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We review recent results concerning the spectrum of edge states in the quantum Hall effect in graphene.

In particular, a special attention is payed to the derivation of the conditions under which gapless edge states

exist in the spectrum of graphene with zigzag and armchair edges. We find that in the case of a half-plane or a

ribbon with a zigzag edges, there are gapless edge states only when a spin gap dominates over a Dirac mass

gap. In the case of a half-plane with an armchair edge, the existence of the gapless edge states depends on the

specific type of Dirac mass gaps. The implications of these results for the dynamics in the quantum Hall ef-

fect in graphene are discussed.
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1. Introduction

A graphite monolayer, or graphene, has become a new

exciting topic in physics of two dimensional electronic

systems [1–3]. A qualitatively new feature of graphene is

that its low energy quasiparticles are described by a rela-

tivistic 2 1+ dimensional Dirac theory [4–6]. The spinor

structure of the corresponding wave functions is a conse-

quence of the honeycomb lattice structure of graphene

with two carbon atoms per unit cell. When a magnetic

field is applied, noninteracting Dirac quasiparticles oc-

cupy the Landau levels (LLs) with the following energies:

E n v eB c n Bn F= ± ≈ ±2 4242
� | |/ [ ]T K , (1)

with n = 0 1 2, , ,�Here B is the value of the magnetic field

orthogonal to the graphene's plane and vF ≈ 10 6 m / s

is the Fermi velocity.
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Several anomalous properties of graphene are attrib-

uted to the presence of the lowest Landau level (LLL),

i.e., the n = 0 state in spectrum (1), whose energy is inde-

pendent of the field strength. For example, the anomaly

manifests itself as the phase shift of π in the quantum

magnetic oscillations of the diagonal conductivity. This

phase shift can be understood theoretically by using

either the semiclassical quantization condition for quasi-

particles with a linear dispersion [7], or a microscopic

calculation for both massless and massive Dirac fermions

[8,9]. In the Hall conductivity, the anomaly results in an

unconventional integer quantum Hall (QH) effect with

the plateaus at the fil l ing factors ν = ± +4 1 2( / )n

[10–13]. These and other distinct properties of graphene

allow to identify unambiguously the Dirac nature of

quasiparticles in experiments [14,15].

While many unusual properties of graphene can be ex-

plained using the framework of a noninteracting Dirac

theory, the quasiparticle interactions are not negligible. In

fact, they are responsible for the appearance of additional

QH plateaus with the filling factors ν = ± ±0 1 4, , that

were first reported in Ref. 16 in the case of sufficiently

strong magnetic fields, B � 20 T (see also Refs. 17–20).

Recently we proposed a dynamical mechanism [21],

based on the phenomenon of the magnetic catalysis [22],

that could explain the ν = 0 and ν = ± 1plateaus in the Hall

conductivity of graphene [16]. The subsequent experi-

ments [17,18] have revealed several additional features of

the ν = 0 and ν = ± 1plateaus that seem to require modifi-

cations of the scenario in Ref. 21. Among them, the most

important is a rather peculiar dissipative nature of the di-

agonal transport at the ν = 0 plateau. This seems to sug-

gest that the origin of the ν = 0 plateau is associated with a

spin rather than mass gap [17,23]. This conclusion is sup-

ported by the fact that the activation energy at the ν = 0

plateau is vanishing [17,18]. Additionally, the diagonal

transport is suggested to be dominated by gapless edge

states which should exist when the lowest Landau level is

split by a large spin gap [17,23].

Concerning the ν = ± 1 plateaus, the measurements of

the thermal activation energy ΔE( )ν = ± 1 point at its con-

nection with orbital dynamics. Indeed, the activation en-

ergy depends only on the perpendicular component of the

magnetic field [17,18]. The dynamical nature of the

ν = ± 1 plateaus is also suggested by the fact that

ΔE( )ν = ± 1 is proportional to B [17,19].

Note that, in contrast, the ν = ± 4 plateaus can be con-

sistently associated with the Zeeman splitting of the n = 1

Landau level. The corresponding activation energy

ΔE( )ν = ± 4 depends linearly on the total magnetic field

and has the same magnitude as the Zeeman energy

[17,18],

E
g

B BZ
L

B=
2

0 67μ � . [T] K , (2)

whereμB e mc= � / ( )2 is the Bohr magneton and gL � 2 is

the Lande factor in graphene.

Theoretically, the ν = 0 and ν = ± 1plateaus come from

lifting the approximate degeneracy of four sublevels at

LLL. The degeneracy is a consequence of the «flavor»

U ( )4 symmetry of the low-energy continuum description

of graphene in absence of the Zeeman interaction. This

symmetry operates in the space of two sublattice-valley

and two spin degrees of freedom. If it is accepted that the

ν = 0 plateau is due to a spin gap, then the ν = ± 1plateaus

should result from breaking the valley-sublattice symme-

try. This seems to be in agreement with the observations

in Ref. 18.

There are essentially two approaches that consider

various possibilities of breaking the approximate U ( )4

symmetry of graphene (for a brief review, see Ref. 24):

i) The quantum Hall ferromagnetism (QHF) scenario

[25–27] that exploits an analogy between the four-fold

degeneracy of LLs in graphene, associated with the U ( )4

symmetry, and the SU ( )4 ferromagnetism previously

studied in the bilayer quantum Hall systems [28]. In this

scenario the QH plateaus with all integer values of the

filling factor ν occur in sufficiently clean samples. The

QHF order parameters are described by the densities of

conserved charges connected with the diagonal genera-

tors of the SU U( ) ( )4 4⊂ symmetry group.

ii) The magnetic catalysis (MC) scenario [21,29–31]

uses the idea of a spontaneous symmetry breaking due to

the exciton (chiral) condensation [22,32–34]. Such a con-

densation produces a nonzero Dirac mass term in the

low-energy theory of graphene. (Note that originally the

magnetic catalysis scenario in graphene was motivated by

the early experiments in highly oriented pyrolytic gra-

phite [35].)

As emphasized in Ref. 21, the plateau ν = 0 could ap-

pear due to either an enhanced spin gap or a mass term.

