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We consider the long-wavelength limit for a periodic arrangement of carbon nanotubes. Using the Fou-

rier expansion method we develop an effective-medium theory for photonic crystal of aligned optically

anisotropic cylinders. Exact analytical formulas for the effective dielectric constants for the E and H

eigenmodes are obtained for arbitrary 2D Bravais lattice and arbitrary cross-section of anisotropic cylin-

ders. It is shown that depending on the symmetry of the unit cell photonic crystal of anisotropic cylinders be-

haves in the low-frequency limit like uniaxial or biaxial optical crystal. The developed theory of homogeni-

zation is in a good agreement with existing experimental results for the dielectric tensor of photonic crystals

of carbon nanotubes.

PACS: 42.70.Qs Photonic bandgap materials;
41.20.Jb Electromagnetic wave propagation; radiowave propagation;
42.25.Lc Birefringence;
78.67.Ch Nanotubes.
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Introduction

Photonic crystals have been introduced after the publi-

cation by Yablonovitch and Gmitter [1], where the pres-

ence of a photonic band gap was experimentally demon-

strated. Since that the photonic band gap materials have

found numerous applications in optoelectronics and pho-

tonics [2]. A photonic crystal is an artificial structure with

periodic arrangement of «atoms» — dielectric (or metal-

lic) objects of arbitrary form with dielectric constant � a ,

imbedded in a homogeneous background material with

dielectric constant � b . Due to diffraction of electromag-

netic waves at the boundaries between two constituents

the band gap (or gaps) may open for some types of unit

cells if the dielectric contrast | |� �a b� exceeds some criti-

cal value. This gives rise to distinct optical phenomena

such as inhibition of spontaneous emission [3], high-re-

flecting omni-directional mirrors [4] and low-loss-wave-

guiding [2,5]. Photonic crystals with specially engineered

nanostructures may exhibit optical properties that do not

exist for natural crystals. In this case the artificial pho-

tonic crystals are referred to as metamaterials. The most

known, so far, phenomena attributed to the metamaterials

are the anomalous Doppler effect [6], negative index of

refraction [7], and huge optical anisotropy [8–10]. Only

the anomalous Doppler effect manifests itself at the fre-

quencies close to the band edge. Unlike this, the other two

phenomena may be observed at much lower frequencies.

This means that the photonic crystals can be also em-

ployed in the frequency region well below the gap, where

the wavelength covers many periods of the structure.

Here the periodic medium behaves like a homogenous

one and its optical properties can be characterized by ef-

fective parameters, like, e.g., the effective index of re-

fraction. The mathematical theory of heterogenous struc-

tures in the long-wavelength limit is called the theory of

homogenization [11]. Numerous practical applications of

photonic crystals made strong impact to the theory of ho-

mogenization. During a short period of time the new pow-

erful methods have been developed and many new results

have been obtained [8,12–29].
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Fabrication of a photonic crystal with the period com-

parable near-infrared or optical range is a challenging

technological problem [2,4]. Carbon nanotubes, being

high-quality dielectric nanomaterial with extraordinary

mechanical properties, is a promising constituent for fab-

rication of 2D photonic crystals [30–34]. Due to appropri-

ate relation between dielectric and conductive properties

of carbon nanotubes, a triangular lattice of aligned carbon

nanotubes exhibits the effect of negative index of refrac-

tion [34]. Due to this metamaterial property, photonic

crystals of carbon nanotubes may be used in engineering

of superlens — optical device that produce images with

subwavelength resolution [35]. There are also a lot of

possible applications of photonic crystals as traditio-

nal optical elements like polarizers, prisms and lenses

[2,8,12]. In the latter case the diffractive properties of a

photonic crystal are not explored and it serves as an artifi-

cial dielectric material with custom-tailored optical char-

acteristics. These characteristics may be quite different

from those of natural crystals and give rise, for instance,

to unusually large birefringence.

In order to calculate these effective characteristics, we

develop an analytic approach to the optical properties of

photonic crystals with cylindrical atoms. We are using the

term «optical» in the sense that the wavelength of the

propagating wave is much larger than the lattice period of

the crystal; for natural crystals this condition fits the spec-

tral region up to the ultraviolet [36]. For photonic crystals

the lattice constant is, of course, a variable quantity.

