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ation coincides exactly with its value for the relativistic system.
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Introduction

Since the discovery of graphene [1] and especially the

experimental observation [2,3] and theoretical prediction

[4–7] of an anomalous quantization in the quantum Hall

effect (QHE), studies of graphene present an extremely

active and even separate branch of research in the modern

condensed matter physics.

Graphene is a single-atom thick two-dimensional

plane of graphite. The honeycomb lattice of graphene

(see Fig. 1) can be considered as composed of two trian-

gular sublattices A and B. In 1947, Wallace [8] in the

tight-binding approximation considered graphene as a

building block of graphite taking into account only the

nearest neighbor �-electron hopping. According to Fig. 1,

the vectors �AB describe this hopping between two

sublattices of graphene. Wallace showed that graphene’s

2D nature and honeycomb atomic structure cause elec-

trons to move as if they have no mass (they are described

by the Dirac equation [9]). Indeed, at low energy the band

structure of graphene is formed from the �-electron car-

bon orbitals and consists of a valence (full) and conduc-

tion (empty) bands both conical in shape with vertex

meeting at a point called a Dirac point. There are two non-

equivalent pairs of such cones. The low energy spectrum

of the �-electrons is given by a relativistic-like relation

E F� � �v | |k for massless particles, where the Fermi ve-

locity vF is approximately 300 times smaller than the

speed of light c, and k is quasiparticle wavevector.

The experimental proof of the existence of Dirac fer-

mions in graphene came from the observation [2,3] of the

unconventional QHE. The reason for the occurrence of

odd integers is connected with a quantum-mechanical ef-

fect called the Berry phase [10], which equals � for
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Fig. 1. Graphene’s honeycomb lattice and vectors of the near-

est and next-to-nearest neighbor hoppings.



graphene. This value of the Berry phase was obtained in

the original paper Ref. 10 for a toy model. This model can

be derived from the tight-binding consideration of gra-

phene taking into account the nearest neighbor hopping

only. For a recent discussion of the Berry phase in gra-

phene see [11].

This hopping is the leading term contribution in gra-

phene. There is also the next-to-nearest neighbor hopping

denoted by the �AA (or �BB ) vectors in Fig. 1. Its effect on

the energy spectrum in a constant magnetic field was al-

ready considered in [7,12], where it was shown that such

a hopping breaks the electron-hole symmetry of the Dirac

spectrum and produces terms characteristic for a non-

relativistic problem.

In the present paper, we will consider in more detail

how the next-to-nearest neighbor hopping affects the

electronic properties of two-dimensional systems with

honeycomb lattice. In Sec. 2, we repeat the derivation of

the energy spectrum in a constant magnetic field. In

Sec. 3, we calculate the density of states (DOS). Fan dia-

grams are plotted in Sec. 4. Conclusions are given in

Sec. 5.

2. The energy spectrum

In the tight-binding approximation, the electron Ha-

miltonian in graphene reads

H t a a�� �
nm

n m

n m

,

, (1)

where vectors n and m denote certain positions on the

graphene lattice and Fermi-operators an
� and am create

and annihilate electrons at the corresponding places.

For the sake of simplicity, we omitted the spin variables

in (1). Hopping amplitude t nm is the matrix element of

the operator of kinetic energy. We will consider only

two nonzero matr ix elements t t
AB

� �n n � and t� �
� �� �t t

AA BBn n n n� � which describe the nearest and

next-to-nearest neighbor hoppings, respectively. Since

the graphene’s hexagonal lattice can be described in terms

of two triangular sublattices A and B, the parameter t is

evidently connected with intersublattice hopping and t�
with intrasublattice hopping (see Fig. 1).

At low energy, we consider states in the vicinity of the

Dirac K point, K � 	
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, , where aCC � 1.42 � is

the distance between nearest carbon atoms of the different

sublattices. The constant � �3t is omitted, because it can

absorbed in chemical potential. Then we retain leading in

momentum terms and readily obtain the following effec-

tive low energy Hamiltonian defined on two-component

spinors whose upper and down components are connected

with states on the A and B sublattices, respectively:
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where the effective mass and Fermi velocity are

m
t aCC
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�
, vF

CCta
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3

2�
. (3)

The effective Hamiltonian for low energy excitations in

the vicinity of the Dirac point K� � �	
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, is ob-

tained from (2) through the replacement k kx x� � . One

can easily find the spectrum of the Hamiltonian (2)

E
m

F� �
�

�

2 2

2

k
k

*
| |v . (4)

If t� � 0 (only the nearest neighbor hopping is retained),

then the Hamiltonian (2) together with H K k� ( ) is the con-

ventional Dirac Hamiltonian, which is now widely used

for the description of electronic properties of graphene.