An enhanced spin gap breaks the approximate U ( )4 sym-

metry down to the U U( ) ( )2 2− +× subgroup which oper-

ates in the sublattice-valley space and does not mix

spin-up (s = +) and spin-down (s = −) states. A nonzero

Dirac mass term breaks the symmetry down to another

U U( ) ( )2 2× ′ subgroup, operating in the spin space. Either

of them is sufficient to partially lift the four-fold degener-

acy of the LLL that is needed in the ν = 0 QH state. The

structure of the energy sublevels at LLL in the case of a

nonzero spin gap is illustrated in the left panel of Fig. 1.

In order to explain the ν = ± 1 QH plateaus two differ-

ent order parameters are required. (Note that the choice of

two order parameters with given symmetry properties is

not unique [36].) This should be evident already from the

symmetry arguments alone. For example, the simplest

possible structure of the energy sublevels for the ν = + 1

state is shown in the right panel of Fig. 1. The correspond-

ing splitting is possible only if the U U( ) ( )2 2− +× sym-
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metry is further reduced, e.g., at least down to the

U U U( ) ( )
~

( )2 1 1− + +× × subgroup. However, this would

not be possible without having an additional order param-

eter that breaks the sublattice-valley symmetry, described

by the simple Lie group SU U( ) ( )2 2+ +⊂ .

An approach that combines both QHF and MC mecha-

nisms in a unifying scheme was recently proposed in

Ref. 36. By making use of a multi-parameter variational

ansatz for the quasiparticle propagator, it was found that

QHF (μ s and ~μs) and MC (Δ s and
~
Δ s) order parame-

ters necessarily coexist. In terms of symmetry, the order

parameters of the first type, i.e., μ s and Δ s with nonequal

values for s = ±, break the U ( )4 symmetry down to

U U( ) ( )2 2− +× just like the Zeeman term. The order pa-

rameters of the other type, ~μs and
~
Δ s , are triplets with re-

spect to the SU s( )2 group which is the largest nonabelian

subgroup of the U s( )2 . Thus, when either ~μs or
~
Δ s has a

nonzero vacuum expectation value, the symmetry SU s( )2

is further broken down to U s( )1 .

In this paper we review the results of Refs. 37 and 38

that address the question of compatibility of the micro-

scopic dynamics described in Ref. 36 with the gapless

edge states, apparently needed for the description of the

ν = 0 plateau [17,18]. The main conclusions are as fol-

lows. In the case of graphene on a half-plane or a finite

width ribbon with zigzag edges [37,38], there are gapless

edge states in the spectrum only when the spin gap domi-

nates over the mass gap. In the case of graphene on a

half-plane with an armchair edge [38], however, the exis-

tence of the gapless edge states depends on the specific

type of the mass gaps. These results could have important

consequences for understanding dynamics in the QH ef-

fect in graphene.

The paper is organized as follows. In Sec. 2 we present

a model Lagrangian that captures the most general dy-

namical situation with QHF and MC order parameters,

proposed in Ref. 36. The spectrum of the corresponding

Dirac equation in an external magnetic field is analyzed in

Sec. 3. The edge states for graphene on a half-plane with

zigzag and armchair edges are considered in Secs. 4 and

6, respectively. The edge states for graphene ribbon with

zigzag edges are analyzed in Sec. 5. The main results of

the paper are discussed in Sec. 7.

2. Model with dynamical gaps

The low-energy quasiparticles excitations in graphene

are described in terms of a four-component Dirac spinors

Ψs
T

K As K Bs K Bs K As= + + − −( , , , )ψ ψ ψ ψ . Each spinor (with

a given spin index s = ±) combines the Bloch states on

the two different sublattices (A and B) of the hexagonal

graphene lattice and with momenta near the two inequi-

valent Dirac points (K + and K − ) of the two-dimensional

Brillouin zone. The quadratic part of low-energy Lagran-

gian density for quasiparticles can be written in a rela-

tivistic form,

�

�

= ∂ + + +

+

= ±
∑ �

s

s t F x F y st i iv D iv D tΨ Ψ( , )( ) ( , )r rγ γ γ0 1 2

mass + +
= ±
∑ ( ~ ~ ) ,μ ρ μ ρs s s s

s

(3)

where Ψ Ψs s= †γ 0 is the Dirac conjugated spinor and the

operators ρ γs s s≡ Ψ Ψ0 and ~ρ γ γs s s≡ Ψ Ψ0 5 are densities

of conserved charges connected with the chemical poten-

tials μ s and ~μs , respectively. Notice that here the Fer-

mi velocity v cF ≈ / 300 plays the role of the speed of

light. The orbital effect of a perpendicular magnetic field

B A= ∇ × is included via the covariant derivative

D ie c Ai i i= ∂ + ( / )� where i x y= , and − <e 0 is the elec-

tron charge. Here we assume that the vector potential is

taken in the Landau gauge: A Byx = − and A y = 0, where

B is the magnitude of the magnetic field. The mass term

�mass is defined below.

The 4 4× matrices γ ν furnish a reducible representa-

tion of the Dirac algebra. Here, we use the following rep-

resentation:

γ τ τ γ τ τ0
1 0 2= ⊗ = − ⊗~ , ~ ,i

ii (4)

where the Pauli matrices ~ ,τ τi i (as well as the 2 2× unit

matrices ~ ,τ τ0 0) act on the valley (K K+ −, ) and sublattice

(A B, ) indices, respectively. This representation is derived

from a tight-binding model for graphene [39]. It is partic-

ularly convenient for our purposes in this study because it

provides a simple form of the boundary conditions at zig-

zag and armchair edges. As follows from defnition (4),

the γ matrices satisfy the usual anticommutation relations

{ , }γ γμ ν μν= 2g where gμν = diag ( , , , )1 1 1 1− − − . Since the

matrix γ γ γ γ γ5 0 1 2 3≡ i is diagonal,

γ 5 2

2

0

0
=

−
⎛
⎝⎜

⎞
⎠⎟

I

I
, (5)
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Fig. 1. Illustration of the lowest Landau level splitting needed

to explain ν = 0 and ν = 1plateaus in QHE in graphene.



this representation is conventionally called chiral. Note

that the chirality here is identified with the valley index

(K + or K − ) [39].