Therefore, the long-wavelength regime’s upper limit may

be anywhere between radio waves and the far infrared. In

practice, many photonic band-gap materials exhibit a lin-

ear dispersion law, for both propagating modes, almost up

to the gap frequency. This rather wide region (usually

wider than the band-gap) can be considered as the domain

of «photonic crystal optics». Due to the linearity of the

dispersion law, each mode is characterized by a unique

parameter — its effective dielectric constant. It appears in

the homogenized solution of Maxwell’s equations for the

periodic medium, which thus can be replaced by an effec-

tive homogeneous medium with effective permittivity

�
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�
�
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In the general case, this effective parameter depends on

the direction of propagation � /k k� k and has tensor struc-

ture. The latter property is emphasized for 2D PC’s,

which are anisotropic uniaxial or biaxial crystals, depend-

ing on the symmetry of the unit cell [8,21]. Unlike this,

3D PC’s may be isotropic [15].

Optical anisotropy of the photonic crystals studied in

Refs. 8, 14, 15, 18–21, 23, 25, 27 is determined by the ge-

ometry of the unit cell only. The constituents themselves

are considered to be isotropic dielectrics. This is not the

case, for example, for a structure of aligned carbon nano-

tubes arranged periodically in the plane perpendicular to

the tubes. Here anisotropy manifests itself at the «micro-

scopic» level, since the nanotubes («atoms» of the pho-

tonic crystal) are optically anisotropic. Anisotropy origi-

nates from the layered structure of the graphite crystal,

which has different dielectric constants along the c axis

and in the perpendicular plane. The static values of these

dielectric constants are � || .�1 8225 and �� � 5 226. [37].

The elongated topology and the natural anisotropy of

graphite cause the photonic crystals of carbon nanotubes

to exhibit large optical anisotropy [30–34]. Three-dimen-

sional PC’s with anisotropic dielectric spheres have been

studied in Refs. 16. It was shown, that, depending on the

symmetry of the unit cell, the anisotropy of the spheres

may be favorable for either broadening or narrowing the

band gaps.

High anisotropy of 2D photonic crystals may find in-

teresting applications in nanophotonics as it was recently

proposed by Artigas and Torner [10]. Namely, the surface

of an anisotropic 2D photonic crystal supports propaga-

tion of a surface wave predicted by Dyakonov [38]. The

surface mode does not radiate and is localized close to the

surface due to the interference between the ordinary and

extraordinary waves. In natural crystals, it can be hardly

observed because of the low anisotropy. Since it is a sur-

face wave with very low energy losses, the Dyakonov

wave may replace surface plasmons in the near-field op-

tics and integrated photonic circuits. At the same time

application of optically anisotropic substrates leads to es-

sential increase of the propagation length of surface plas-

mons, thus, giving rise to higher efficiency of plasmonic

devices [39]. These and other examples show that dielec-

tric materials with high optical anisotropy is on demand in

modern optoelectronics.

Here we develop a theory of homogenization for pe-

riodic heterogeneous dielectric medium with intrinsic

anisotropy and apply the results for calculation of the ef-

fective dielectric tensor of a photonic crystal of carbon

nanotubes.

2. Method of plane waves

We consider a 2D periodic structure of dielectric cylin-

ders with their axes parallel to z and whose cross section

can have an arbitrary shape (Fig. 1). The cylinders are im-

bedded in a dielectric matrix. A 2D PC supports propaga-

tion of two uncoupled modes with either E polarization

(where the vector E is parallel to the cylinders, represent-

ing the TE mode), or H polarization (in this case the vec-

tor H is parallel to the cylinders, representing the TM

mode). The background material is an isotropic dielectric

with permittivity � b and the cylinders are rolled up from

an anisotropic dielectric sheet characterized by a tensor

�

( )� a . For carbon nanotubes, this tensor has two different
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eigenvalues, and in cylindrical coordinates is represented

by a diagonal matrix with elements � � �


( ) ( )a
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||� . As a whole, the periodic inhomogeneous dielec-

tric medium is characterized by the coordinate-dependent

block-matrix,

�( )
( )

( )
�

�

�
��

r
r

r
�
�

�
��

�

	




0

0 zz

. (2)

Here ���( )r is a 2 2� Hermitian matrix in the x y� plane.