This Hamiltonian has the electron-hole symmetry. Its

spectrum is given by the second term on the right-hand

side of Eq. (4) and presents the two Dirac cones (near

points K and K�) of positive and negative energies. If,

however, t� � 0, then the electron-hole symmetry is lost

and as it is evident from Eq. (4) the spectrum is not sym-

metric with respect to the change of sign of energy

E E� � . Note that in the other limiting case t � 0 (only the

next-to-nearest neighbor hopping is retained), the Ha-

miltonian (2) describes conventional nonrelativistic qua-

siparticles whose spectrum is given by the first term on

the right-hand side of Eq. (4). Of course, these limiting

cases are quite useful because they help to check calcula-

tions performed in the general case.

The Hamiltonian for electron states in a magnetic field

in the vicinity of the K point follows from (2) by using the

minimal coupling with electromagnetic field

�
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where � /� � � � �i ie c� A (obviously, the Hamiltonian for

the states in the vicinity of the K� point is obtained

through the replacement � �� �x x� � ).

It is straightforward to find the spectrum of graphene

with t and t�hoppings in a constant magnetic field perpen-

dicular to the graphene plane. The spectrum was first

obtained in [7,12] and consists of two non-symmetric

branches (see Fig. 2)
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where �B eB m c� / * is the standard cyclotron frequency,

index � denotes the upper � � � and lower � � � branches,

n � 1 is the Landau level index, and we ignore the simple

Zeeman linear contribution to energy due to spin. For the

lowest Landau level n � 0, the energy

E B
0

2
�

��
(7)

does not depend on t and equals the conventional lowest

Landau level energy in the nonrelativistic case.

Note that the lower branch En
( )� of the spectrum (6)

unlike the case of the Dirac spectrum is not monotonic.

Let us assume for simplicity that n is continuous. Then,

as follows from Eq. (6), for t t tl aB CC� � � �max / 27

( /l c eBB � � is the magnetic length), that is true for

graphene in realistic magnetic fields, the energy En
( )� de-

creases for small values of n, attains a minimum at

E
m

m

F B

F

min

*

*
� � �

v

v

2 2 2

22 8

� �
, (8)

(since n is discrete, the true minimum of the spectrum (6),

in general, is higher than (8)), and then increases for

larger values of n (see Fig. 2). At low energies, we stay

close to the Dirac points that implies that | |k aCC �� 1.

This means that we should consider small values of n such

that only the decreasing part of the lower branch of the

spectrum contributes.

The eigenfunctions of higher Landau levels n � 1of the

spectrum (6) are given by the following equation below

(we use the Landau gauge A � ( , )0 xB for the vector poten-

tial of the external magnetic field and, as was mentioned

above, suppress the spin index):
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H xn ( ) are Hermite polynomials, and
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Eigenfunctions in the vicinity of the K' point have the

same factor before the spinor, i x Xn n� �1( ) ( )� as the upper

component of the spinor, and �n x( ) as the lower one.

The eigenfunctions for the lowest Landau level (7) are

given by (we assume that sign( )eB  0 and again, like in

the expression (9), suppress the spin variables)

�
�

0
0

2 0
( , )

exp( ) ( )
x y

ik y xy
�
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� . (12)

The spectrum (6) has an unusual dependence on the

Landau index n and magnetic field B because the energy

levels En
( )� cannot be represented as E f B nn

( ) ( ( ))�
� !� � ,

where f x� ( ) are arbitrary functions and ! is a constant. In

Sec. 3, we will see that this leads to the dependence of the

frequency of oscillations BF on the magnetic field B. As

well known, BF does not depend on B in the nonre-

lativistic and relativistic cases, where the energy spectra

have the canonical form E nn B� ��� ( / )1 2 and En
( )� �

� � 2 2n eB cF�v / with n � 0 1 2, , , .., respectively.

