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In this review we present recent theoretical results concerning investigations of single subsurface 
defects by means of a scanning tunneling microscope (STM). These investigations are based on the 
effect of quantum interference between the electron partial waves that are directly transmitted 
through the contact and the partial waves scattered by the defect. In particular, we have shown the 
possibility imaging the defect position below a metal surface by means of STM. Different types of 
subsurface defects have been discussed: point-like magnetic and nonmagnetic defects, magnetic clus-
ters in a nonmagnetic host metal, and nonmagnetic defects in a s-wave superconductor. The effect of 
Fermi surface anisotropy has been analyzed. Also, results of investigations of the effect of a strong 
magnetic field to the STM conductance of a tunnel point contact in the presence of a single defect has 
been presented. 

PACS: 61.72.J– Point defects and the defect clusters; 
73.40.Cg Contact resistance, contact potential; 
73.63.Rt Nanoscale contact; 
74.55.+v Tunneling phenomena: single particle tunneling and STM; 
73.23.–b Electronic transport in mesoscopic systems; 
72.10.Fk Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo 
effect). 
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1. Introduction 

About three decades following its invention [1], scan-
ning tunnelling microscopy (STM) has proved to be a su-
perbly valuable tool for investigating surfaces on the atom-
ic scale. Along with a mapping of the conductor's surface, 
the STM enables observing many phenomena, among 
which electron scattering by single surface defects (impuri-
ty atoms, adatoms, or step edges). There are hundreds of 
papers that are devoted to investigations of surface defects 
by STM. In this paper we do not aim to review all of them 
and confine ourselves to briefly mentioning the main direc-
tions of researches in this field. Our attention will be main-
ly focused on interference effects in STM conductance 
caused by defects sitting below the surface. 

Electron scattering by defects leads to quantum-inter-
ference patterns in the local electron density of states around 
the defects (Friedel oscillations [2]). For more than thirty 
years Friedel oscillations have remained a theoretical predic-
tion that could be seen only in theory textbooks [3]. The 
appearance of the STM has enabled the visualization 
of these oscillations, which manifest themselves as oscilla-
tions of the differential tunneling conductance, = / ,G dI dV  
around defects on the surface. 

First standing wavelike patterns in the STM conductance 
in the vicinity of defects were observed by Crommie et al. 
[4] on a Cu(111) surface and by Hasegava et al. [5] on a 
Au(111) surface. At the (111) surface of the noble metals 
Cu, Ag, and Au the electrons of the surface states form a 
quasi-two-dimensional nearly-free electron gas having an 
isotropic dispersion law [6]. When scattered from step edges 
or adatoms the surface states form standing waves which 
result in an oscillatory dependence of the tunneling conduc-
tance measured as a function of the distance between the 
STM tip and the defect, 0.r  The period of the conductance 
oscillations 2

0 = 2 / 2 D
Fr kΔ π  is set by twice the Fermi wave 

vector, 22 D
Fk  ( 2D

Fk  is a two-dimensional vector in the 
plane of the surface). 

The circular 2D Fermi contour of the electrons at the 
(111) surface of noble metals results from the fact that the 
layer of surface atoms actually corresponds to one of the 
close-packed stackings on which the face-centered cubic 
structure is based. Generally, for less closely packed sur-
faces and conductors having a complicated crystallograph-
ic structure a 2D Fermi contour is anisotropic, i.e., the ab-
solute value of the vector 2D

Fk  depends on its direction. 
The Fourier transform (FT) of the standing wave pattern 
provides an image of the Fermi contour. Anisotropic Frie-
del-like oscillations have been observed by FT-STM on 
Cu(110) surfaces [7], Be [8], and ErSi2 [9]. Particularly, in 

Ref. 7 the contour related to the «neck» of the bulk Fermi 
surface for Cu (110) surface has been imaged. 

Magnetic adatoms on nonmagnetic host metal surfaces 
are of special interest as they produce a characteristic 
many-body resonance structure in the differential conduc-
tance near zero voltage bias attributed to the Kondo effect 
[10–13]. The shape of the resonance in the differential 
conductance is usually asymmetric and is described by a 
Fano line shape [14–16]. The surface electron waves carry 
information on the magnetic impurity and by focussing the 
waves it has been possible to create a mirage image of the 
impurity [17] (for review, see [18]). The interesting phe-
nomenon of an orbital Kondo resonance was observed by 
STM in Ref. 19. It was found that STM images of the 
Cr(001) surface show cross-like depressions centered 
around the impurities corresponding to the orbital symme-
try of two degenerate ,xzd  yzd  surface states [19]. 

The investigation of defects near the surface of uncon-
ventional superconductors by STM is a way to determine 
the symmetry of the order parameter. The effect of single 
Zn defects on the superconductivity in high-Tc supercon-
ductors was investigated in Ref. 20, and the manifestation 
of d-wave pairing symmetry was observed in the quasi-
bound state near the defect. In Ref. 21 a bound state near a 
magnetic Mn adatom on the surface of superconducting Nb 
was observed by STM. 

An effective way to enhance the STM sensitivity to 
such oscillation effects is to use a superconducting tip [22]. 
In Ref. 23 it was demonstrated that the amplitude of con-
ductance oscillations is significantly enhanced when a su-
perconducting tip is used, and when the applied bias is 
close to the gap energy of the superconductor. 

The applicability of STM can be extended to the study 
of magnetic objects on the surface of a conductor when a 
magnetic material is used for the STM tip such that the 
electric current is spin polarized (SP) (for review of SP-
STM see Ref. 24). For example, the precession of a mag-
netic moment of clusters of organic molecules on a surface 
gives rise to a time modulation of the SP-STM current, 
from which the g-factor can be found [25,26]. The possi-
bility to probe magnetic properties of nanostructures buried 
beneath a metallic surface by means of local probe tech-
niques is discussed in Ref. 27. It has been shown that those 
properties can be deduced from the spin-resolved local 
density of states above the surface [27]. 