Outside the cylinders it reduces to a scalar, � ���b

( , ,� � � x y) and inside the cylinders it is given by [40]
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The wave equations for the E- and H-polarized modes

with frequency � have the following form:
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Here E E x y� ( , ) and H H x y� ( , ) are the amplitudes of

the E and H monochromatic eigenmodes, respectively,

and a�� is a 2 2� Hermitian matrix with determinant 1:

a��
��

��

�

�
( )

det || ( )||

( )
r

r

r
� . (6)

The determinant det ( )��� r can be written as a product of

two eigenvalues. Within the graphite wall of the cylinders

this product is � �|| � . Outside the wall it is either ( )( )� b 2

(for r being outside the cylinders) or 1 for the interior re-

gion of the hollow cylinder, which is free from the dielec-

tric material.

Since for the E polarization the electric field is parallel

to the boundaries separating the background from the cyl-

inders, depends only the zz component of the dielectric

tensor enters in Eq. (4). It means that for this mode the ef-

fective dielectric constant is insensitive to in-plane aniso-

tropy. Due to the continuity of the electric field E x y( , )

across the cylindrical surfaces, the static dielectric con-

stant of any arrangement of parallel cylinders (not neces-

sarily periodic) is given by a simple formula

� �
eff
( )E

zz� , (7)

where

� �zz
c

zz

A
A

d

c

� �
1

( )r r , (8)

is the average over the area Ac of the unit cell zz compo-

nent of the tensor (2). For a binary composite

� � � �
eff
( )

( )
E

zz bf f� � � �� 1 , (9)

where f is the filling fraction of the component a. This ef-

fective dielectric constant is thus independent of the di-

rection of propagation and it is simply the weighted aver-

age dielectric constant [41].

Anisotropy affects the H-polarized mode. To obtain

the long-wavelength limit for Eq. (5) we apply the method

of plane waves. Using the Bloch theorem and the period-

ici ty of the function a��( )r , we get the Fourier

expansions,

H i h i( ) exp ( ) ( ) exp ( )r k r G G rk

G

� � �� , (10)

a a i�� ��( ) ( ) exp ( )r G G r

G

� �� , (11)

where the Fourier coefficients a��( )G are given by
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Fig. 1. Periodic arrangement of dielectric cylinders. We as-

sume an arbitrary cross-sectional form of anisotropic cylin-

ders, arbitrary Bravais lattice, and filling fraction of the cylin-

ders.



Here G gives the reciprocal-lattice vectors. Indices a, b,

and c at the integrals label the domains of integration —

within the graphite walls, within the dielectric matrix, and

within the interior of the hollow nanotube, respectively.

Substituting Eqs. (10) and (11) into Eq. (5) we get an

eigenvalue problem in G space:

a k G k G h c h�� � � �
�
� � � � � � � �
G

k kG G G G( )( ) ( ) ( ) ( / ) ( ) .2 2

(13)

3. The long-wavelength limit

Equation (13) is an infinite set of homogenous linear

equations for the eigenfunctions hk ( )G . The nontrivial

solution is obtained by requiring that the determinant of

the coefficients of hk ( )G vanishes. This gives rise to the

band structure � �� n (k), where n is the band index. Be-

ing an analytic function, �n (k) may be expanded in a

power series of k (for any direction of k) around k � 0. For

the lowest (acoustic) band of the spectrum �( )0 0� and

the expansion starts from the linear term, i.e. �( )k � k. In

the static limit �� 0 there can be no magnetic field

(H � 0). Therefore all Fourier coefficients hk (G ) must

vanish if k � 0. The rates that they approach zero are dif-

ferent: the Fourier coefficients hk ( )G  0 vanish faster

than the zero harmonic hk ( )G � 0 . To obtain the behavior

of hk ( )G we substitute G � 0 in both sides of Eq. (13), di-

vide the both sides by h h0 0� �k G( ) and take the limit

k � 0,

� �� � � �� � �
2 2

0

/ ( ) ( )*c a k k a k G h� � � � � �
� 
�
G

kG G .