The general expression for the mass term �mass in the

Lagrangian density may include singlet (Δ s) as well as

triplet (
~
Δ s) contributions with respect to the valley sym-

metry group SU s( )2 . The appearance of the mass term

can be attributed, for example, to the MC mechanism. In

the representation used here, its explicit form reads

�mass = −
= ±
∑Ψ Δ Δ Ψs

s

s s st t( , )(
~

) ( , ) .r rγ γ γ3 5 3 (6)

Under the time reversal symmetry, the operators associ-

ated with the mass parameters Δ s and
~
Δ s are odd and

even, respectively. Concerning the triplet mass term
~
Δ Ψ Ψs s sγ 3 , it can be also written in other equivalent

forms, e.g., as
~
Δ Ψ Ψs s siγ 5 or

~
Δ Ψ Ψs s s [40]. The latter, in

particular, is the usual Dirac mass term. All of these repre-

sentations are equivalent because they are related by

transformations of the SU s( )2 symmetry group. For our

purposes, however, it is most convenient to use the form

in Eq. (6) which, as we shall see below, has a simple inter-

pretation in the tight binding model.

In Lagrangian density (3), the chemical potentials μ s

and ~μs allow to accommodate the QHF order parameters

in the dynamical model of Ref. 36. Regarding the trans-

formation properties of μ s and ~μs under the flavor sym-

metry, they are similar to those of Δ s and
~
Δ s , respectively.

Before proceeding with further analysis, it is instruc-

tive to address the physics interpretation of the mass pa-

rameters and chemical potentials in more detail. To this

end, let us write down the explicit expressions for the cor-

responding operators in the Lagrangian density in terms

of separate Bloch components of the spinors,

~
:

† † †Δ Ψ Ψs s s K As K As K As K As K Bs K Bs K
γ ψ ψ ψ ψ ψ ψ ψ3 = + − −

+ + − − + + −Bs K Bs

s s s K As K As K As K As K Bs

†

† †

,

:

ψ

γ γ ψ ψ ψ ψ ψ

−

+ + − − +
= − −Δ Ψ Ψ3 5 † †

† †

,

~ :

ψ ψ ψ

μ γ γ ψ ψ ψ

K Bs K Bs K Bs

s s s K As K As K As

+ − −

+ + −

+

= −Ψ Ψ0 5 ψ ψ ψ ψ ψ

μ γ ψ ψ

K As K Bs K Bs K Bs K Bs

s s s K As K A

− + + − −

+ +

+ −

=

† †

†

,

: Ψ Ψ0 s K As K As K Bs K Bs K Bs K Bs+ + +
− − + + − −ψ ψ ψ ψ ψ ψ† † †

.

(7)

(8)

(9)

(10)

Here the operators on the right hand side are linear combi-

nations of the electron densities at specified valleys (K +
or K − ) and sublattices (A or B). These operators enter into

the Lagrangian density together with the parameters Δ s ,
~
Δ s , μ s , and ~μs which play the role of Lagrange multipli-

ers. Therefore, the values of the masses and chemical po-

tentials control the relative concentrations of electrons at

different valleys and sublattices. They are determined

from the gap equations for Dirac quasiparticles [36].

As seen from Eq. (7), the triplet Dirac mass
~
Δ s is re-

lated to the density imbalance between the A and B

sublattices. Its spontaneous generation leads to a state

with a charge density wave [21,29–32]. It has also been

suggested [41] that this kind of Dirac mass can be induced

in graphene by placing it on a top of an appropriate sub-

strate that breaks the sublattice symmetry. Recent ARPES

measurements at B = 0 show an evidence for a finite value

of the gap
~
Δ in epitaxial graphene grown on SiC [42]. If

the values of the masses are nonequal for different spins

s = ± , an admixture of an antiferromagnetic wave also

develops in the ground state [29]. A mixed density imbal-

ance at two valleys and two sublattices is controlled by

the singlet mass Δ s , see Eq. (8). Similarly, the chemical

potential ~μs is connected with the density imbalance be-

tween the two valleys. At last,μ s is the usual chemical po-

tential related to the total density of electrons with a given

spin.

3. Dirac equation in an external magnetic field

In this section we study the spectrum of the low-en-

ergy quasiparticles in the model of graphene with the

most general set of parameters Δ s ,
~
Δ s , μ s , and ~μs . The

corresponding Dirac equation takes the following form:

[

Δ Δ ]Ψ

i i v D i v Dt F x F yγ γ γ

μγ μγ γ γ γ γ

0 1 2

0 0 5 3 5 3

� � �∂ + + +

+ + + −~ ~
( , ) .t r = 0 (11)

For brevity of notation, the spin index is omitted here

and below. For the energy eigenvalue solutionsΨ( , )t r =
= −exp ( )iEt / ( )� Ψ r the equation reduces to

[

Δ Δ ]Ψ Ψ

�v iD iD

i E

F x y( )

~ ~
( ) ( ),

− − −

− − − + =

α α

μ μγ γ γ α

1 2

5 1 2
3 r r (12)

where the α matrices are

α γ γ
σ

σi
i i

i

= =
−

⎛
⎝⎜

⎞
⎠⎟

0 0

0
. (13)

Using the representation for the γ matrices in Eq. (4), we

can rewrite the Dirac equation in components as follows:
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− − − +

− − − +

⎛

⎝
⎜
⎜

⎞

⎠

+ −

+ −
μ

μ

( ) ( )

( ) ( )

( )

( )

Δ

Δ

�

�

v iD D

v iD D

F x y

F x y

⎟
⎟
⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟+

+

+

+

ψ
ψ

ψ
ψ

AK

BK

AK

BK
E ,

(14)

− − +

− − +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− +

− +
μ

μ

( ) ( )

( ) ( )

( )

( )

Δ

Δ

�

�

v iD D

v iD D

F x y

F x y

ψ
ψ

ψ
ψ

BK

AK

BK

AK
E−

−

−

−

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ .

(15)

Here we introduced the shorthand notation: μ μ μ( ) ~± ≡ ±
and Δ Δ Δ( ) ~± ≡ ± . As we see, the equations for different

valleys decouple. This is a very useful property that sim-

plifies the analysis considerably. In each of the two de-

coupled sets of equations, we can express the B compo-

nents in terms of the A components of the spinors,

ψ
μ

ψ

ψ

BK
F x y

AK

BK
F x y

v iD D

E

v iD D

E

+ +

−

= −
−

+ −

=
+

+ −

�

�

( )
,

( )

( ) ( )Δ

+ +− + −μ
ψ

( ) ( )
.

Δ
AK

(16)

(17)

Then, at K + and K − valleys, the two-component spinors

can be written in the following form:

ψ
ψ

μ
ψ

ψ

K

AK

F x y
AK

K

A v iD D

E

+

+

+
= −

−

+ −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟+ −

1
� ( ) ,

( ) ( )Δ

−
−

−

=
+

+ +

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

− +A

v iD D

E

F x y
AK

AK

2

� ( )

.( ) ( )μ
ψ

ψ
Δ

(18)

(19)

Here the constants A1 2, are determined by the normaliza-

tion conditions

d r k n k n k k
K K n n

2∫ ± ± ′ ′ = − ′′ψ ψ δ δ†
,( , , ) ( , , ) ( ),r r (20)

where k k, ′ and n n, ′ are the quantum numbers (e.g., the

wavevector along x or y direction and the Landau level

index) that characterize the eigenstates of Dirac quasi-

particles in the magnetic field.

As follows from Eqs. (14) and (15), the A components

of the spinors satisfy the following second order differen-

tial equations

( ) ,

( )

− − + =

− − − =
+ +

−

+l D l D

l D l D

x y AK AK

x y AK

2 2 2 2

2 2 2 2

1 2

1

ψ λ ψ

ψ 2λ ψ− −AK .
(21)

Here we introduced the two dimensionless parameters

λ μ ε±
±≡ + −[( ) ( ) ] /( ) ( )E 2 2

0
2Δ � , the Landau energy

scale ε 0
22≡ �v eB cF | |/ , and the magnetic length l ≡

≡ �c eB/| |.

In the Landau gauge ( , ) ( , )A A Byx y = − 0 , the differen-

tial equations in Eq. (21) do not depend explicitly on the

x coordinate and, therefore, the wave functions are plane

waves in the x direction,

ψ
π

ψ
π

AK
ikx

BK
ikx

k
l

u y k

k
l

v y k

+

+

=

=

+

+

( , ) ( , ) ,

( , ) ( ,

r

r

1

2

1

2

e

e ) ,

( , ) ( , ) ,

( , ) (

ψ
π

ψ
π

AK
ikx

BK
ikx

k
l

u y k

k
l

v y

−

−

=

=

−

−

r

r

1

2

1

2

e

e , ) ,k

(22)

where the functions u y k± ( , ) depend only on a single

combination of the variables, ξ = −y l kl/ , and satisfy the

following equations:

( ) ( ) .∂ − + =± ±ξ ξ λ ξ2 2 1 2 0� u (23)

In accordance with Eq. (18), the eliminated components

v y k v± ±≡( , ) ( )ξ are given by

v
u

E
±

±
±

=
∂

+
( )

( ) ( )

( )
.

( ) ( )
ξ

ε ξ ξ

μ

ξ0

2

�

�
�Δ

(24)

In an infinite system without boundaries, normalizable

solutions to Eqs. (23) are expressed in terms of the Her-

mite polynomials, u v H n( ), ( ) ( )/ξ ξ ξξ∝ −e
2 2 , provided

the parameters λ ± take nonnegative integer values, i.e.,

λ ± = n, where n = …0 1 2, , , (25)

Note that the value of the energy E = − ++ −μ ( ) ( )Δ corres-

ponds to a normalizable LLL state in K + valley. For such

a state, the apparent singularity in the v+ ( )ξ compo-

nent of the wave function, see Eq. (24), is removed by a

proper redefinition of the normalization constant. The

same is not true, however, for the value of the energy

E = − −− +μ ( ) ( )Δ in the K − valley. In fact, a direct analy-

sis shows that the only n = 0 state in K + valley has energy

E = − ++ −μ ( ) ( )Δ and resides solely on the B sublattice,

while the only n = 0 state in K − valley has energy

E = − +− +μ ( ) ( )Δ and resides solely on the A sublattice.

4. Edge states for a half-plane with a zigzag edge

There exist many studies of edge states in graphene

under various conditions [13,17,23,37,38,43–49]. Here

we first consider a graphene monolayer on the half-plane

y > 0 with a zigzag edge parallel to the x as shown in

Fig. 2 [38]. To obtain the energy spectrum we need to sup-

plement the differential equations for the u y k± ( , ) and

v y k± ( , ) functions with suitable boundary conditions.

Such conditions can be derived from the tight-binding

model [23,45,47]. For example, for a zigzag edge parallel

to the x axis the wave function on A atoms should vanish

at y = 0,

u y u y+ −= = = =( ) ( ) .0 0 0 (26)

Edge states in quantum Hall effect in graphene

Fizika Nizkikh Temperatur, 2008, v. 34, No. 10 997



The general solution to Eq. (23) is expressed in terms of

the parabolic cylinder (Weber) functions U a z( , ) and

V a z( , ) [50],

u C
E

U

C V

+

+ −
+

+

=
+ − −⎛
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+

+
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( ) ,

,
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ε
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2
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+
+ +

−
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− +

,

( ) ,
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E
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1 2

2
2

Δ
V −

+⎛
⎝⎜

⎞
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−1 2

2
2

λ
ξ, .

(27)

(28)

Here, for convenience of the further analysis, the inte-

gration constants C1 and C 4 are introduced together

with the additional factors ( ) /( ) ( )E + −+ −μ εΔ 0 and

( ) /( ) ( )E + +− +μ εΔ 0, respectively.

In an infinite system without edges, the normalizable

wave functions contain only the parabolic cylinder

U a z( , ) functions which are bound at z → ± ∞, provided

a n= − −1 2/ and n is a nonnegative integer. In this

case, the following relation is valid: U n z( / , )− − =1 2

= − −2 22 42n z
nH z/ / ( / )e , where H zn ( ) are the Hermite

polynomials. Therefore, as stated in the previous section,

the spectrum is given by λ ± = n where n = 0 1 2, , ,� (A

special nature of LLL should be kept in mind: at n = 0

there are only two rather than four possible energy eigen-

values that correspond to normalizable states.)