STM spectroscopy also provides access to information 
on the structure of the metal below the surface in both semi-
conductors and metals. Crampin [28] proposed to utilize 
the surface states for imaging subsurface impurities. How-
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ever, the exponential decay of the wave function amplitude 
into the bulk limits the effective range to the topmost lay-
ers only and bulk states form a good alternative for detect-
ing defect positions. The principle of imaging subsurface 
defects is based on the influence on the conductance 
caused by quantum interference of electron waves that are 
scattered by defects and reflected back by the contact. This 
effect was explored for investigating subsurface Ar bub-
bles submerged in Al [29] and Cu [30], and Si(111) step 
edges buried under a thin film of Pb [31]. In these experi-
ments, bulk electrons are found to be confined in a vertical 
quantum well between the surface and the top plane of the 
object of interest. The observation of interference patterns 
due to electron scattering by Co impurities in the interior 
of a Cu sample was reported Refs. 32, 33. 

Reviews of STM theory can be found in Refs. 34, 35. 
The papers listed in [34,35], in which the conductance of a 
tunnel contact of small size has been analyzed theoretical-
ly, must be complemented by reference to the fundamental 
paper of Kulik, Mitsai and Omelyanchouk [36] published 
in 1974. In this paper the authors obtained, on the basis of 
rigorous quantum-mechanical considerations, an analytical 
formula for the conductance of a junction between two 
metal half-spaces separated by an inhomogeneous tunnel 
barrier of low transparency. Their result is valid for arbi-
trary values of the applied bias and for arbitrary depen-
dence of the tunnelling probability on the coordinates in 
the plane of the interface between the metals. As a special 
case, the general formula for the contact resistance can be 
applied to an inhomogeneous tunnel contacts having a cha-
racteristic diameter smaller than electron wave length, 
which is suitable to describe STM conductance. Recently, 
electron tunnelling through a randomly inhomogeneous 
barrier of arbitrary amplitude has been analyzed theoreti-
cally in Refs. 37, 38. 

The theoretical descriptions of STM conductance oscil-
lations due to electron scattering by single defects in the 
majority of papers is based on the assumption that the tun-
nelling conductance measured by the STM tip is propor-
tional to the local density of states (LDOS) ( )ν r  of the 
sample (see, for example, [18,28,39,40]) as for a planar 
tunnel junction [41]. For the scattering of electron surface 
states this assumption is quite reasonable, but for electron 
scattering in the bulk of the sample it can not be used. The 
LDOS in the vicinity of defects in the bulk is critically 
modified by electron reflections off the surface of the con-
ductor, at ∈r Σ , and differs from Friedel oscillations of 
the LDOS in an infinite conductor with a single scatterer 
[3]. In the limit of zero tunnelling probability we have 

( ) = 0.ν ∈r Σ  Further, the conductance oscillations are 
formed only by «tagged» electrons, which tunnel through 
the contact and are scattered back by the defect, while a 
«halo» of Friedel oscillations around the defect is due to all 
scattered electrons. In general, there are no other periods in 
the interference effects but the period of Friedel oscilla-

tions 0 = 2 / 2 Fr kΔ π  ( Fk  is a Fermi wave vector) and the 
analysis in Ref. 33 of the experimental data in terms of a 
bulk LDOS seems to be qualitatively correct [42]. Howev-
er, the calculation of amplitudes and phases of the conduc-
tance oscillations, which contain additional information on 
the interaction of the charge carriers with the defect, re-
quires the solution of the scattering problem of the influ-
ence of subsurface defects on the conductance of a small 
tunnel contact. 

In this paper we review a series of publications in 
which the theory of the electronic transport though a tunnel 
point contact in the presence of a single defect below metal 
surface was developed. The organization of this paper is as 
follows. The model of the tunnel contact and the basic eq-
uations that describe the effect of subsurface defects on the 
STM conductance are presented in Sec. 2. The solution of 
the Schrödinger equation for elections that tunnel through 
the contact and are scattered by the defect is given. In 
Sec. 3 a method to determine the defect positions below a 
metal surface is formulated on the basis of an investigation 
of the nonlinear conductance of the contact. A signature of 
the Fermi surface anisotropy in STM conductance in the 
presence of subsurface defects is discussed in Sec. 4. In 
Sec. 5 we present the results of investigations of the effect 
of a subsurface magnetic defect on the tunnel current, in-
cluding the signature of a Kondo impurity and that of a 
magnetic cluster having an unscreened magnetic moment. 
In Sec. 6 it is shown that a strong magnetic field leads to 
specific magneto-quantum oscillation periods which de-
pend on the distance between the contact and the defect. 
The possibilities of studying the interference of quasipar-
ticles in a superconductor is analyzed in Sec. 7. In Sec. 8 
we conclude by discussing the possibilities for exploiting 
these theoretical results for subsurface imaging along with 
experimental investigations of physical characteristics of 
subsurface defects. 