(14)

Here a a�� ��! �( )G 0 is the bulk average of the matrix

(6) and h h hk kG G
* ( ) ( ) /� 0 is the normalized Fourier co-

efficient. In the long-wavelength limit the coefficients of

hk G
* ( )� on the right-hand side are proportional to k. In or-

der to make the right-hand side quadratic with k, the

amplitudes of nonzero harmonics, hk G
* ( )� must be pro-

portional to k. Namely, h kAk c
* /( )G  �0 1 2. Thus, the Bloch

wave (10) can be written as a linear expansion over k:

H i h h i( ) exp ( ) [ ( ) exp ( )]*
r k r G G rk

G

� � � �
 
�0

0

1 . (15)

Since the sum over G vanishes linearly with k, Eq. (15)

shows that the medium becomes homogeneous, i.e., the

solution of the wave equation (5) approaches a plane

wave.

Now, to calculate the effective dielectric constant (1),

we develop a theory of perturbation with respect to a

small parameter ka (a Ac" 1 2/ is a lattice period). In

Eq. (13) we keep the linear terms and obtain the following

relation:

a G k a G G hk�� � � �� � �( ) ( ) ( )*
G G G G

G
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� 
�

0

0 .

(16)

The quadratic approximation is given by Eq. (14), which

gives another linear relation between the eigenvectors

hk G
* ( ). Note that this relation is obtained from the

eigenvalue problem Eq. (13) for G � 0 and the linear ap-

proximation Eq. (16) is obtained for G  0. The linear re-

lations, Eqs. (14) and (16), are the homogenized equa-

tions for the Fourier components of the magnetic field.

These equations are consistent, if the corresponding de-

terminant vanishes:

det [ ( )
G,G

G G
� 

� � � �
0

#a G G�� � �

� � � � �a a G n n G�� $� � � $ �( ) ( ) ]G G 0 . (17)

Here n k� / k is the unit vector in the direction of propa-

gation and # � � �( )a n n�� � � �eff
1 . Since Eqs. (14) and (16)

are homogenous with respect to k, the dispersion equation

(17) depends only on the inverse effective dielectric con-

stant, ( / )� ck 2. This fact is a manifestation of a general

property: At low frequencies an electromagnetic wave

has a linear dispersion in a periodic dielectric medium.

Although Eq. (17) is an infinite-order polynomial equ-

ation in #, it turns out that it has only a unique nonzero so-

lution. The fact that the second term in the determinant

Eq. (17) is a product of two factors, one of which depends

only on G and the other only on G �, plays a crucial role.

Omitting the mathematical details, which can be found in

Refs. 21, 25, we give here the final answer for the inverse

effective dielectric constant obtained from Eq. (17) as:

1

�
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eff
( )

( � )
H

a n n
n

� �
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� 

��a a n G n G a G G�� $� � � $ � %& & %( ) ( ) [ ( ) ] .G G G G

G,G 0

1

(18)

Here [...]�1 implies the inverse matrix in G space. Equa-

tion (18) is valid for an arbitrary form of the unit cell, ge-

ometry of the cylindrical inclusions, material composi-

tion of the photonic crystal, and the direction of

propagation in the plane of periodicity. In the case when

a�� ��' �( ) ( )G G� Eq. (18) is reduced to the formula ob-

tained for isotropic cylinders in Refs. 8, 21 ('( )G is the

Fourier component of the inverse dielectric constant,

' �( / ( )r) r�1 ).

The effective dielectric constant Eq. (18) depends on

the direction of propagation in the x y� plane and on the

details of the photonic crystal structure. For propagation

in the plane of periodicity, Eqs. (7), (8), and (18) give a

complete solution for the effective dielectric constants of

any 2D photonic crystal in the low-frequency limit. In

what follows we will show how to calculate the principal

dielectric constants, which give the customary descrip-

tion for anisotropic media in crystal optics [36].
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4. Index ellipsoid

As any natural crystal, artificial PC in the long-wave-

length limit can be characterized by an index ellipsoid

[36]. Taking into account Eq. (7) the equation for this el-

lipsoid can be written as follows:

x y z

zz

0
2

1

0
2

2

0
2

1
� � �

� � � . (19)

Here x y z0 0 0, , are three mutually orthogonal directions

along which the vectors of the electric field, E, and of the

displacement, D, are parallel to each other. For the E mode

we have E |D z| | | �, i.e., the z 0 direction coincides with z

axis. In the x– y plane the cross section of the index ellip-

soid is given by Eq. (18), which can be rewritten in the ca-

nonical form as

1 2 2

� (
( (

eff

( )
( )

( ) cos ( ) sin
H xx xx yy yya A a A� � � � �

� �( ) sina Axy xy 2( .
(20)

