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In 3D and 2D electronic systems the singular contribution to the static permittivity ε (Kohn singularity)

is a small correction to the regular part of ε but it results in the leading term in asymptotic behavior of the

screened potential (Friedel oscillations). In the present letter we show that for nanotubes quite different re-

sults are valid: ε becomes infinitely large at the singular point and the Friedel oscillations do not play the

dominant role in the screening at the large distances. Moreover, the zero and highest cylindrical harmonics

of the effective potential are screened by quite different mechanisms.

PACS: 73.63.Fg Nanotubes.
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Collective effects in quasi-1D systems are remarkable

by a number of distinguishing features. Probably the most

non-trivial one relates to the strictly 1D system of inter-

acting fermions with the linear single particle dispersion

law (the Luttinger model). However, there exist also dif-

ferent 1D objects not described in terms of the Luttinger

liquid first of all due to necessity to account for the

transversal subbands and transitions between them. The

corresponding example is a nanotube — a hollow cylin-

der with 2D electron gas on its surface. As usually, avail-

ability of the mobile electrons results in renormalization

of the electron–electron interaction, i.e., screening. The

specific form of the screened e–e interaction is deter-

mined by the effective dimension and by the energy spec-

trum of the electron gas. As is known in 3D plasma the

bare Coulomb interaction is replaced (due to screening)

by the Yukawa law plus the Friedel oscillations

cos ( ) /2 3p r rF if the electron gas is degenerate; here pF

is the Fermi momentum, r is the distance from a point

charge, and � = 1. Similar results in the 2D case read: the

regular part of the screened potential at r → ∞ is Qa rB
2 3/

[1], where Q is the initial point charge, aB is the effective

Bohr radius, whereas the oscillating contribution is pro-

portional to cos ( / ) /2 4 2p r rF − π . We see that both in 3D

and in 2D problems the Kohn singularity of ε( )k at

k pF= 2 gives the leading term of the screened potential

for r → ∞; here ε( )k is the static permittivity depending on

the momentum k.

Consider now a nanotube with the semiconductor type

of the single particle energy spectrum:
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Here p is the electron momentum parallel to the tube axis,

l is the number of the subband, m is the effective mass and

a is the nanotube radius. Thus, the problem in question

differs from the similar one for a planar 2D system by

only quantization of one of the component of momentum:

p l ax = / . The considered system is infinite and uni-

form in z-direction (the nanotube axis) and periodic and

uniform in the azimuthal direction ϕ. Hence, the elect-

ron Green function G depends on only differences

z z− ′ − ′,ϕ ϕ . In the Fourier representation G is diagonal:

G p p l l G p lpp ll( , ; , ) ( , )′ ′ = ′ ′δ δ .

In what follows we will apply the standard diagram

technique to find the e e− interaction renormalized by

screening and we will use the linear theory of screening.

We are aware that in strictly 1D system with linear sin-

gle-particle dispersion law the Luttinger liquid model is

valid. The linear screening theory relates to only long-

wave length limit. This theory breaks down for the mo-

mentum of the order of pF just when the Friedel oscilla-

tions become essential [2–4]*.
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* There is a misprint in the Eq.(8) of Ref. 2. Asymptotic behavior of the screened potentialUeff must be1 2/| | ln | / |x x d rather than

1/| | ln | / |x x d , otherwise U x dxeff∫ ( ) diverges while the Fourier component U qeff ( ) remains finite at q → 0.



However we actually deal with 2D object and we use

the parabolic dispersion law for electrons. For such a situ-

ation the Luttinger model is not applicable and we do not

have any other instrument except RPA to investigate the

problem. After that it is not surprising that our results for

the Friedel contribution to the screened potential differ

qualitatively from the ones obtained in [2–4] and also [5].

The main difference is dependence of our effective

(screened) potential not only on z (coordinate along the

tube axis) but also on ϕ — azimuthal separation between

two electrons on the surface of a hollow cylinder. We dis-

covered that average potential (zero cylindrical harmo-

nic) and all the other harmonics are screened qualitatively

different.