2. Quantum interference of scattered electron waves 
 in the vicinity of a point contact 

2.1. Model of a STM contact, and the Schrödinger 
equation for the system 

As a model for the STM experiments we choose an in-
homogeneous tunnel contact between two metal half-
spaces separated by an infinitely thin interface. The poten-
tial barrier in the plane of the interface, at = 0z , is taken 
to be described by a delta function [36], 

 0( ) = ( ) ( ),U U f zδr ρ  (1) 

where ρ  is the radius vector in the plane of the interface, 
perpendicular to the z  axis. The function ( )f →∞ρ  at all 
points of the plane = 0z  except for a small region defining 
the contact, having a characteristic radius a , at which ( )f ρ  
is of order 1. As an example, a suitable model for the func-
tion ( )f ρ  for the «STM tip» is the Gaussian function 
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2 2( ) = exp ( / )f aρρ  with small .a  Another useful model 
of the junction is an orifice of radius a  for which ( ) = 1f ρ  
for aρ ≤  in the plane of the contact (Fig. 1). 

Of course, such a model describes only the qualitative 
features of the conductance of an STM contact, and does 
not contain such parameters as the tip radius, or the dis-
tance between the STM tip and the sample as is 
represented, for example, in the model by Tersoff and Ha-
mann [43]. In principle these properties of the system may 
be included in the model as parameters of the function 

( ).f ρ  The advantage of the model by Kulik et al. [36] is 
the possibility of finding exact analytical solutions of the 
Schrödinger equation in the limit 0 .U →∞  The equations 
are considerably simplified in the case of a small contact 

0.a →  The wave functions obtained in the framework of 
the model barrier (1) properly describe the spreading of 
electron waves into the bulk metal from a small region on 
its surface. A numerical value for the STM conductance 
plays the role of a scale factor for the conductance oscilla-
tions, and for the further considerations below it is of less 
importance. 

A defect in the vicinity of the interface can be described 
by the potential 

 0 0( ) = (| |) ,D gD −r r r  (2) 

where g  is the constant of the electron interaction with the 
defect, and 0 0(| |)D −r r  is a spherically symmetric func-
tion localized within a region of characteristic radius Dr  
centered at the point 0=r r , which satisfies the normaliza-
tion condition 

 2
04 ( ) = 1.dr r D r′ ′ ′π∫  (3) 

The electron wave function ( )ψ r  in a metal with a disper-
sion relation ( )ε k  must be found from the Schrödinger 
equation [44] 

 �
B ( ) ( ) ( ) = .e

e g H eV D U
c

⎡ ⎤⎛ ⎞ε − + σ μ + + + ψ εψ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
k A r r r

=
  

  (4) 

Here � = ,i− ∇k  ( )A r  is the vector-potential of the statio-
nary magnetic field H , and ( )V r  is the applied electrical 
potential, = 1σ ±  corresponds to different spin directions, 

0= / 2B e m cμ =  is the Bohr magneton, where 0m  is the 
free electron mass, and eg  is the electron g-factor. The 
function ( )ψ r  satisfies at = 0z  the following boundary 
condition for continuity of the wave function 

 ( ) ( ), 0 = , 0 ,ψ + ψ −ρ ρ  (5) 

and the condition, which for a δ-function barrier is ob-
tained by the integration of the Schrödinger equation (4) 
over an infinitesimal interval near the point = 0z  

 � ( ) ( )
0

0
0

, = ( ) ,0 .edz z U f
c

+

−

⎛ ⎞ε − ψ − ψ⎜ ⎟
⎝ ⎠∫ k A

=
ρ ρ ρ  (6) 

In this section below we consider a solution of 
Schrödinger equation (4) for a free electron model with an 
electron effective mass m* and a dispersion relation 
( ) 2 2= / 2m∗ε k k=  in the absence of external fields 

( = 0, = 0).H V  In this case the condition (6) reduces to the 
well-known condition for the jump of the derivative of the 
wave function 

 ( ) ( ) ( )0
2

2
( , 0) , 0 = ,0 .z z

m U
f

∗
′ ′ψ + −ψ − ψ

=
ρ ρ ρ ρ  (7) 

The effects of applied voltage, Fermi surface anisotropy 
and magnetic field are discussed in next sections. 

2.2. Wave function due to an inhomogeneous tunnel 
barrier 

Here we follow the procedure for the finding the elec-
tron wave function in the limit 0U →∞  that was proposed 
in Ref. 36. To first approximation in the small parameter 

01/U  the wave function ( )ψ r  can be written as 

 ( ) ( ) ( )0 0= ,ψ ψ + ϕr r r  (8) 

where 0ϕ  is of order 01/ .U  This latter part of the wave 
function (8) describes the electron tunnelling through the 
barrier and determines the electrical current. The first term 
in the Eq. (8) is the solution of the Schrödinger equation 
for the metallic half-spaces without the contact 

 0 ( ) = e (e e ),ik z ik zi z z−ψ −rr κ  (9) 

Fig. 1. Model of the tunnel point contact as an orifice in an inter-
face that is nontransparent for electrons except for a circular hole,
where tunnelling is allowed. Trajectories are shown schematically
for electrons that are reflected from or transmitted through the
contact and then scattered back by a defect. 

STM tip

interface

z

r0 z0

ρ0
2a
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where κ and zk  are the components of the wave vector k  
parallel and perpendicular to the interface, respectively. 
The expression (9) satisfies the boundary condition 

0 ( , 0) = 0ψ ρ  at the interface. 
Substituting the wave function (8) into the boundary 

conditions (5) and (6) one must match terms of the same 
order in 01 / .U  As a result the conditions (5), (6) are re-
duced to [36]  

 0 0( , 0) = ( , 0) ,ϕ + ϕ −ρ ρ  (10) 

 0( ) e = ( ) ( ,0) ,i
zt k f ϕrκ ρ ρ  (11) 

where 

 2
0( ) = / ; | | 1,z zt k k im U t∗= �  (12) 

is the amplitude of the electron wave function passing 
through the homogeneous barrier. Developing the function 