Here

A a a G G a G G�� �$ �� $ � %& & %� � � ��
� 

� � ��
G,G

G G G G

0

1( ) ( ) [ ( ) ] ,

� � $ � & %, , , , , ,� x y . (21)

Equation (20) describes a rotated ellipse in the polar coor-

dinates ( , )) ( . The radius ) ( � (( ) ( )
( )�
eff

H
gives the index

of refraction of H mode and the angle( is related to the di-

rection of propagation, � (cos ,sin )n � ( ( . The directions

x 0 and y0 coincide with the semiaxes of the ellipse given

by Eq. (20) and the in-plane indices of refraction �1,

� 2 are given by the lengths of the semiaxes:

� 
 
 
1
2 2 12� � � � �( sin cos sin )a A A Axx xx yy xy , (22)

� 
 
 
2
2 2 12� � � � �( cos sin sin )a A A Ayy xx yy xy . (23)

The angle of rotation 
 of the axes of the ellipse Eq. (20)

with respect to some (initially) arbitrary chosen axes x y,

is given by the relation

tan 2
2


 �
�

A

A A

xy

yy xx

. (24)

It is the symmetry of the unit cell that determines

whether a photonic crystal is uniaxial (� �1 2� ) or biaxial

(� �1 2 ). Unlike 3D photonic crystals, 2D crystals cannot

be isotropic (� � �1 2 3� � ). This property is guaranteed by

the Wiener bounds (� �1 2 3, * ) valid at least for in-plane

isotropy, namely � �1 2� [42]. If the crystal possesses a

third- or higher-order rotational axis z, then any sec-

ond-rank symmetric tensor such as A�� Eq. (21), is re-

duced to a scalar [43], A Aik � ��� (and a a�� ���� ).

Then Eqs. (22) and (23) may be simplified as

� �1 2
1� � � ��( )a A
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+

� 

� � ��a a a G G a G G G
1

2
0

1
�$ �� $ � %& & %

G,G

G G G( ) ( ) [ ( ) ],
-

.-

/
0
-

1-

�1

.

(25)

Here [...]�1 implies matrix inversion, while {...}�1 means

«reciprocal». This compact formula gives the principal

dielectric constant (associated with the plane of periodic-

ity) of a uniaxial photonic crystal. The optical axis coin-

cides with the axis z, which is to say that birefringence is

absent for a single direction of propagation — the direc-

tion parallel to the cylinders. For propagation in this di-

rection (with E z��) the phase velocities of the «ordinary»

and «extraordinary» waves are the same, � �/ /k c� 1,

with �1 given by Eq. (25). Of course, for any direction of

propagation the «ordinary wave» propagates with the

same speed, c / �1, by definition. Because this velocity is

always less than the velocity c zz/ � of the «extraordi-

nary wave» (with E|| z�) that propagates in the plane of pe-

riodicity, we may conclude that uniaxial 2D photonic

crystals are necessarily «positive» optically anisotropic

crystals.

5. Uniaxial and biaxial photonic crystals of solid

graphite cylinders

In this section, we study 2D photonic crystals of solid

graphite cylinders arranged in square and rectangular lat-

tices. In Cartesian coordinates the dielectric function of a

carbon cylinder is given by Eq. (3). For rectangular and

square lattices with circular cylinders the semiaxes of the

index ellipsoid are directed along the basic lattice vectors.

Because of the cylindrical symmetry of the inclusions, the

off-diagonal elements of the tensor a��(G) vanish [44].

The diagonal elements for hollow cylinders with outer

and inner radii R and $R, respectively (0 12 2$ ), have the

following form:

a
R

A
xx b

c
b( )

( )
( )||0

1

2
21

2 2
1 1 1� �

��

�

�
�

�

	






� �� �
�
� ��

3 $
� � � ,

a A G GRxx c b( ) ( / ( ) { ( )G � � ��
�
�2 2 1 13 � �

� � � � ��
�
�[ ( ) ( )] ( ) ( ) ( )}||$ $ � � $J GR J GR J GR J GR1 1

1 1
0 0 .