We guess that in the present situation — there is an ex-

actly solvable model but for only strictly 1D system with

linear dispersion law and an approximate method for gen-

eral case — it is worth to find general results within RPA

and to see what experiments will show. This will be done

in what follows.

The Gell-Mann–Brueckner [6] chain of electron loops

determining the Fourier component of the screened e–e

interaction V k n( , ) comes to the geometrical progression:
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where V ( )0 is the bare Coulomb interaction:
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Here ~ /e e2 2= χ, χ is the background dielectric constant,

I Kn n, are the modified Bessel functions of the 1th and

the 3rd type. The polarization operator (electron loop) has

a form
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where f fp l p l, ,( )≡ ε are the Fermi occupation numbers.

We are interesting here in the static screening and we

put from now on ω = 0. By transforming V k n( , ) from

Eq. (2) back to z-space we obtain the expansion of the

screened interaction in cylindrical harmonics. As

V k n( )( , )0 and Π( ; , )0 k n are even functions of n we come

to the series
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The slowest decreasing term at | |z → ∞ is given by the

zero harmonic and reads
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L is the number of the highest occupied subband at zero

temperature, p m E Bll F= −2 2( ) is the Fermi momentum

of the lth subband. Eq. (7) demonstrates the qualitative

difference of the quasi-1D problem and the 2D and 3D

problems. In 2D and 3D systems the Kohn singularity at

k pF= 2 gives small corrections to the regular part of the

polarization operator: ξ ξln | | in 3D [7] and | |ξ in 2D

case, where ξ = − <<( ) /k p pF F2 2 1. But in 1D situation

Π0( )k becomes infinitely large at k pl= 2 and the re-

normalized interaction vanishes at these points.

To calculateV z0( ) in the regime | |z a>> we write in the

Eq. (6) cos ( ) Re (exp ( ))kz ikz= , and turn the path of inte-

gration to the upper imaginary semiaxis. At large | |z we

have two contributions to V z0( ): V0 from the point k = 0,

where K 0 has logarithmic singularity but Π0 remains fi-

nite, and a number of the Kohn contributions from the

points k pl= 2 resulting in the Friedel oscillations
~

( )V z0 .

For the nonoscillating part V z0( ) we get the expansion in

inverse powers of the value Λ ≡ −ln ( | |/ )2 z a C (C is the

Euler constant)
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where

κ π0 0 0

1
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πκ 0 is the sum of the partial density of states in occupied

subbands. Thus, the Coulomb interaction in nanotubes is

screened rather weakly, V z e z z a0
2 2( ) ~ / ( ln ( / )).

To find the oscillating part
~

( )V z0 we consider a small

vicinity of the point k pl= 2 and note that the factor
~e I K2

0 0 in the integrand of Eq. (6) cancels. Thus, we see

yet another peculiarity of the 1D problem: Friedel oscilla-

tions of the screened potential do not depend on the

charge! (see below Eqs. (9), (18)). This is due to infinitely

large magnitude of Π0( )k at k pl= 2 . Then one can intro-

duce the parameter ξ = −( ) /k p pl l2 2 and take the inte-

gral over ξ from −∞ till ∞. By the same shift of the integra-

tion path as described above we arrive at the series in

powers of 1 4/ ln ( )p zl :
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We see that the amplitude of the Friedel oscillations in

nanotubes decreases with increasing distance not slower

than the regular part V z0( ) does. Moreover, the ratio
~

/V V0 0 at any z in the order of magnitude can be estimated

as 1/ ( )p aF B , and for «metallic» limit of the dense elec-

tron gas ( p aF B >> 1) the Friedel oscillations become ne-

gligibly small.