0 ( , )zϕ ρ  as a Fourier integral in the coordinate ρ , and 
using the Eq. (11), we find [36] 

 ( ) ( )
( )

( )

( )0 2
e, 0 = e ,

2

i
i ik zz zt k

z d d
f

′ ′∞ ∞ −
′ ′+

−∞ −∞

′ ′ϕ
′π

∫ ∫≷
κ κ ρ

κ ρρ κ ρ
ρ

  

  (13) 

where 2 2= .zk k′ ′− κ  For a homogeneous δ-function 
barrier, ( ) = 1,f ρ  Eq. (13) transforms into a transmitted 
plane wave having an amplitude .t  

The characteristic radius of the region on the surface 
through which electrons tunnel from the STM tip into the 
sample is of atomic size, 0.1 Åa� , while the Fermi wave 
vector 1Fk � Å 1.−  By using the condition 1Fk a�  
after integrating over ′κ  and ′ρ  in Eq. (13) we find [46] 

 ( ) ( ) ( ) ( ) ( )
2

1
0 1= .

2z
i ka z

t k h kr
r

ϕ r  (14) 

The incident plane wave is transformed into a spherical p-
wave (1)

1 ( )h kr  (14) after scattering by the point contact. In 
Eq. (14), and below, (1) ( )lh x  are the spherical Hankel 
functions. Note that the wave function 0 ( )ϕ r  (14) is zero 
in all points on the surface = 0z , except the point = 0r  
(at the contact) where it diverges. This divergence is the 
result of taking the limit 0a →  in the integral expressions 
for 0 ( )ϕ r  (13). Yet, Eq. (14) gives a finite value for the 
total charge current through the contact as obtained by in-
tegration over a half-sphere of radius r  with its center in 
the point = 0r  for 0r → . 

2.3. Electron scattering by a single defect in the vicinity 
 of a tunnel point contact 

As a result of current spreading only a small region near 
the point contact noticeably influences the conductance. 
For high purity samples only a few defects will be found in 

this region. At low temperatures the distance between the 
contact and the nearest defect, 0 ,r  is smaller than the elec-
tron mean free path due to electron–phonon scattering and 
the electrons are elastically scattered by the single defect 
only. The wave function of transmitted electrons, ( )ϕ r , 
which takes into account the scattering by the defect, can 
be expressed in terms of the retarded Green function 

0 ( ; )G+ ′ εr,r  of the homogeneous equation (4) at = 0D , in 
absence of impurity scattering. To first approximation in 
the transmission amplitude t  (12) the integral equation for 

( )ϕ r  is given by 

0 0 0( ) = ( ) (| |) ( ; ) ( ) ,g d D G+′ ′ ′ ′ϕ ϕ + − ε ϕ∫r r r r r r,r r  (15) 

where 

( ) ( ) ( ) ( ) ( ){ }1 1
0 0 02; = ,

2
ikmG h k h k

∗+ ′ ′ ′ε − − − −
π

r,r r r r r�
=

 (16) 

is the electron Green's function of Eq.  (4) for the semi-
infinite half-space 0( )U → ∞ , = ( , ),z′ ′ ′−r� ρ and 0 ( )ϕ r  is 
given by Eq. (13). For small g  Eq. (15) can be solved by 
perturbation theory, i.e., in first approximation in g  the 
function ( )′ϕ r  in the integral term should be replaced by 

0 ( ).′ϕ r  
For a short range potential ( Dkr  1� ) the function 
( )′ϕ r  can be taken outside of integral in Eq. (15) and the 

scattered wave function is written as [45] 

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0= ; ,T k G+ϕ ϕ + ϕ εr r r r,r  (17) 

where  

 ( )
( ) ( )0 0 0 0

= .
1 ;

gT k
g d D G+′ ′ ′− − ε∫ r r r r ,r

 (18) 

Note that Eq. (17) is valid far from the defect 
0(| | )Dr−r r �  and the function 0 0(| |)D ′ −r r  must pro-

vide the convergence for the integral in the denominator of 
Eq. (18) at 0.′ →r r  As is well known, s-wave scattering is 
dominant for scattering by a short range potential and the 
scattering matrix (18) can be expressed by the s-wave 
phase shift 0δ  [46] 

 ( )
22 0

2 (1)0
00

e 1= .
1 (1/ 2)(e 1) (2 )

i

i
iT k
m k h kz

δ

δ∗

π −

+ −

=  (19) 

The effective T-matrix is an oscillatory function of the dis-
tance 0z  between the defect and the interface that results 
from repeated electron scattering by the defect after its 
reflections from the interface. Figure 2 illustrates the spa-
tial distribution of the square modulus of the wave function 
(17) in the vicinity of the contact with the defect placed at 

( )0 = 5,0,15 / .kr  
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3. Friedel-like oscillations of the tunnel point-contact 
conductance 

3.1. Voltage dependence of the STM conductance 

In the case of a small transparency (12) the applied vol-
tage drops entirely over the barrier and the electrical poten-
tial can be chosen as a step function ( ) = ( ).V V zΘ −r  At 
zero temperature electrons tunnel to the lower half-space 
when > 0eV , and for < 0eV  electrons can tunnel only to 
available states in the upper half-space (Fig. 1). 