(26)

The diagonal element a yy (G) is obtained from Eq. (26) by

the replacement � �� 4 ||.
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For solid cylinders, i.e. $ ! 0. The circles in Fig. 2

show the effective dielectric constant, given by Eq. (20),

of the H mode as a function of the filling fraction,

f R Ac� 3 2 / , for the uniaxial photonic crystal with a

square lattice. The number of G values (plane waves)

considered in this calculation was 1200, which provides a

good convergence in Eq. (25). In accordance with the

Wiener bounds, the dielectric constant Eq. (7) for the ex-

tra-ordinary wave (E mode) (shown by triangles in Fig. 2)

is always larger than that for the ordinary wave (H mode),

i.e., the effective medium is an uniaxial positive crystal.

For a long time, there have been extensive efforts to

construct effective medium theories for inhomogeneous

media. The well-known Maxwell-Garnett approximation

[45] gives good results for very small filling fractions

( f ** 1or 1 1� **f ) but it fails otherwise. It also does not

take into account the microstructure of the inhomoge-

neous medium. To check the validity of the Maxwell-

Garnett approximation, we plot in Fig. 2 (squares) the ef-

fective dielectric constant proposed in Ref. 40:

�
� �

� �MG
H f

f

( ) || ||

|| ||

( )

( )
�

� � �

� � �

5 5

5 5
. (27)

Here 5 � �� �|| / . One can see that for all filling frac-

tions the Maxwell-Garnett approximation gives overesti-

mated values for the effective dielectric constant. For a

very dilute system, f * 0 07. , the Maxwell-Garnett approx-

imation gives results that are practically indistinguishable

from the exact ones (see inset in Fig. 2). For the close-

packed array of cylinders the Maxwell-Garnett approxi-

mation overestimates the dielectric constant by about 25%.

In Fig. 3 we plot two principal dielectric constants for

the biaxial PC of solid carbon cylinders with a rectangular

unit cell. The ratio of the sides of the rectangle is 1:2. The

difference between the two dielectric constants increases

with the filling fraction, giving rise to a higher anisotropy

of the corresponding effective medium. The Maxwell-

Garnett approximation Eq. (27), which does not take into

account the anisotropy of the unit cell, gives the values

for �MG that lie between the two principal values,

� � �1 2* *MG .

6. Uniaxial photonic crystal of carbon nanotubes

In our model we consider the carbon nanotubes as hol-

low graphite cylinders. In the experimental study [30] of

the dielectric properties of carbon nanotubes the outer ra-

dius of the cylinders was approximately R � 5 nm. The

nanotubes formed a thin film and they were oriented

along a specific direction. Although the nanotubes were

not necessarily arranged periodically, one can assume

that they formed almost a regular lattice, since the nano-

tube density is about 0.6–0.7 which is near the value of

f c � 63 / .4 0 785 for a close-packed structure. Thus,

the separation between the nanotubes (the period of

the square lattice d) slightly exceeds 2R, and in Ref. 40 it

was estimated to be d �1015. nm. The inner radius $R �
� 0.25–2 nm was evaluated from the amount of electro-
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Fig. 2. In-plane effective dielectric constant for the H mode

for uniaxial PC of solid graphite cylinders with � || .�1 8225 and

�� � 5 226. in air, �b �1 (circles). Straight line (triangles) is the

effective dielectric constant � zz for the E mode, Eq. (8). The

squares show the results of the Maxwell-Garnett approxima-

tion (27). Inset shows the region of very small filling fractions.
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Fig. 3. A plot of the principal effective dielectric constants for

the photonic crystal of solid graphite cylinders arranged in a

rectangular lattice. In this case the effective medium is a bi-

axial crystal with all three different principal dielectric con-

stants. The larger (smaller) in-plane dielectric constant �1 (�2)

corresponds to the direction of the vector E along the short

(long) side of the rectangle. The Maxwell-Garnett dielectric

constant is shown by the squares. The triangles show � zz.



magnetic absorption for the E-polarized light [40]. The

four parameters f , R, $, and A ac � 2 are not independent

but related by the formula

f R Ac� �3 $2 21( ) / . (28)

Substituting the aforementioned parameters of the square

unit cell into this formula allows one to check that they

are self-consistent. It is worthwhile to mention that the

background material in the experiment [30] is not air but

the host material Delrin or Teflon with � b 7 1. Since nei-

ther the density of the host material nor its dielectric con-

stant is known, one cannot expect very good agreement

between the experimental results [30] and theory. In all

theoretical considerations it was assumed that � b �1. Be-

cause of this lack of experimental data, the effective me-

dium theories [32,40,46] and the results shown in Fig. 2

give lower values for �eff than that observed in the experi-

ment [30].