What is the reason for this unusual property of spec-

trum (6), (7)? In order to get an answer to this question,

let us first recall why the nonrelativistic and relativistic

spectra depend on B only through the combination

B n( )� ! . The nonrelativistic Hamiltonian contains the

operator ��
2, where � /� � � � �i ie c� A . Its eigenvalue is

equal to 2 1 2�eB n c( / ) /� . The Dirac Hamiltonian con-

tains the operator ��!, where ! are the Dirac matrices. At

the same time, one can equivalently determine its eigen-

v a l u e s f r o m � � �( � ) � /�� �
2 2 1 2i eB c� ! ! . S i n c e

( )i! !1 2 2 1� , the eigenvalues of i! !1 2 are � 1. Consequent-
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Fig. 2. The spectrum of graphene in units of t, with t t� �/ .07, in

magnetic field such that
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� 0.05, and n is the Landau

level index. The dots and squares correspond to the positive E( )�

and negative E( )� branches of the spectrum (the square at n � 0

is absent according to Eq. (7)).



ly, eigenvalues of �( � )��
2 are 2 1 2� �eB n c eB c( / ) / /� � .

Therefore, the lowest Landau level has zero energy in the

relativistic case and higher Landau levels are apparently

twice degenerate in view of the twice degenerate spinor

part contribution � �eB c/ . Thus, the energy spectrum in

the relativistic case like in the nonrelativistic one depends

on magnetic field only through the combination B n( )� ! .

In our case, for electron states of the Hamiltonian (5),

the action of the operators � �� �x yi� and � �� �x y
2 2� on func-

tions�n
ik yye contains both square root and linear terms in B
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and, consequently, eigenvalues En
( )� of the Hamiltonian

(5) cannot be represented as f B n( ( ))� ! .

Finally, we would like to mention that, strictly speak-

ing, the relativistic Hamiltonian for the electron in addi-

tion to the Dirac terms contains also an anomalous mag-

netic moment term e c FB
2 28" � ! !"�

" �/ ( )� (see, e.g.,

[13]), where "B is the Bohr magneton. According to [14],

in such a case, the energy spectrum
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where# � � is the electron spin, also does not have the con-

ventional form f B n( ( ))� ! like the energy spectrum (6).

Qualitatively, the most important feature of the spec-

trum (6), (7) is that it interpolates between the relativistic

and nonrelativistic spectra. Indeed, for �B � 0, the spec-

trum Eqs. (6), (7) reduces to a relativistic spectrum and,

for �B � $, it tends to a nonrelativistic one. Thus, the

next-to-nearest neighbor hopping changes the low energy

spectrum of quasiparticles in a system with honeycomb

lattice, although, quantitavely this change in real

graphene is quite small due to the inequality t t� ��/ 1. Note

that the degeneracy of the states of the spectrum (6), (7)

coincides with the degeneracy of states of the purely rela-

tivistic spectrum. Consequently, the next-to-nearest

neighbor hopping in graphene does not change the Berry

phase which is connected with the degeneracy of spec-

trum [15] and equals �. (For t � 0, the degeneracy of spec-

trum is the same as in the nonrelativistic problem and the

Berry phase in such a case equals zero.) Therefore, the

QHE quantization in odd integers still applies to the case

under consideration.

3. The density of states

In the absence of scattering from impurities the quasi-

particle DOS can be written as the sum of %-functions of

Landau level energies:

D E
eB

c
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or, equivalently,
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Note that 2eB c/ �� is the density of the Landau levels

which includes their fourfold valley and spin degeneracy

(recall that we suppressed the spin variables contribution

to energy which can be easily restored).

Using the Poisson formula
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we find
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for the � � � branch of the spectrum and
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for the � � � branch of the spectrum, where
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It is easy to check that x Ej ( ) correspond to two inverse

functions n Ej ( ) which can be found from Eq. (6). The

presence of two functions x Ej ( ) is due to the fact that for

E E min (where Emin is defined in Eq. (8)), a given en-

ergy corresponds to two points in the spectrum (see

Fig. 2). The function x E1( ) denotes intersection of the

line of constant energy with the � � � branch of the spec-

trum or with the decreasing part of the � � � branch. The

function x E2( ) corresponds to intersection with the in-

creasing part of the � � � branch. Therefore, the sum over

the � � � branch of spectrum given by Eq. (16) contains

only x E1( ) unlike Eq. (17) for the � � � branch of the

spectrum which, for E E Emin ( ( � 0, contains terms with

both x E1( ) and x E2( ). For E E � 0, the line of constant

energy intersects only the increasing part of the � � �
branch, therefore, only the term with x E2( ) in (17) contri-

butes in this case.