Using the following recurrent relations for parabolic

cylinder functions [50]

d

dz

z
U a z a U a z+⎛

⎝⎜
⎞
⎠⎟

= − +⎛
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2

1

2
1( , ) ( , ) ,

d
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2
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d
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= +
2

1( , ) ( , ) ,

d

dz

z
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−
2

1

2
1( , ) ( , ) ,

(29)

and Eq. (24), we obtain the v± ( )ξ functions,

v C U
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E
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Δ
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⎞
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−λ ξ, .

(30)

(31)

On a half-plane, normalizable wave functions are also

given in terms of only U a z( , ) function which falls off ex-

ponentially as z → +∞, while the functionV a z( , ) is grow-

ing exponentially in both directions z → ±∞. Therefore,

we must take C 2 0= and C 4 0= . In contrast to the case of

an infinite plane, on a half-plane there is no restriction for

the parameter a to be a negative half-integer.

Taking into account that C C2 4 0= = , the zigzag boun-

dary conditions (26) lead to the following system of equa-

tions

C E D kl

C D kl

1 1

3

2 0

2 0

( ) ( ) ,

( ) .

( ) ( )+ − − =

− =

+ −
−+

−

μ λ

λ

Δ
(32)

Here we introduced another parabolic cylinder function,

D zν ( ) [50], which is related to function U a z( , ) in a sim-

ple way:

U a z D za( , ) ( )/= − −1 2 . (33)

There are two types of nontrivial solutions that satisfy

boundary conditions (32). Firstly, taking C1 0≠ and

C 3 0= , we find that the equation for eigenvalues is re-

duced down to E = − ++ −μ ( ) ( )Δ or

I. D klλ+ − − =1 2 0( ) . (34)

The solutions of this type have wave functions with a sup-

port only in K + valley,

I. u C
E

D

v C D

+

+ −

−

+

=
+ −

= −

+

+

( ) ( ) ,

( ) ( ) ,

( ) ( )

ξ
μ
ε

ξ

ξ ξ

λ

λ

1
0

1

1

2

2

Δ

(35)

and u v− −= =( ) ( )ξ ξ 0. The other class of solutions is

such that C1 0= and C 3 0≠ , and the energy eigenvalues

satisfy the following equation:

II. D klλ− − =( ) .2 0 (36)

The wave functions for this type solutions are nonvani-

shing only in K − valley, i.e.,
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II. u C D

v C
E
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ξ ξ
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3
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(37)

and u v+ += =( ) ( )ξ ξ 0. By making use of the general pro-

perties of the parabolic cylinder function D zν ( ), we can

understand some qualitative features of the energy spec-

trum even without solving the equations numerically. To

this end, we need to know only that, for real ν and z, the

function D zν ( ) has no real zeros when ν is negative, and

has exactly [ ]ν + 1 real zeros when ν is nonnegative [51].

Here [ ]ν + 1 denotes the integer part of ν + 1. In view of this

property, the necessary condition for Eq. (34) to be satis-

fied is λ + ≥ 1. By including also the possibility of the

dispersionless mode, determined by E = − ++ −μ ( ) ( )Δ ,

we see that the complete spectrum in valley K + (solutions

of type I) has the following general structure:

E k

E k kl nn

0

0
2 2

( ) ,

( ) ( , ) ( ) ,

( ) ( )

( ) ( )

= − +

= − ± +

+ −

+
+

−

μ

μ λ ε

Δ

Δ
where λ + ≥( , ) ,kl n 1

(38)

where n = 1 2, ,� is an index that labels different branches

of solutions. By making use of the asymptotic behavior of

the parabolic cylinder functions (see Eq. 9.246.2 in

Ref. 52), one can show that λ + ( , )kl n n� when kl >> 1.

This is expected since large values of kl correspond to the

states in the bulk, whose wave functions are localized

around ξ� 0 or equivalently y l kl/ � . (In a system with-

out edges, index n is identified with the usual Landau

level index.)

Similarly, we can constrain the form of the spectrum in

valley K − (solutions of type II). The necessary condition

for having a real solution to Eq. (36) is λ − ≥ 0. Thus, the

energy spectrum in valley K − has the following general

structure:

E k kl n

kl n

n ( ) ( , ) ( ) ,

( , ) ,

( ) ( )= − ± +
≥

−
−

+

−

μ λ ε
λ

0
2 2

0

Δ
where

(39)

where n = 0 1 2, , ,�Again, one can show that λ − ( , )kl n n�

when kl >> 1.

Our numerical results for λ ± as functions of kl are pre-

sented in Fig. 3. Solid and dashed lines represent λ + and

λ − , respectively. As expected, there exists an infinite

tower of solutions that correspond to an infinite tower of

Landau levels on a half-plane. In Fig. 3, we show only the

first eleven solutions. In the same figure, we also added

the constant solution λ + = 0 that, strictly speaking, repre-

sents only the dispersionless mode with the energy

E = − ++ −μ ( ) ( )Δ , see the first expression in Eq. (38).

(Formally, λ + = 0 may also mean that E = − −+ −μ ( ) ( )Δ ,

but this is not an energy eigenvalue.)

By analyzing the structure of the spectrum together

with the actual dependence of λ ± on the wavevector, we

can now determine when gapless modes exist in the spect-

rum of graphene on a half-plane with a zigzag edge. From

Eqs. (38) and (39), we see that the necessary condition to

have a zero energy state is that at least one of the follow-

ing inequalities is satisfied:

K

K

+
+ −

−
− +

≥ +

≥

valley:

valley:

| | ( ) ,

| | | |

( ) ( )

( ) ( )

μ ε

μ

0
2 2Δ

Δ .

(40)

(41)

From the fact that there exist branches with λ + � 1 and

λ − � 0 at kl >> 1, we see that this is also the sufficient con-

dition.

An important point to emphasize here is that nonzero

masses do not prevent the existence of the gapless edge

states when the absolute value of Δ( )+ is less than the ab-

solute value ofμ ( )− at least for one choice of the spin. Our

results generalize the findings of previous studies on a

half-plane [17,23], where only the case with a single non-

zero order parameter (either mass or spin gap) was con-

sidered.