It is obvious that the inner cavity reduces the per-

mittivity of an isolated nanotube as compared to a solid

graphite cylinder of the same size. It was argued [40] that

for a periodic arrangement the effect of the inner cavity is

less than that for a single cylinder and even can be ig-

nored, if the ratio between the inner and outer radii $ does

not exceed 0.4. This conclusion was supported by com-

paring the results of the Maxwell-Garnett approximation

Eq. (27) and numerical band structure calculations. In

Fig. 4 we plot the dielectric constant for a square lattice of

hollow carbon nanotubes and compare the exact results

obtained from Eqs. (20), (21), and (26) (shown by the cir-

cles) with the results given by the Maxwell-Garnett ap-

proximation (squares). One can see that, for the same

outer radius, the effective dielectric constant drops with

an increase of the inner radius. Thus, if the outer radius is

fixed, the dependence on the inner radius cannot be ig-

nored, even in the Maxwell-Garnett approximation. How-

ever, the effective dielectric constants exhibits much less

sensitivity to the internal radius if it is plotted against

filling fraction, Fig. 5.

In the Maxwell-Garnett approximation (27) there is no

dependence on the parameter $, therefore, this approxi-

mation is represented by a single curve in Fig. 5. Here,

only the total amount of the dielectric material is impor-

tant (i.e., the filling fraction of the carbon), but not the to-

pology of the cylinders. In our exact theory the effective

dielectric constant depends on the details of the micro-

structure of the photonic crystal, but as far as the filling

fraction is concerned, the topology plays a much less im-

portant role. Since the cylinder is uniquely determined by

either two parameters out of three, R, $, and f , the curves

in Fig. 5 may cross each other. This means that at the

crossing point the values of f and $ correspond to the

same hollow cylinder. This can be easily seen from

Eq. (28).

7. Conclusions

We calculated the low-frequency dielectric tensor for

2D photonic crystal of optically anisotropic parallel cy-

linders arranged in a periodic lattice in the perpendicular

plane. The exact analytical formula for the principal val-

ues of the dielectric tensor was obtained. The results are
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applied for the periodic arrangement of carbon nanotubes

which are rolled up from uniaxial graphite crystal with

static values of the dielectric tensor � || � 1.8225 and

�� � 5.226. It was shown that the interior (vacuum) re-

gion of the nanotubes has a small effect on the dielectric

properties of the photonic crystal and can be ignored. Al-

though we are interested in the static dielectric tensor, it is

clear that the developed long-wavelength limit approach

remains valid, even for optical frequencies since the pe-

riod of the lattice of carbon nanotubes d �10 nm is much

less than the optical wavelength % 6 500 nm. To calculate

the dynamic dielectric tensor, one has to substitute in the

general formula Eq. (18) the corresponding frequency-

dependent values for � || and �� . Of course at finite fre-

quencies Eq. (18) gives the real part of the dielectric func-

tion. Calculations of the imaginary part require a genera-

lization of the presented theory. This result will be

reported elsewhere.

The exact theory presented here allows a calculation of

the effective dielectric constant of carbon nanotubes im-

bedded in a gas. Due to high absorbability of nanotubes,

the concentration of gas in the interior region of the

nanotubes may be different from that in the atmosphere.

This leads to slightly different dielectric constants of the

material in the interior and exterior regions of the cylin-

ders. This effect can be registered by precise measure-

ments of the shift of the resonant frequency of a resonant

cavity [47]. Thus, the proposed theory may find applica-

tions in the microwave detection of Poisson gases in the

atmosphere.

One more interesting application of carbon nanotube

photonic crystal is related to its huge anisotropy of the ef-

fective dielectric constant. Recently Artigas and Torner

[11] demonstrated that the electromagnetic surface wave

(Dyakonov wave [38]) can propagate along the surface of

a photonic crystal with high optical anisotropy. This wave

propagates in a lossless dielectric medium and decays

much slower than surface plasmon-polariton. Since crys-

tals with huge optical anisotropy are rare in nature, car-

bon nanotube photonic crystals may be considered as a

promising material for integrated photonic circuits where

information is transmitted by surface modes.
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