The tunnelling current ( ) ( )( ) = ( ) ( )I V I V I V+ −−  is the 
difference between two currents flowing through the con-
tact in opposite directions. Each of them can be evaluated  
by means of the probability current density ( ) ( )kJ V±  inte-
grated over a plane = constz , and integrating over all 
directions of the electron wave vector 

( ) ( ) ( )( ) ˆ( ) = Re ( ) ( ) ,z zkJ V d z k
∞

± ∗
ε

−∞

ν ε Θ ± Θ ± ϕ ϕ∫ r rρ v (20) 

where ( )ν ε  is the electron density of states for one spin 
direction, ... ε〈 〉  denotes the average over an iso-energy 
surface ( ) = :ε εk  

 
( ) ( )

1

= =
... = ... ,

dS dS
−

ε
ε ε ε ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∫ ∫k k

k kv v
 (21) 

dSk  is an element of the iso-energy surface in k-space, 

and ˆ ˆˆ = (1/ ) ( ) / ( )∂ε ∂v k k=  is the velocity operator. For 
a free-electron model of the energy spectrum 

ˆ = ( / ) ( / ).z im z∗ ∂ ∂=υ  A voltage dependence of the current 

density ( ) ( )kJ V±  (20) is defined by the dependence of the 
absolute value of the wave vector for the incident on the 

contact electron ( ) 2 2| |= 2 | | / .V k m eV∗−k =  
The total current through the contact is 

 ( ) ( ) ( )( )
= 1

( ) = ( ) 1F FkI V e d J V f eV f+

σ ±

⎡ε ε − − ε −⎢⎣∑ ∫  

 ( )( ) ( ) ( ) 1 ( ) ,F FkJ V f f eV− ⎤− ε − ε − ⎦  (22) 

where ( )Ff ε  is the Fermi function. 
The current–voltage characteristic ( )I V  is calculated 

by substituting wave function (17) into Eq. (20) and taking 
into account Eqs. (13), (16) and (19). Retaining only terms 
to first order in g  (i.e., ignoring multiple scattering at the 
impurity site, in Eq. (17) ( )T k g∼ ), and in the limit of 
low temperatures, = 0,T  the conductance ( ) = /G V dI dV  
can be written as [47]  

 ( )
( ) ( ) ( )

2 3
1 2

0 23 1 2
0

, =
4

d deG V
f fm U∗

×
π

∫∫r = ρ ρ
ρ ρ

  

 � �

�
42 5

1 2 1 2( , ) 2 ( , ) ,
k F

FF kk F
kF

k k F k dkF
⎡ ⎤
⎢ ⎥× −
⎢ ⎥
⎣ ⎦

∫ρ ρ ρ ρ  (23) 

where 

 ( ) ( ) 2
1

1 2, =k
j k

F
k
ρ⎡ ⎤

−⎢ ⎥ρ⎣ ⎦
ρ ρ   

 
( ) ( ) ( )

2
1 0

1 1 1 22
1 2

4 ,
j k zm gk j k y k

k

∗ ρ
− λ λ

ρ λ λπ=
 (24) 

1 2= | |ρ −ρ ρ  2 2
1 0 0 1= | | ,zλ + −ρ ρ  2 2

2 0 0 2= | | ,zλ + −ρ ρ  
and ( )lj x  and ( )ly x  are the spherical Bessel functions, 
and  

 � ( ) 2 2= 2 /F Fk V k m eV∗+ =  (25) 

is the Fermi wave vector Fk  accelerated by the potential 
difference. In Eq. (23) for definiteness a positive sign of 
the bias is chosen, > 0.eV  

If the contact radius Fa λ�  ( = 1 /F Fkλ  is the Fermi 
wave length), the expression for the conductance (23) can 
be simplified 

 ( )
� �( )

52
0

0 0 02
0

, = F
F

F F

zeV kG V G q g w k r
kr

⎧ ⎡⎛ ⎞⎛ ⎞⎪ ⎢− −⎜ ⎟⎨ ⎜ ⎟ ⎢ε⎝ ⎠ ⎝ ⎠⎪ ⎣⎩

r �   

 
� �( ) ( )

7

0 0 ,F
F F

F

k k r k r
k

⎫⎤⎛ ⎞ ⎪⎥− +⎜ ⎟ ⎬⎥⎝ ⎠ ⎪⎦⎭

v v  (26) 
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Fig. 2. Spatial distribution of the square modulus of the wave
function in the vicinity of the contact in the plane perpendicular
to the interface passing through the contact and the defect. Dis-
tances are given in units of the inverse wave number [47]. 
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where 

 ( ) ( )42
2

0 =
36

F
F

e k a
G t k

π=
 (27) 

is the inherent conductance of the tunnel point contact, 
2 2

0 0 0= | | ,r z + ρ  

 31( ) = 1 ,
3

q x x x+ −  (28) 

 2
4

1( ) = ( 1)sin 2 2 cos 2 ,w x x x x x
x

⎡ ⎤− +⎣ ⎦  (29) 

 ( ) 2 4 2
7
1= 2 (4 7)sin 2 (2 14 7)cos2 ,x x x x x x x
x

⎡ ⎤− + − +⎣ ⎦υ   

  (30) 

and 

 2
6

= Fm k
g g

∗

π
�

=
 (31) 

is the dimensionless constant of interaction. 
Equation (26) describes the oscillations of the STM 

conductance as a function of the distance 0r  between the 
STM tip and the subsurface defect, and as a function of the 
bias .eV  For distances between the contact and the defect 

0 Fr λ�  and FeV ε�  the oscillatory dependence be-
comes sinusoidal 

 �
2
0

0 0 04
0

( , ) sin 2 .F
z

G V G k r
r

− ∝r  (32) 

Oscillations of the STM conductance as a function of the 
voltage, due to the quantum interference caused by impuri-
ty scattering, were observed by Untiedt et al. [48], and 
Ludoph et al. [49]. 