Combining Eqs. (14), (16) and (17) we obtain the ex-

act DOS for the spectrum (6), (7)
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According to the discussion in Sec. 2, since x is contin-

uous, Emin , in general, is not equal to the lowest energy

level of the spectrum (6), (7), where n is discrete. The ex-

pression in the curly brackets in (19) is nonzero for

E E min . Therefore, it is not immediately clear that the

DOS given by Eq. (19) is zero for energies between Emin

and the true lowest level of the spectrum (6),(7). To prove

this, it is useful to recall [19] that the first Bernoulli poly-

nomial in the interval 0 1� �x can be expressed as fol-

lows:

B x x
k

kx

k

1

1

1

2

1
2( ) sin ( )� � � �

�

$

��
� . (20)

For x beyond the interval [ , ]0 1 , in order to find the sum

over sin ( )2�kx functions, one can use the first Bernoulli

polynomial periodically continued beyond the interval

x 0 [ , ]0 1 which depends on the fractional part of its argu-

ment, i.e. B x x1( [ ])� . Here, [ ]x is the largest integer satis-

fying [ ]x x( . Thus, we obtain

1
2

1

2
1

1�
�

k
kx B x x x x

k�

$

� � � � � � �sin ( ) ( [ ]) [ ] .

As result, the function

x
k

kx x

k

� � �
�

$

� 1
2

1

2
1
�

�sin ( ) [ ]

has a staircase-like behavior (see Fig. 3).

It is not surprising at all that we obtained this result.

Our DOS (19) is given as a full derivative with respect to

E. Integrating it over E, one finds the number of states.

Consequently, the quantity in the curly brackets in

Eq. (19) up to a factor coincides with the number of states.

Since the spectrum in a magnetic field is discrete, this

quantity should have a staircase-like behavior. Therefore,

the DOS is not equal zero only when E crosses some en-

ergy level of the system. When this happens, the expres-

sion in the curly brackets in Eq. (19) experiences a jump

between different plateaus.

As it was mentioned at the end of Sec. 2, we should

consider only rather small values of n. This implies that

only terms with x1 should be retained in Eq. (19) and all

terms with x 2 can be omitted because they correspond to

states with very large n. Thus, we arrive at the following

final expression for the physically relevant DOS in gra-

phene:
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The customary form (see, e.g. , [16]) of x1 is

x cS E eB1 2� �� ( ) / ( )� !, where S E( ) is the semiclassical

electron orbit area in the space of wave vector k, and

! �� ��1 2 2/ /B with �B being the Berry phase. Accord-

ing to the results of the previous section, the Berry phase

for the system under consideration equals � and, conse-

quently, ! � 0. Therefore, using (18), one finds that the an-

alog of the semiclassical electron orbit in our case is
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The fact that Eq. (22) depends on magnetic field B means

that S E( ) cannot be interpreted as a semiclassical electron

orbit. This unusual form of S E( ) is connected with the un-

conventional dependence of the energy levels (6) on the

Landau level index and magnetic field discussed in the

previous section. Moreover, we will see in the next sec-

tion, where we plot the fan diagram, that the unusual char-

acter of the dependency of x1 on B is responsible for the

unconventional form of the fan diagram for our system

which is not a straight line unlike the well known cases of

nonrelativistic and relativistic systems.

Finally, we would like to note that S E( ), given by

Eq. (22), tends to the correct value of semiclassical elec-

tron orbit area �E F
2 2 2/ ( )� v [16] in the relativistic limit

t�� 0. In the nonrelativistic limit t � 0, the function S E( ),

given by Eq. (22), tends to 2 2� �Em eB c* / / ( )� �� , where

2 2�Em* / � is the correct nonrelativistic semiclassical

electron orbit area and, obviously, the second term

��eB c/ ( )� multiplied by �c eB/ ( )2� gives the standard

nonrelativistic value ! �1 2/ [16]. Note that, although Eq.

(22) tends smoothly to the relativistic and nonrelativistic

expressions in the corresponding limits, the Berry phase

does not have such a smooth behavior. It equals � for any

nonzero t and abruptly jumps to zero when t exactly

equals zero. This behavior of the Berry phase is con-

nected with its topological character [10].

4. Fan diagrams

Fan diagrams are a standard [2,17] and convenient

way to display graphically information about the spec-

trum of the system. They express the inverse magnetic

field B �1 as function of the Landau level index n at some

fixed chemical potential ".