Two specific examples of energy spectra, with and

without gapless modes, are given in Fig. 4. In the left

panel, the first few Landau levels in the case of a small

spin gap, modeled by μ ε± = � 0 02 0. with the subscript in-

dex denoting the spin, and a larger singlet mass, given by

Δ± = ± 0 08 0. ε , are shown. Since | | | |( ) ( )μ − +< Δ , there are

no gapless modes in this case. In the right panel of Fig. 4,

the low-energy spectrum is shown for another choice of

parameters, i.e., μ ε± = � 0 08 0. and Δ± = ± 0 02 0. ε , that

satisfies the condition in Eq. (41). As expected, in this

case there are gapless edge states in the spectrum. By tak-

ing into account that the group velocities of gapless

modes, v E kx E= ∂ ∂ =/ | 0, have opposite signs along the x

direction, the up- and down-spin states carry counter-
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propagating currents [17,23]. It is also curious to note that

these gapless states are chiral since they belong to a single

valley (K − ).

Before concluding this section, it might be appropriate

to mention that the examples of spectra shown in Fig. 4

may have a direct application to the case of graphene in a

strong magnetic field. The corresponding choice of pa-

rameters with singlet, rather than triplet masses were

taken in the same form as in the ground state around the

neutral Dirac point, proposed in the dynamical model of

Ref. 36. In fact, the spectra would look nearly the same

also in the case of triplet masses, except perhaps for an

overall shift of the dispersionless modes which depend

not only on the absolute value but also on the sign of the

mass terms.

5. Edge states for a ribbon with zigzag edges

In this section we study graphene ribbon of a finite

width in the y direction, 0 ≤ ≤y W , and a zigzag edge pa-

rallel to the x direction, see Fig. 5 [37]. In this case, the A

and B components of wave functions should vanish on the

opposite edges [23,45,47]. Therefore, in addition to the

boundary conditions at y = 0 in Eq. (26), one should re-

quire that

v y W v y W+ −= = = =( ) ( ) .0 (42)

In principle, by satisfying Eq. (26) and (42) and using the

wave function normalization conditions, we can deter-

mine all four integration constants in Eqs. (27), (28), (30),

and (31). For our purposes here, however, it suffices to

determine the conditions when nontrivial, normalizable

solutions exist. These will provide the dispersion spectra

of all modes on a graphene ribbon.

Let us start from the boundary conditions for u + and

v+ components (K + valley), see Eqs. (26) and (42). They

take the following explicit form:
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(44)

where k W l0
2≡ / is determined by the width of the rib-

bon. A nontrivial solution to this set of equations exists

when

λ
λ λ
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Fig. 4. Numerical results for the energy spectra of the first few Landau levels near a zigzag edge of graphene in the case of nonzero

spin splitting and nonzero singlet masses. The values of parameters are μ ε± = � 0 02 0. and Δ± = ± 0 08 0. ε in the left panel, and

μ ε± = � 0 08 0. and Δ± = ± 0 02 0. ε in the right panel. (The subscript indices in μ± and Δ± denote the spin orientations.) In the first

case | | | |( ) ( )μ − +< Δ and there are no gapless modes, in the second case | | | |( ) ( )μ − +> Δ and gapless modes are present. Spin-up and

spin-down states are denoted by red (s = +) and blue (s = −) lines (color online). In the lowest energy sublevels the spins are also

marked by arrows. The spectra around K+ (K−) point are shown by solid (dashed) lines.
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Fig. 5. The lattice structure of a finite width graphene ribbon.



− −
+

−⎛
⎝⎜

⎞
⎠⎟

−
−⎛

⎝⎜
⎞
⎠⎟
=+ +U k k l V kl

1 2

2
2

1 2

2
2 00

λ λ
, ( ) , . (45)

Similar condition is also derived in the K − valley,
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By solving Eqs. (45) and (46) numerically, we determine

the dependence of dimensionless energy parameters λ +
and λ − on wavevector k. The results for two different

widths of graphene ribbons, W l= 5 and W l= 10 , are

shown in Fig. 6.

When the width of the ribbon is less than about 3 or 4

times the magnetic length, we find that the spectra have

little overlap with the usual bulk spectra, i.e., λ ± = n

where n is a nonnegative integer. Additionally, the separa-

tion between the nearest levels quickly increases with de-

creasing W . For example, in the case of W l= , the separa-

tion between the lowest two values of λ ± is about an

order of magnitude larger than in the bulk.

For the case W l= 5 , shown in the left panel of Fig. 6,

only the lowest level may have a hint at the middle plateau

developing. However, when the ribbon's width is larger

than about 6 or 7 times the magnetic length, nearly flat

plateaus are already distinguishable in the lowest levels

around the central wavevector 1
2 0k . We also find that the

lower the level, the wider the plateau is formed. For ex-

ample, in the case of W l= 10 , about 8 or 9 lowest levels

reveal clear plateaus, and the lowest of them in the middle

are essentially indistinguishable from the levels that

would appear in an infinite graphene sample, see the right

panel in Fig. 6.

In passing, let us also emphasize the following special

feature of the spectrum in a graphene ribbon with zigzag

boundaries. As we see from Fig. 6, for λ + � 0 (actually,

E � − ++ −μ ( ) ( )Δ ) and for λ − � 0 (actually, E � − +−μ ( )

+ +Δ( )), dispersionless surface solutions [23,44,47] exist

at both K points. These solutions are bound to the k � 0

and k k� 0 edges for K + and K − points, respectively.

Now, by restoring the spin index, we assemble the

complete spectrum of a graphene ribbon,

E n k n ks K s s,
( ) ( )( , ) ( , ) ( ) ,+ = − ± ++

+
−μ λ ε 0

2 2Δ

E n k n ks K s s,
( ) ( )( , ) ( , ) ( ) .− = − ± +−

−
+μ λ ε 0

2 2Δ

(47)

(48)

Notice that for each spin orientation there are four sub-

levels that correspond to the lowest Landau level. Only

half of these correspond to the «bulk» states that remain

normalizable in an infinite graphene plane. The other half

have wave functions localized only at the edges.