3.2. Determination of the defect positions 

Now we proceed to discuss whether this effect can be 
exploited experimentally for three dimensional mapping of 
subsurface impurities. The position of the defect in the 
plane parallel to the surface can be found from an analysis 
of oscillatory pattern in the dependence 0( ).G ρ  In the ma-
jority of cases the center of this pattern corresponds to the 
tip position directly above the defect, 0 = 0.ρ  A possible 
effect of the Fermi surface anisotropy is discussed in the 
next section. Note that, in contrast to the case of surface 
defects, the oscillations in the conductance (26) are not 
periodic in the tip distance 0ρ  along the surface, but their 

period is defined by the distance 2 2
0 0 0=r zρ + . General-

ly, the depth 0z  may be found by fitting the experimental 
data to the theoretical dependence ( )0 0,G zρ  (26). Figure 

3 illustrates the oscillatory component of ( )0, = 0G Vρ  as a 

function of 0ρ  for different choices of 0.z  In this plot we 
have used the values for the constant = 1,g�  the Fermi 

wave vector = 1.360Fk  Å 1−  and the interatomic distance 
=1.805d  Å for Cu. Thus, the plots correspond to defect 

positions in the third, fourth, and fifth layers below the Cu 
surface. The dependencies ( )G ρ  closely resemble the ob-
servations by Quaas et al. [32] for Co atoms embedded in 
Cu(111). 

For the determination of the defect depth 0z  one may use 

the periodicity in phase �
0= 2 Fk rϑ  of 0( , )G Vr  (32) at suffi-

ciently large 0.r  According to Eq. (32) at = 0V  two sequen-
tial radii 01ρ  and 02ρ , 02 01>ρ ρ , corresponding to neigh-
boring maxima (or minima) satisfy the obvious condition of 

periodicity, 2 2 2 2
02 0 01 0= 2 = 2 .Fk z z⎛ ⎞Δϑ ρ + − ρ + π⎜ ⎟

⎝ ⎠
 For 

known Fk  it is a simple algebraic equation for 0,z  the solu-
tion of which is 

4 2 2 2 2 2 2 2 4
0 02 01 02 01

1= ( ) 2 ( ) .
2 F F

F
z k k

k
ρ −ρ − π ρ +ρ +π

π
 (33) 

Note that 02 01( ) >Fk ρ − ρ π  and the radicand is positive. 
A second possibility of changing the product � 0Fk r  is by 
varying the maximum value of the electron wave vector by 
the applied voltage. 

A first approach for determining the defect depth 0z  
from the bias dependence of the period of the Friedel-like 
oscillations of the STM conductance was described by 
Kobayashi [42]. The depth 0z  can estimated by tracing the 
point 0ρ  while changing the bias voltage eV , keeping 

the phase of the oscillations ϑ  constant: 2 2
0 0 =Fk zρ +  

� ( ) 2 2
0 0 ,Fk V z′= ρ +  where 0ρ  and 0′ρ  are the positions 

corresponding to two different bias voltages 0V →  and 
2 =V V  but the same phase (for example, a fixed maxi-

Fig. 3. Dependence of the normalized oscillatory part of the con-
ductance on the STM tip position for different depths 0z  of the 
defect below the surface; 0 0= ( ,0, ), = 1oz gρr � . 
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mum) [42]. The solution of mentioned above equation with 
� ( )Fk V  (25) gives 0z  

 
2 2 2
0 0 0

0
( )

= ,F eV
z

eV
′ ′ε ρ − ρ − ρ  (34) 

where > 0,eV  0 0> .′ρ ρ  
The method proposed in Ref. 47 has certain advantages. 

If the STM tip is placed above the defect 0 0(| | )z�ρ  the 
conductance amplitude decreases with depth of the defect 
as 2

0z , which gives hope to observe the defects at suffi-
ciently large distances below the surface. The depth of an 
impurity may be derived from the ( )G V  curve at 0 = 0,ρ  
which shows oscillations in eV  with period ,e VΔ  and 

 �0 = .
( )FF

z
k k V

π
− Δ

 (35) 

In a real experiment it is not necessary to observe a full pe-
riod of ( )G V  and, for example, a quarter of the period will 
be sufficient for the determination of the defect depth [47]. 

4. Signature of the Fermi surface anisotropy 

In most metals the dispersion relation for the charge 
carriers is a complicated anisotropic function of momen-
tum. This leads to anisotropy of the various kinetic charac-
teristics [44]. Particularly, as shown in Ref. 50, the current 
spreading may be strongly anisotropic in the vicinity of a 
point contact. This effect influences the way the point con-
tact conductance depends on the position of the defect. For 
example, in the case of a Au(111) surface the «necks» in 
the Fermi surface (FS) should cause a defect to be invisible 
when probed exactly from above. 

Qualitatively, the wave function of electrons injected by 
a point contact for arbitrary FS ( ) = Fε εk  has been ana-
lyzed by A. Kosevich [50]. He noted that at large distances 
from the contact the electron wave function for a certain 
direction r  is defined by those points on the FS for which 
the electron group velocity is parallel to r.  Unless the en-
tire FS is convex there are several such points. The ampli-
tude of the wave function depends on the Gaussian curva-
ture K  in these points, which can be convex ( > 0)K  or 
concave ( < 0)K . The parts of the FS having different 
signs of curvature are separated by lines of = 0K  (inflec-
tion lines). In general there is a continuous set of electron 
wave vectors for which = 0.K  The electron flux in the 
directions having zero Gaussian curvature exceeds the flux 
in other directions [50]. 

Electron scattering by defects in metals with an arbi-
trary FS can be strongly anisotropic [44]. Generally, the 
wave function of the electrons scattered by the defect con-
sists of several superimposed waves, which travel with 
different velocities. In the case of an open FS there are 
directions along which the electrons cannot move at all. 