Qualitatively different results are obtained for non-

zero harmonics. The factor I ka K kan n( ) ( ) for n ≠ 0 tends

to the constant 1 2/ n for k → 0 andΠ( , )k n at k = 0 remains

finite either. Thus, all non-zero harmonics of the Cou-

lomb interaction undergo the screening of the dielectric

type, that is, their dependence on the distance z coincides

with that of the bare Coulomb law. Indeed, from Eq. (3)

we have for the nth harmonic of the bare interaction
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where Qν is the spherical function of the second type. The

regular part of the screened interaction stems again from

the region of small k. Eq. (4) gives:
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and there are two possibi l i t ies for the quanti ty

κ n n≡ Π( , )0 . If the subband occupation for T = 0 termi-

nates at l L= ± and n L2 24> , then
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Otherwise, for n L2 24≤ and n even the nth harmonic of

the potential couples the degenerate states l n0 2= / and

l n0 2= − / . In this case we calculate the limit of the uncer-

tainty in Eq. (11) at n l= 2 0, k → 0 and find
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After that the terms with l l= ± 0 in the sum of Eq. (12)

should be replaced byΠn l= 2 0
from Eq. (13). Thus, for the

nth harmonic of the screened potential at large | |z we ob-

tain the contribution from the point k = 0 :
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The role of the effective dielectric constant for the nth

harmonic is played by the quantity

ε
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that tends to 1 with increasing n. The dielectric type of

screening of harmonics with n ≥ 1 can be understood in

terms of the classical electrostatics (suggested by M.V.

Entin). Each term of the series in Eq. (5) corresponds to

the one of the expansion in multipoles: n = 1 gives di-

pole–dipole contribution, n = 2 — quadrupole–quadru-

pole and so on. At very large | |z the fields of all multipoles

on the nanotube surface are practically normal to the axis,

hence, they cause only the displacements of electrons in

the azimuthal direction ϕ. That is why the z-dependence

of the e–e interaction does not change; the system simply

is polarized in accord with the dielectric mechanism when

only the bound charges are available.

As to the oscillating part
~

( )V zn it is determined by ze-

ros of the argument of logarithm in the Eq. (11). First of

all one can see that such contributions exist not for all val-

ues of n. For a fixed concentration of electrons p a LF ≤
whereas the singularity in the right-hand-side of Eq. (11)

occurs only if p a n lF
2 2 2> −( ) with | |l L< . Thus, the

Friedel oscillations of the nth harmonic exist for n L≤ 2

but for n L> 2 we have only nonoscillating contribution

V zn ( ) given by Eq. (14). The calculation of the oscillating

part
~

( )V zn for n L≤ 2 is totally similar to the derivation of

Eq. (9). The singular points k c are given by the relation
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and the polarization operator at k k c→ takes the form
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The result reads
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Thus, only in the case n L≤ 2 the Friedel oscillations in

nanotubes give a noticeable contribution at large dis-

tances that is oscillating part of the nth harmonic of the
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screened potential decreases slower with increasing z as

compared with the regular partV zn ( ). It is reasonable also

that the Friedel oscillations look like superposition of the

monochromatic waves with various periods 2π / k c (de-

pending both on n and l) rather than the single wave

cos ( )2 p rF as it is in 2D and 3D systems.

The problem of the screened Coulomb potential in

nanotubes was considered in [8]. However, the authors

have given only numerical results for zeroth harmonic

V z0( ) and did not discuss the Friedel oscillations.

To conclude, we have analyzed the e–e interaction in

nanotubes in the framework of the linear screening theo-

ry. Qualitative difference between quasi-1D systems and

3D and 2D systems is established. The Friedel oscilla-

tions in nanotubes do not determine the asymptotic be-

haviour of the screened potential at large distances in con-

trast with 3D and 2D systems.

This work has been supported by the RFBR, by the RF

President grant for scientific schools, as well as by the

Programs of the Russian Academy of Sciences.

1. T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437

(1982).

2. R. Egger and H. Grabert, Phys. Rev. Lett. 79, 3463 (1997).

3. Q. Yuan, H. Chen, Y. Zhang, and Y. Chen, Phys. Rev. B58,

1084 (1998).

4. R. Egger and H. Grabert, Phys. Rev. Lett. 75, 3505 (1995).

5. H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).

6. M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

7. E.M. Lifshitz and L.P. Pitaevskii, Fizicheskaya Kinetika,

Nauka, Moskva (1979), v. 10, § 40.

8. M.F. Lin and D.S. Chuu, Phys. Rev. B56, 4996 (1997).

Electrostatic screening and Friedel oscillations in semiconducting nanotubes

Fizika Nizkikh Temperatur, 2008, v. 34, No. 10 1097


