superconducting state and nonmetals, the scattering of 
thermal phonons by the mobile kinks on dislocation lines 
induced under weak deformation of initially perfect sam-
ples at reduced temperatures seems to be the natural expla-
nation of the experimentally observed effects. This paper 
will only introduce this process and show the main results 
of detailed calculations of the thermal conductivity in dif-
ferent directions relative to the glide plane of the disloca-
tions. We have found that in the crystals where scattering 
of phonons on kinks is the dominant scattering process our 
theoretical results can qualitatively reproduce the experi-
mental features. The detailed calculations referred to in this 
primer note and the quantitative fit of the experimental 
results can be found in a paper which is soon to appear [7]. 
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2. Kinematics 

For a description of the kinematics of phonon–kink 
scattering we use a similar procedure from Ref. 8. We con-
sider a crystal which contains dislocations due to an exter-
nal influence on the crystal. The dislocations lie in the xz  
plane and the direction parallel to the dislocations is the z  
direction. 

Around a dislocation the displacement ju  can be de-
composed in two components 

 = .s d
j j ju u u+  (1) 

The “static” displacement s
ju  depends on the presence 

of the kinks and can be written as 
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where 0 ( )ξ κ  is the Fourier transform of the dislocation's 
line displacement due to the kink, ( : )jf ⊥ κr  is a propor-
tionality constant and 0

s
ju  is displacement around the 

straight dislocation without kink. The abbreviation ⊥r  
indicates ( , ).x y  The “dynamical” displacement d

ju  has its 
origin in the phonons and can be expressed as a superposi-
tion of plane waves, 
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where s  indicates the polarization of the lattice vibrations 
and e  is the polarization vector. Treating the kink in a 
harmonic trap (potential well) with angular frequency Ω  
and writing 0 ( , )sω k  for the angular frequency of the pho-
nons results in the total Lagrangian 
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In the equations above, ρ  is the density of the crystal, 
3=V L  its total volume, M  is the kink mass [6], 0z  indi-

cates the position of the kink, 0
0z  is its rest position and 

( )jF k  is the Fourier transform of ( : )jf ⊥ κr , being de-
fined as 

 2
2
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where = ( , )x yk k⊥k . 

From the interaction term intL  one can determine the pho-
non–kink scattering amplitude per unit time ( , ; ', ).A s s′k k  
Due to phonon–kink scattering, phonons are no longer de-
scribed by the Bose–Einstein distribution 0

0( ( , ))N sω k . In 
the presence of a small temperature gradient T∇ , the li-
near correction to the Bose–Einstein distribution sNδ k  is 
given by 
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and 
 2 2
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with phN  the number of phonons in the crystal and 

 1( ; , ) = exp [ ( ) ]x z zK q q dzdz dt iq z z i t
L

′ ′ω − + ω ×∫   

 exp [ ( ,0)]exp [ ( , )] .x xiq z iq z t′× 〈〈 − ξ ξ 〉〉  (12) 

With Eq. (9) a full kinematical treatment of the phonon–
kink scattering is possible. 

3. Heat flow 

With the full kinematics of the phonon–kink scattering 
at our disposal we are able to study the effect of phonon–
kink scattering on the heat flow through the crystal. The 
heat flux Q  is given by 
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where χ  is the matrix of the thermal conductivity. For 
simplicity, we will assume here that this matrix only has 
two distinct diagonal elements and no off-diagonal ele-
ments 
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This implies that there two distinct heat flows. One along 
the dislocation 
 = ( ) ,zQ T−χ ∇& &  (15) 

and one perpendicular to, 
 = ( ) ,Q T⊥ ⊥ ⊥−χ ∇  (16) 

with ( ) = (( ) , ( ) ,0)x yT T T⊥∇ ∇ ∇ . 
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Combined Eqs. (9) and (13) allow for a full calculation 
[7] of χ&  and ⊥χ . This full calculation shows that there 
are four different temperature regimes for the thermal con-
ductivity. These four intervals are 
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Here 
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where  is the typical size of the kink and 0 (1/ )ω  is the 
angular frequency for a phonon with a wavelength equal to 
the size of the kink. The three temperatures are ordered as 
follows: 
 .T T T∗

ω Ω� �  (19) 

In the calculations we also took into account that in real 
experiments, one does not measure the thermal conductivi-
ty in one particular direction, but rather an average over 
different direction as one has no perfect control of the 
orientation of the kinks. As the scattering in different di-
rections is a consecutive process, the scattering rates for 
the different processes add. This means that the measured 
thermal conductivity χ  is found from 

 1 1 1= (1 ) ,− − −
⊥χ βχ + −β χ&  (20) 

where [0,1]β∈ . 
Therefore, one ends up with the following scaling be-

havior for 1−χ , 
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where 2
ph ph= /n N L  and = /k kn N L  are the phonon and 

kink densities, respectively. The script letters indicate other 
quantities than the ones expressed already in the equations 
above. 

4. Comparison with experimental data and conclusion 

We compare our qualitative theoretical results with ex-
perimental data in Ref. 1. In Fig. 1 of this reference one 
sees that for a sample of highly purified lead which has 
been plastically stretched at low temperatures, the thermal 
conductivity at low temperatures has a peculiar shape: up 
to certain temperature it increases with temperature, then 
starts decreasing and for even higher temperatures it starts 

increasing with temperature again. Annealing can make 
this effect less pronounced, but it seems not to be able to 
completely remove this feature. Assuming that β  is nei-
ther 0 nor 1 and taking numerical results into account [7], 
one sees from Eq.  (21) that for low temperatures χ  scales as 
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for higher temperatures as 
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for even higher temperatures as 
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and at the highest temperatures as 
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This mimics the behavior shown in the experimental data. 
In the semi-highest temperature regime the thermal con-
ductivity will decrease with temperature, while in the other 
regimes the thermal conductivity will increase with tem-
perature. 

When comparing curves 6 and 7 in Fig. 1 [1], one sees 
that curve 6 and 7 have similar behavior for higher temper-
atures. For lower temperatures though, curve 6 lies under 
curve 7. As curve 6 shows the thermal conductivity for 
a sample which has been deformed, while curve 7 shows 
the thermal conductivity for a lead sample which has not 
been deformed at all, this is in full agreement with the 
theory. The power-law for the thermal conductivity for a 
sample with none or very little kinks has a lower power 
than that for a sample with many kinks. Therefore it makes 
sense that for low temperature, the thermal conductivity for 
a sample with many kinks is lower than that for a sample 
with very little kinks. For this observation, we can there-
fore conclude that samples which have not been plastically 
deformed at all show a much weaker version of this effect, 
proving that this effect is indeed caused by phonon–kink 
scattering. This also shows that only a small amount of 
kinks are needed to let this effect appear. 

The experimental data for the normal state does not 
match with our theoretical calculations at all, since in the 
normal state the phonon contribution to the heat flux trans-
port is much weaker than the electron contribution. There-
fore the effect of phonon–kink scattering is not visible in 
that case. 

We thus see that the results of our model qualitatively 
agree with the experimental data. For a quantitative com-
parison we refer to Ref. 7. The work of S.I.M. is in part 
supported by RFFI grant 12-02-01018. 
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