Scattering events along those directions occur only if the 
electron is transferred to a different sheet of the FS [44]. 

In this section we analyze the effect of anisotropy of the 
FS to the signals for determination of the position of a de-
fect below a metal surface by use of a STM. We show be-
low that the amplitude and the period of the conductance 
oscillations are defined by the local geometry of the FS, 
namely by those points for which the electron group veloc-
ity is directed along the radius vector from the contact to 
the defect. General results are illustrated for the FS of 
noble metals. 

At first we do not specify the specific form of the de-
pendence ( )ε k , except that it satisfies the general condi-
tion of point symmetry ( ) = ( )ε ε −k k . In the reduced zone 
scheme a given vector k  identifies a single point within 
the first Brillouin zone. As for isotropic FS, the electron 
wave function ( )ψ r  in the metal with an arbitrary disper-
sion relation can be found at 0U → ∞  by using the me-
thod described in Sec. 3. The boundary conditions for the 
transmitted wave function ( )0ϕ r  have the same form as 
Eqs. (10), (11) in which the function ( )t k  must be re-
placed by 

( )
ref| | | |

0 = 0

1= e e .ik z ik zz z

z
t dz

U i z
−

−

⎡ ⎤⎛ ⎞∂⎛ ⎞ε −⎢ ⎥⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎣ ⎦
∫k ,κ  (36) 

For the model of free electrons  Eq. (36) transforms into 
Eq. (12). The components of vector k perpendicular to the 
interface for electrons incident on the contact, ( , ),zk εκ  
and reflected from the contact, ref ( , ),zk εκ  are related by 
conditions of conservation of the energy ε  and the tangen-
tial component κ  of the wave vector  

 in ref ref in ref( , ) = ( , ) = ; = .z zk kε ε ε ≡κ κ κ κ κ  (37) 

The wave function scattered by the defect is defined by the 
general relation (15). 

General expressions for the STM conductance into a 
metal having an arbitrary FS one can find in Ref. 51. Here, 
we present simplified asymptotic expressions for the oscil-
latory part of the conductance arb

osc 0( )GΔ r  (the difference 
between the total conductance and its value in the absence 
of the defect) which are valid for large distances between 
the contact and the defect , 0 Fr λ�  [51], 

 ( ) ( ) ( ) ( )
2 4 2 2arb 0

osc 0 4
0

2
= F z

F

ge a z
G t

r ε
Δ ν ε Θ ×r k

=
v   

0 0 0 0
, 0 0

1 sin( ( ) )cos( ( ) ).
( ) ( )

s s s s
s s s s

h r h r
K K

′ ′
′ ′

× + φ + φ∑ k k
k k

  (38) 

All functions of the wave vector in Eq. (38) are taken at the 
points of the FS for which the electron group velocity 0v  
is parallel to the vector 0 0 0= ,rr n  0 0 0( , ) = ,Fh ε k k n  0k  
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Fig. 4. Dependence of the oscillatory part of the conductance, 
ell
osc,GΔ  as a function of the position of the defect 0ρ  in the plane 

0=z z . The shape of the FS (41) is defined by the mass ratios 
/x zm m =1, / = 3,y zm m  and the long axis of the ellipsoid is 

rotated by / 4π  around the x axis, away from the y axis. The 
coordinates are measured in units 1 / zFk  (46) and the defect sits 
at 0 = 5z  [51]. 

is the wave vector corresponding to the point on the FS, in 
which 0 0.v n&  The function 0( , )Fh ε k  is well known in 
the differential geometry as the support function of the 
surface ( ) = Fε εk  [52]. If the curvature of the FS changes 
sign, there is more than one point 0sk  ( =1,2...s ) for 
which 0 0.sv n&  It may also occur that for given directions 
of the vector 0r  0v n  for all points on the FS, and the 
electrons cannot propagate along these directions [44]. For 
such 0r  the oscillatory part of the conductance is zero. 

In Eq. (38) 

 
( )

( )( )
2

02= sgn 1 sgn ,
4

z

x

k
K

k

+⎛ ⎞∂π ⎜ ⎟φ +
⎜ ⎟∂⎝ ⎠

k  (39) 

...
Fε

〈 〉  is defined by Eq. (21), ( ) ( )= ( , , )z z x y Fk k k k+ + ε  in 
the point defined by the direction of the vector 0n  in k-
space, 0( ) 0K ≠k  is the Gaussian curvature of the FS, 

 
2

0 0 02
, = , ,0

( , ) = ,
| |

F ik i j
i j x y z

K A n nε ∑k
v
=

 (40) 

1 1= det( ) / ( )ij ijA m− −∂ ∂m k  is the algebraic adjunct of the 
element 1 2 2( ) = (1/ )( / )ij i jm k k− ∂ ε ∂ ∂k =  of the inverse 
mass matrix 1.−m  

The Eq. (38) is valid, if curvature 0.K ≠  For those 
points at which K  the amplitude of the electron wave 
function in a direction of zero Gaussian curvature is larger 
than for other directions. This results in an enhanced cur-
rent flow near the cone surface defined by the condition 

= 0K  [50,51]. If the FS is open, there are directions along 
which the electron flow is absent. These properties of the 
wave function manifest itself in an oscillatory part of the 
conductance (38): 1) The amplitude of oscillations is max-
imal if the direction from the contact to the defect corres-
ponds to the electron velocity belonging to an inflection 
line. 2) There are no conductance oscillations, arb

osc = 0,GΔ  
if this direction belong to cones, in which the electron mo-
tion is forbidden. 