For the � � � branch of the spectrum (6), we find
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For t � 0, Eq. (23) reduces to

1 1
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4 1

20B
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*" �
, (24)

where in the last equality we used the relation �nr �
� 2 2" �m* / ( )� between carrier density �nr and chemical

potential " in the nonrelativistic case (� �0 hc e/ is the

flux quantum). For t � � 0, Eq. (23) gives

1 2 4
2

2
0B

e

c
n nF� �

�

�v

" � rel

, (25)

where in the last equality we expressed " via the relativis-

tic carrier density � " �rel �
2 2 2/ ( )� vF . Equations (24) and

(25) illustrate the well-known fact that the fundamental

frequency B S EF � �0
24( ) / ( )� of quantum magnetic os-

cillations for any 2D system is defined by its degeneracy

f and the concentration of electrons or holes �; so that

B fF � �0� / . For graphene f � 4 because of double-spin

and double-valley degeneracy.

For n   1, Eq. (23) implies that
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Since a constant term (the term which does not depend

on n) is absent in (26), the dependence of B �1 on n is the

same as in Eq. (25) for the relativistic case with t� � 0.

Matching slopes of the dependencies B n�1( ) in Eqs. (24),

(25), and (26) gives
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. (27)

Using Eq. (27), we plot in Fig. 4 the fan diagrams for

the system under consideration (23) and the nonrelati-

vistic and relativistic systems given by Eqs. (24) and (25),

respectively. The most important property of the fan dia-

gram for the system under consideration is that it is not a

straight line unlike the fan diagrams for the nonrelati-
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Fig. 4. Fan diagrams for the � � � branch of the spectrum (solid

line) with parameters t� �189. eV, t � 2.7 eV, " � 11.5 eV , the

relativistic system t� � 0, t � 2.7 eV, "r � 5 eV (dash-dotted line),

and the nonrelativistic system t � 0, t� � 1.89 eV, "nr � 65. eV

(dashed line). Integer values of n denoted by dots correspond

to the Landau level index in the spectrum.



vistic and relativistic systems separately. As we have al-

ready mentioned in the previous section, this fact is due to

the unconventional dependency of x1 on B which in its

turn is connected with the unusual dependency of the

spectrum (6) on B. According to Fig. 4, the fan diagram

for our system (solid line) interpolates between the fan di-

agrams for the nonrelativistic and relativistic systems.

Namely, it intersects the nonrelativistic fan diagram

(dashed line) at the origin and tends to the relativistic fan

diagram (dash-dotted line) for large n.

5. Discussion and conclusion

In the present work we have taken into account the

next-to-nearest neighbor hopping in graphene in the

tight-binding approximation. For the states in the vicinity

of the Dirac points, we have considered the off-diagonal

sublattice terms of the Hamiltonian up to the first order in

momentum and the diagonal sublattice terms up to the

second order. The advantage of the effective Hamiltonian

(2) is that it leads to the model exactly solvable in an ex-

ternal magnetic field whose Hamiltonian is given by

Eq. (5) and the energy spectrum by Eqs. (6), (7). For this

model, we have calculated the DOS (19) and ploted the

fan diagram (Fig. 4), which interpolates between the fan

diagrams for the relativistic and nonrelativistic systems.

We have shown that the Berry phase for the model under

consideration equals �, i.e. coincides exactly with the

Berry phase for the relativistic system.

In a recent paper [21] a related problem was studied.

There both the off-diagonal and diagonal terms of the

Hamiltonian were considered up to the third order in mo-

mentum. The corresponding energy dispersion includes

not only the contribution due to the next-to-nearest neigh-

bor hopping (see Eq. (4)), but also high-order band cor-

rections such as trigonal warping terms. It turns out, how-

ever, that in an external magnetic field the warping terms

do not contribute to the spectrum. Accordingly, the spec-

trum (6) agrees with the spectrum derived in Ref. 21 in the

large-n limit up to the terms 1 n 3 2/ . The only essential

difference is that the large-n limit misses the n-independ-

ent term under the square root in Eq. (6) which is respon-

sible for the recovery of the zero Berry phase in the

nonrelativistic, t � 0, limit.

The experimental results reported in Ref. 21 indicate

that at energies above 500 meV a deviation from the ideal

behavior of the Dirac quasiparticles is observed. How-

ever, the asymmetry between the valence and conduction

bands studied here seems to play a minor role as com-

pared to the trigonal warping of the Fermi surface.
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