By making use of the numerical results for λ + and λ − ,

we can plot the actual energy spectra in the system. For

the ribbons of widths W l= 5 and W l= 10 , these are pre-

sented in Figs. 7 and 8. The choice of the order parame-

ters in Fig. 7 is μ ε± = � 0 08 0. , ~ .μ ε± = 0 01 0, Δ± = ± 0 02 0. ε ,
~
Δ± = 0. In this case, the ferromagnetic gap μ s

( )± domi-

nates over the mass gap Δ s
( )± , ensuring the presence of

gapless edge states (marked by dots). The electron spins

of the lowest energy sublevels are marked by arrows. In

order to lift the degeneracy of all sublevels, we also added

small nonzero values of ~μ± . In Fig. 8 the parameters

are chosen as follows: μ ε± = � 0 02 0. , ~ .μ ε± = 0 01 0, Δ± =
= ± 0 08 0. ε ,

~
Δ± = 0. There are no gapless edge states in this

case.

From Figs. 7 and 8, we see that there exist gapless edge

states (whose energy vanishes at certain values of k) on-

ly when the ferromagnetic gap dominates over the mass

gap, i.e., | | | |( ) ( )μ ± > Δ � . From Fig. 6, we can see that

λ ± ( , )0 k is nonnegative and approaches zero at certain
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values of the wavevector. This feature together with dis-

persion relations (47) and (48) makes it clear that the

necessary and sufficient condition for the existence of

gapless modes is that at least one of the inequalities

| | | |( ) ( )μ s s
− +> Δ , | | | |( ) ( )μ s s

+ −> Δ is satisfied for at least one

spin choice s = ± .

These results for a finite width ribbon are similar to

those on a half-plane given in the preceeding section. The

only qualitative difference is due to the fact that on a rib-

bon there are additional edge states associated with the

second edge which was absent in the case of a half-plane.

6. Edge states for a half-plane with an armchair edge

In this section, we analyze the spectrum of edge modes

in the case of an armchair edge [38]. We take the armchair

edge parallel to the y direction, as shown in Fig. 2. In this

case, it is convenient to use a different Landau gauge with

( , ) ( , )A A Bxx y = 0 . Accordingly, the solutions of Eq. (21)

are translation invariant along the y direction:
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(49)

Then the corresponding differential equations for func-

tions u x k± ( , ), rewritten in terms of the dimensionless

variable ξ = +x l kl/ , coincide with Eq. (23). The expres-

sions for the eliminated components v± ( )ξ , however,

slightly differ from Eq. (24), and are given by

v i
u

E
±

±
±

=
∂

+
( )

( ) ( )

( )
.

( ) ( )
ξ

ε ξ ξ

μ

ξ
�

�

�
�

0

2 Δ
(50)

We consider a graphene sheet in the half-plane x > 0.

Since the armchair edge has lattice sites of both A and B

type, the wave function should vanish at both these sites

along the x = 0 line [23,45,47]
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u x u x

v x v x
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Note that armchair boundary conditions mix the chira-

lities associated with K + and K − valleys. The general so-

lutions for u ± ( )ξ functions have the same form as in

Eqs. (27) and (28),
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+

+
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(52)

(53)

but with ξ = +x l kl/ . By using the relations in Eqs. (50)

and (29), we also obtain the explicit expression for v± ( )ξ
functions

v iC U
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+
+

+ −
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−iC V4

1 2

2
2

λ
ξ, .

(54)

(55)

As in the zigzag case, normalizable wave functions here

are given in terms of only U a z( , ) function which falls

off exponentially as z → +∞, unlike the function V a z( , )

which is growing exponentially in both directions

z → ±∞. Therefore, we set C 2 0= and C 4 0= . Then, the

armchair boundary conditions (51) lead to the following

system of equations

C
E

D kl C D kl

C D kl

1
0

1 3

1

2 2 0

2

+ −
+ =

+

+ −

−+ +

−

μ
ε λ λ

λ

( ) ( )

( ) ( ) ,

( )

Δ

C
E

D kl3
0

1 2 0
+ −

=
− +

−−
μ
ε λ

( ) ( )

( ) ,
Δ

(56)

where again we used relation (33) to rewrite the expres-

sion in terms of the parabolic cylinder function D zν ( ).

This system has nontrivial solutions when the determi-

nant of coefficient functions is zero, i.e.,

( )( )

( ) (

( ) ( ) ( ) ( )E E

D kl D kl

+ − + −
×

×

+ − − +

− −+ −

μ μ

ε

λ λ

Δ Δ

0
2

1 12 2 ) ( ) ( ) .− =+ −D kl D klλ λ2 2 0

(57)

The numerical solutions to this equation for several re-

presentative choices of parameters are shown in Figs. 9

and 10.

The two cases with singlet masses are illustrated in

Fig. 9. In the left panel, the first few Landau levels in the

case of μ ε± = � 0 02 0. and Δ± = ± 0 08 0. ε are shown. In

the right panel, instead, the corresponding values are

μ ε± = � 0 08 0. and Δ± = ± 0 02 0. ε . Note that ~ ~
μ± ±= =Δ 0

in both cases. (Here we restored the subscript indices

which denote the quasiparticle spin orientations.) As we

see, in both cases the spectra contain gapless edge states.

This is in strong contrast with the zigzag edge case. In-

deed, for armchair edge gapless modes exist irrespective

of the actual relation between the values of the singlet

masses and spin splitting gaps. In part, this property could

be understood from the topology of the spectra around the
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Fig. 9. Numerical results for the energy spectra of the first few Landau levels near a armchair edge of graphene in the case of non-

zero spin splitting and nonzero singlet masses. The values of parameters are μ ε± = � 0 02 0. and Δ± = ± 0 08 0. ε in the left panel, and

μ ε± = � 0 08 0. and Δ± = ± 0 02 0. ε in the right panel. (The subscript indices in μ± and Δ± denote the spin orientations.) In both cases,

there are gapless modes in the spectrum. Spin-up and spin-down states are denoted by red (s = +) and blue (s = −) lines (color on-

line). In the lowest energy sublevels the spins are also marked by arrows.



edge and the fact that the singlet mass does not break

the valley SU s( )2 symmetry. The double degenerate sub-

levels with a given spin, which should exist in the bulk

because of the SU s( )2 symmetry, repel in opposite direc-

tions near the edge. Then, gapless modes become almost

inevitable at the edge.

