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The local quasiparticle density of states in the current-carrying d-wave superconducting structures was

studied theoretically. The density of states can be accessed through the conductance of the scanning tunnel-

ling microscope. Two particular situations were considered: the current state of the homogeneous film and

the weak link between two current-carrying d-wave superconductors.

PACS: 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects;
74.78.–w Superconducting films and low-dimensional structures;
74.78.Bz High-Tc films;
85.25.Cp Josephson devices.
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1. Introduction

Unconventional superconductors exhibit different fea-

tures interesting both from the fundamental point of view

and for possible applications [1]. In particular, double de-

generated state can be realized in d-wave Josephson junc-

tions [2]. If the misorientation angle between the banks of

the junction � is taken � / 4, the energy minima of the sys-

tem appear at the order parameter phase difference

� � � � / 2. These degenerate states correspond to the

counter flowing currents along the junction boundary.

Such characteristics make d-wave Josephson junctions

interesting for applications, such as qubits [3]. Our prop-

osition was to make these qubits controllable with the ex-

ternally injected along the boundary transport current [4].

It was shown that the transport current and the spontane-

ous one do not add up — more complicated interference

of the condensate wave functions takes place. This is re-

lated to the phenomena, known as the paramagnetic

Meissner effect [1].

It was demonstrated both experimentally [5] and theo-

retically [6,7] that at the boundary of some high-Tc super-

conductors placed in external magnetic field the current

flows in the direction opposite to the diamagnetic Meiss-

ner supercurrent which screens the external magnetic

field. This countercurrent is carried by the surface-in-

duced quasiparticle states. These nonthermal quasipar-

ticles appear because of the sign change of the order pa-

rameter along the reflected quasiparticle trajectory. Such

a depairing mechanism is absent in the homogeneous si-

tuation. Note that in a homogeneous conventional super-

conductor at zero temperature the quasiparticles ap-

pear only when the Landau criterion is violated, at

v s Fp� �0 / . Here v s is the superfluid velocity which

parameterizes the current-carrying state, �0 stands for the

bulk order parameter, and pF is the Fermi momentum.

The appearance of the countercurrent can be understood

as the response of the weak link with negative self-induc-

tance to the externally injected transport supercurrent.

The state of the junction in the absence of the transport

supercurrent at zero temperature is unstable at � � � from

the point of view that small deviations �� � � 0change the

Josephson current from 0to its maximal value [8]. The re-

sponse of the Josephson junction to small transport super-

current at � � �produces the countercurrent [9]. It is simi-

lar to the equilibrium state with the persistent current in

1D normal metal ring with strong spin-orbit interaction:

there is degeneracy at zero temperature and � � �, and the

response of the ring is different at �� 	 0or B 	 0, where B

is the effective magnetic field which enters in the Hamil-

tonian through the Zeeman term (which breaks time-re-

versal symmetry) [10]. The degeneracy is lifted by small

effective magnetic field so that the persistent current rap-

idly changes from 0 to its maximum value. In the case of
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the weak link between two superconductors in the ab-

sence of the transport supercurrent there is degeneracy

between 
 p y and �p y zero-energy states; both the time-

reversal symmetry breaking by the surface (interface)

order-parameter and the Doppler shift (due to the trans-

port supercurrent or magnetic field) lift the degeneracy

and result in the surface (interface) current [5].

In recent years mesoscopic superconducting structures

continue to attract attention because of the possible appli-

cation as qubits, quantum detectors etc. (e.g. [3,11]). In

particular, such structures can be controlled by the trans-

port supercurrent and the magnetic flux (through the

phase difference on Josephson contact). This was in the

focus of many recent publications, e.g. [4,12–16]. Here

we continue to study the mesoscopic current-carrying

d-wave structures. Particularly, we study the impact of

the transport supercurrent on the density of states in both

homogeneous film and in the film which contains a weak

link.

2. Model and basic equations

We consider a perfect contact between two clean sin-

glet superconductors. The external order parameter phase

difference � is assumed to drop at the contact plane at

x � 0. The homogeneous supercurrent flows in the banks

of the contact along the y-axis, parallel to the boundary.

The sample is assumed to be smaller than the London pen-

etration depth so that the externally injected transport

supercurrent can indeed be treated as homogeneous far

from the weak link. The size of the weak link is assumed

to be smaller than the coherence length. Such a system

can be quantitatively described by the Eilenberger equa-

tion [8]. Taking transport supercurrent into account leads

to the Doppler shift of the energy variable by p vF s� . The

standard procedure of matching the solutions of the bulk

Eilenberger equations at the boundary gives the Matsu-

bara Green’s function � ( )G
 0 at the contact at x � 0 [4].

Then for the component G g
 
11 � ( , )r of �G
 , which de-

fines both the current density and the density of states

(see below), we obtain in the left (L) and right (R) banks of

the junction:
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Here 
 �� 
T n( )2 1 are Matsubara frequencies, �L R,

stands for the order parameter in the left (right) bank, and

~
 
� 
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~� 

2 2 . (4)

The direction-dependent Doppler shift p vF s� results in

the modification of current-phase dependencies and in the

appearance of the countercurrent along the boundary.

The function g ( , )
 r defines the current density, as fol-

lowing:

j v v� � �
�
�4 0

0

�



eN T gF

n

v � �Im . (5)

Here N 0 is the density of states at the Fermi level, � �� �v

denotes averaging over the directions of Fermi velocity

vF , � /v v� F Fv is the unit vector in the direction of vF .

Analytic continuation of g ( )
 , i.e.,

g g i( ) ( )� 
 � �� � � 
 , (6)

gives the retarded Green’s function, which defines the

density of states:

N g( , ) ( , )� �r r� Re . (7)

Here � is the relaxation rate in the excitation spectrum of

the superconductor.

The local density of states can be probed with the

method of the tunnelling spectroscopy by measuring the

tunnelling conductance G dI dV� / of the contact between

our superconducting structure and the normal metal scan-

ning tunnelling microscope’s (STM) tip. At low tempera-

ture the dependence of the conductance on the bias volt-

age V is given by the following relation [17]:

G eV G D N eVN F F( ) ( ) ( , )� � �p p , (8)

where GN is the conductance in the normal state; D F( )p

is the angle-dependent superconductor-insulator-normal

metal barrier transmission probability. The barrier can be

modelled, e.g., as in Ref. 7 with the uniform probability

within the acceptance cone � �� �� c , where � is the polar

angle and the small value of � c describes the thick tun-

nelling barrier:

D
c

c( ) ( )� �
�

� ��
1

2

2 2 , (9)

where  (... ) is the theta function.

3. Conductance characteristics of the homogeneous

current-carrying film

Before studying the current-carrying weak link we

consider the homogeneous situation. We will consider the

d-wave film as shown in the left inset in Fig. 1. The moti-

vation behind this study is twofold: first, to demonstrate

the application of the theory presented above, and second,

to describe recent experimental results [14].
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The system considered consists of the d-wave film, in

which the current is injected along the y-axis, and the

STM normal metal tip (another STM contact is not shown

in the scheme for simplicity; for details see [14]). Follow-

ing the experimental work [14], we consider the c-axis

along the x-axis and the misorientation angle between

a-axis and the direction of current ( y-axis) to be � / 4.

Such problem can be described with the equations pre-

sented in the previous section as following [7,15].

Consider the specular reflection at the border, when

the boundary between the current-carrying d-wave su-

perconductor and the insulator can be modelled as

the contact between two superconductors with the order

parameters given by � � �L � � � � �( ) cos ( )0 2 � and

� � �R � �� �( ) and with � � 0. Then from Eq. (3) we

have the following:

g ( )
~( )
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~
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~
2 2 . This expression

is valid for any relative angle � between the a-axis and the

normal to the boundary; in particular,
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The accurate dependence of the gap function � �0 0� ( , )v s �
can be obtained from Ref. 4 with introducing � as follow-

ing: p v p vF s F s i� � � � � (which is analogous to Eq. (6)).

The energy values in this paper are made dimension-

less with the zero-temperature gap at zero current:

� �00 0 0� �( )v s .

And now with Eqs. (12) and (6)–(8) we plot the STM

conductance for the current-carrying d-wave film in

Fig. 1. We obtain the suppression of the zero-bias conduc-

tance peak by the transport supercurrent, as was studied

in much detail in Ref. 14. Our results are in agreement

with their Fig. 1. Also the authors of Ref. 14 developed

the model based on phase fluctuations in the Blon-

der–Tinkham–Klapwijk (BTK) formalism to explain the

suppression of the zero-bias conductance peak. However,

their theoretical result, Fig. 2, describes the experimental

one only qualitatively, leaving several distinctions.

They are the following: (i) position of the minima

( / ~ .eV �00 0 5and 1for the experiment and the theory re-

spectively); (ii) height of the zero-bias peak at zero trans-

port current (~ 2.5 and 4 respectively); (iii) height of the

peak at maximal transport current (~ 1.3 and 2.5 respec-

tively); (iv) presence/absence of the minima for all

curves. Our calculations, Fig. 1, demonstrate agreement

with the experiment in all these features. The agreement

we obtained with two fitting parameters, � and � c .