We note that the gapless edge states in Fig. 9 consist of

a pair of opposite spin states, carrying counter-propagat-

ing currents along the edge. This is qualitatively the same

situation as found in Ref. 23. Interestingly, though, if the

values of singlet masses Δ+ and Δ− had the same signs,

the opposite spin states would carry currents in the same

direction along the edge. The observational implications

of this fact could be quite unusual. It is not clear, how-

ever, if such a state can be realized since the dynamical

model of Ref. 36 indicates that singlet masses Δ+ and Δ−
should have opposite signs in the ground state.

The two cases with triplet masses are illustrated

in Fig. 10. The values of the parameters in these cases are

(i) μ ε± = � 0 02 0. and
~

.Δ± = 0 08 0ε (left panel in Fig. 10)

and (ii) μ ε± = � 0 08 0. and
~

.Δ± = 0 02 0ε (right panel in

Fig. 10). These energy spectra resemble the spectra for

the zigzag edge, studied in the two previous sections.

There are no gapless edge states when the mass is larger

than the spin splitting, and there are such states when the

mass is smaller than the spin splitting.

In fact, in the case of the triplet mass
~
Δ and a nonzero μ

(but vanishing ~μ and Δ), we can study the energy spectra

around the armchair edge in a general case, just like we

did for the zigzag edge. In this particular case, the spectral

equation (57) takes the following simple form:

λ λ λD kl D kl− − =
1

2 22 2 0( ) ( ) , (58)

where λ μ ε= + −[( )
~

] /E 2 2
0
2Δ . By expressing λ in terms

of squares of parabolic cylinder functions from Eq. (58),

we see that solutions to this equation exist only with

λ ≥ 0. Therefore, the energy spectrum takes the form:

E k kl n kl nn ( ) ( , )
~

, ( , ) ,= − ± + ≥μ λ ε λ0
2 2 0Δ where (59)

and n = 0 1 2, , ,� Addit ional ly, one can show that

λ( , )kl n n� when | |kl >> 1and k is negative. Our numerical

results for λ as a function of kl are presented in Fig. 11.

Combining the numerical information with the general

expression for the energy (59), we see that the necessary

and sufficient condition for having gapless gapless modes

is | | |
~

|μ ≥ Δ .

7. Discussion

Here we studied the spectra of edge states in graphene

on a half-plane with zigzag and armchair boundary condi-

tions, as well as on a finite width ribbon with zigzag

edges. We derived the conditions for the existence of the

gapless edge states for various types of masses and chem-

ical potentials that could be generated spontaneously in

QHE, e.g., at ν = 0 and ν = ± 1plateaus.

Our analysis of singlet and triplet Dirac masses [with

respect to the valley symmetry group SU s( )2 ] shows that

1004 Fizika Nizkikh Temperatur, 2008, v. 34, No. 10

V.P. Gusynin, V.A. Miransky, S.G. Sharapov, and I.A. Shovkovy

2

1

0

–1

–2

E
/ε

0

Armchair
| | < | |μ Δ± ±

–6 –4 –2 0 2
kl

2

1

0

–1

–2

E
/ε

0

Armchair
| | > | |μ Δ± ±

–6 –4 –2 0 2
kl

~ ~
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Fig. 11. Numerical solutions of Eq. (58) for the dimensionless

parameter λ in the case of an armchair boundary. This is valid

for a general choice of
~Δ and μ, but only if ~μ and Δ vanish.



spectral properties of zigzag and armchair edges are af-

fected by (i) the relative magnitude of the masses and

chemical potentials, and (ii) the type of masses. In partic-

ular, we found the criteria for the existence of gapless

edge states in the spectra. These can be summarized as

follows [37,38].

(i) Zigzag edge: the necessary and sufficient condition

to have gapless state is that at least one of the following

inequalities is satisfied:

| | ( ) ,

| | | | .

( ) ( )

( ) ( )

μ ε

μ

s s

s s

+ −

− +

≥ +

≥

0
2 2Δ

Δ

(60)

(61)

On a finite width ribbon, both conditions take the same

qualitative form, i.e., | | | |( ) ( )μ s s
± ≥ Δ � . This is because of

the symmetry connecting two different zigzag edges with

two different valleys, seen in the analysis.

(ii) Armchair edge:

a) gapless edge states exist always when there are sin-

glet Dirac masses, irrespective of the actual relation bet-

ween the values of the masses and the chemical poten-

tials;

b) in the case of triplet Dirac masses, gapless edge

states exist if | | |
~

|μ± ±> Δ , and do not exist otherwise.

These conditions are consistent with the two limiting

cases, analyzed in Ref. 23. The situation on a half-plane

with a zigzag edge is essentially the same as on a ribbon,

modulo the fact that there is one edge instead of two.

The results here are of interest in connection with the

interpretation of the ν = 0 Hall plateau. Indeed, the gap-

less edge states should play an important role in charge

transport of graphene in a strong magnetic field. Their

presence is expected to make graphene a so-called quan-

tum Hall metal, while their absence should make it an in-

sulator [17,23]. The actual temperature dependence of the

longitudinal resistivity at the ν = 0 plateau in Refs. 16, 17

is consistent with the metal type. This conclusion may be

disputed in view of the recent data from Ref. 20 that re-

veal a clear plateau at ν = 0, but the temperature depend-

ence of the diagonal component of the resistivity signals a

crossover to an insulating state in high fields. The latter

observations do not seem to support the existence of

gapless edge states.

Our analysis of edge states [37,38] suggests that the

conditions for the existence and absence of gapless edge

states depend sensitively on the values of QHF and MC

order parameters that characterize the nature of the corre-

sponding QH state. Moreover, the microscopic analysis

of Ref. 36 indicates that the order parameters of both

types necessarily coexist. Therefore, the dynamics is very

likely to be rich and full of surprises. The situation with

the edge states is probably just one of such surprises.
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