To further demonstrate the impact of the two fitting pa-

rameters of our model, � and� c , in Fig. 2 we plot the nor-

malized conductance fixing one of them and changing an-

other. The figure clearly demonstrates how they change

the shape of the curves: the position of the minima, split-

ting of the zero-bias peak etc. Note that the splitting is

suppressed at small � c and high �. This absence of the

splitting was observed in the experiment [14] and studied

in several articles, e.g. [18].

4. Conductance characteristics

of the current-carrying weak link

Consider now the weak link between two d-wave cur-

rent-carrying banks. For studying the effect of both the
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Fig. 1. Normalized (divided by GN ) conductance dI dV/ for

the homogeneous current-carrying state in the d-wave film for

different values of the transport current. The curves are plotted
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right insets show the schemes for probing the density of states

in the current-carrying d-wave film and in the weak link (see

text for details).
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Fig. 2. Normalized conductance dI dV/ for the homogeneous

current-carrying state in the d-wave film for different values of

� and �c at pF sv / �00 � 0.5.



transport current and the phase difference on the density

of states in the contact, we propose the scheme, presented

in the right inset in Fig. 1. The supercurrent is injected

along y-axis in the superconducting film, as it was dis-

cussed in the previous section. Besides, the weak link is

created by the impenetrable for electrons partition at x � 0.

The small break in this partition (a � !0 ) plays the role of

the weak link in the form of the pinhole model [8,15,19].

The STM tip in the scheme is positioned above the weak

link to probe the density of states in it. Two more contacts

along the x -axis provide the order parameter phase differ-

ence � along the weak link. This can be done, for exam-

ple, by connecting the contacts with the inductance, as

shown in the scheme, and applying magnetic flux "e to

this inductance. Then one obtains the phase control of the

contact with the relation: � � " "e / 0 .

The two half-plains (for x � 0and x � 0) play the role of

the two banks of the contact, which we also call left and

right superconductors. In our scheme the banks carry the

transport current along the boundary, and the Josephson

current along the contact is created due to the phase dif-

ference. The banks we consider to be d-wave supercon-

ductors with c-axis along the z-axis and with the

misorientation angles �L � 0 and � �R � / 4. Now we can

apply the equations presented in Sec. 2 to describe the

conductance characteristics of the contact between cur-

rent-carrying d-wave superconductors. This is done in

Fig. 3, where the normalized conductance is plotted for

two values of the phase difference, for � � � � / 2and with

� / .�00 01� . The two values of the phase difference,

� � � � / 2, are particularly interesting for the application

since they correspond to the double-degenerate states

[3,4]. So, the density of states is the same in the absence

of the transport supercurrent in both panels in Fig. 3

with mid-gap states (at eV � �00 ) which create the

spontaneous current along the boundary. The transport

supercurrent (v s 	 0) removes the degeneracy by signifi-

cantly changing the mid-gap states (Fig. 3), which explains

different dependencies of the current in the contact on the

applied transport current (i.e., on v s ), studied in [4,9].

5. Distribution of the current in the vicinity

of the contact

To illustrate the spatial distribution of the current den-

sity in the vicinity of the contact we study the case of bal-

listic point contact between d-wave superconductors (see

also [9] and [20]). The position-dependent current den-

sity j( )r is calculated with Eq. (5), where the function g

is given either by g ( )0 , Eq. (3), for transit trajectories

(which pass through the orifice) or by g L R, ( )� , Eq. (2),

for non-transit trajectories (which are reflected from the

partition); see [21] for more details about such calcula-

tions. The spatial distribution of the current is shown in

Fig. 4, where thick lines denote the impenetrable partition

between the superconducting banks.

Although the condition that the contact size is smaller

than the coherence length a � !0 is hardly realizable for

high-Tc superconductors, we consider this model as an il-

lustrative case to show: (a) how the current is distributed

in the ground state of the contact; (b), (c) how the trans-

port supercurrent modifies the current distribution in the

ground state (qualitatively, the resulting current is a sum

of what was in the absence of v s and of the transport cur-

rent); (d) how the appearance of the countercurrent re-

sults in the vortex-like current distribution.
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6. Conclusion

We have studied the density of states in the cur-

rent-carrying d-wave structures. Namely, we have consid-

ered, first, the homogeneous situation and, second, the

superconducting film with the weak link. The former case

was related to recent experimental work, while the latter

is the proposition for the new one. The local density of

states was assumed to be probed with the scanning tunnel-

ling microscope. The density of states at the weak link

and the current (i.e., its components through the contact

and along the contact plane) are controlled by the values

of � and v s. The system is interesting because of possi-

ble applications: in the Josephson transistor with control-

ling parameters � and v s governed by external magnetic

flux and the transport supercurrent [11], and in solid-state

qubits, based on a contact of d-wave superconductors [3].
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