For an ellipsoidal FS the Schrödinger equation can, in 
fact, be solved exactly in the limit 0,a→  0U → ∞  and 
the conductance of the contact can be found for arbitrary 
distances between the contact and the defect. For this FS 
the dependence of the electron energy ε  on the wave vec-
tor k  is given by relation 

 
2

, = , ,
( ) =

2
j i

iji j x y z

k k
m

ε ∑k =
, (41) 

where ik  are the components of the electron wave vector 
,k  1/ ijm  are constants representing the components of the 

inverse effective mass tensor 1.−m  
Accurate to within first order in g  (i.e., ignoring mul-

tiple scattering at the impurity site), the conductance in the 
limit 0V →  [51] is given by 

 

( )
23/2

ell ell 0
0 0 0 05 1

0 0

6 (2 )
= 1 ( ( ) ) ,

( )det[ ]
F

zz

zg
G G w h r

h rm −

⎡ ⎤⎛ ⎞ε⎢ ⎥− ⎜ ⎟⎢ ⎥π ⎝ ⎠⎣ ⎦
r k

km=

  (42) 

where ell
0G  in Eq. (42) is the conductance in the absence 

of a defect ( = 0)g  [51]: 

 
2 4 3

ell
0 3 2 1

0

2
= ,

9 det[ ]
F

zz

e a
G

U m −

ε

π m=
 (43) 

 

1/2

0 0 01
, = , ,

21( ) = ,
det[ ]

F
ij i j

i j x y z
h A n n

−

⎛ ⎞ε⎜ ⎟
⎜ ⎟
⎝ ⎠

∑k
m=

 (44) 

( )w kr  is given by Eq. (29). 
The center of the oscillation pattern in the conductance 

ell
0( )G r  as the function of the tip position 0ρ  corresponds 

to 0 00=ρ ρ  with respect to the point contact at = 0,r  
where 

 00 0= , .zz zz

zx zy

m m
z

m m

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

ρ  (45) 

The support function h  for such tip position, 

 0 00
1= 2zF F zzk m≡ εk n
=

 (46) 

corresponds to the extremal value of the chord 2 zFk  of the 
FS in the direction normal to the interface, 00n  is the unit 
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vector in the direction of the vector 00 00 0= ( , ).zr ρ  Figu-
re 4 shows that ell ell ell

osc 0=G G GΔ −  is an oscillatory func-
tion of the defect position 0ρ  that reflects the ellipsoidal 
form of the FS and the oscillations are largest when the 
contact is placed in the position 00ρ , defined by Eq. (45). 

In deriving Eq. (38) it has been assumed that 0.eV →  
For finite voltage, but ,FeV ε�  all functions of the ener-
gy ε  in Eq. (38) can be taken at = ,Fε ε  except 0( , )h ε k  
in the oscillatory functions. When ,FeV ε�  

 0 0( , ) ( , ) , F
F F

F F F

kh hh eV h eV∂ ∂
ε + ≈ ε +

∂ε ∂ε ε
k k ∼   

  (47) 

and when the product 0( / ) 1F FeV k rε �  clearly the con-
ductance (38) is an oscillatory function of the voltage V . 
The periods of the oscillations are defined by the energy 
dependence of the function 0( , ).h ε k  The results obtained 
properly describe the total conductance at FeV ε�  and 
also can be used for the analysis of the periods of the oscil-
lations at .FeV ≤ ε  

Further calculations require information about the ac-
tual shape of the FS, ( ) = .Fε εk  In Ref. 51 a model FS in 
the form of a corrugated cylinder was considered. Using 
this model, for which analytical dependencies of the con-
ductance on defect position can be found, the manifestation 
of common features of FS geometries in the conductance 
oscillations was described: the anisotropy of convex parts 
(«bellies»), the changing in sign of the curvature (inflec-
tion lines), and the presence of open directions («necks»). 

In Ref. 53 a numerical analysis of the conductance os-
cillation pattern was made for the noble metals copper, 
silver and gold on the basis of Eq. (38). The parame-
terization of the FS was taken from [54], 

 ( ) = 3 cos cos cos cos
2 2 2 2

y yx zk a k ak a k a⎡
ε α − + + +⎢

⎣
k   

cos cos ( 3 cos cos cos ) ,
2 2

xz
x y z

k ak a
r k a k a k a ⎤+ + − + + + ⎦   

  (48) 

which is accurate up to 99%. The values for the constants are 
= 0.0995,r  /ε α  = 3.63,  and a  is different for each metal. 

For copper, silver, and gold = 0.361a  nm, = 0.408a  nm, 
and = 0.407a  nm, respectively. The Fermi energy of copper 
is 7.00 eV, for silver 5.49 eV and for gold it is 5.53 eV. 

The results of computations for three crystallographic 
orientations are presented in Fig. 5. All distances in Fig. 5 
are given in units of ,Fλ  which for copper is 0.46 nm, and 
for silver and gold it is 0.52 nm. For each of the surface 
orientations the graphs have the symmetries of that particu-
lar orientation of the FS. In all figures «dead» regions can be 
seen, for which the conductance of the contact is equal to its 
value without the defect, showing no conductance oscilla-
tions. These regions originate from the «necks» of the FS 

and their edges are defined by the inflection lines. For all 
orientations of the metal surface the defect position in the 
plane of the surface corresponds to a center of symmetry. 
The appearance of «dead» regions depends on the depth of 
the defect, which can be estimated in the following way: The 
orientations of the «neck» axes define the axes of the cones 
with an opening angle 2 ,γ  in which there are no scattered 
electrons. Vertexes of the cones coincide with the defect. 
The radius R  of the central «dead» region, 0= tan ,R z γ  is 
proportional to the depth of the defect [32]. 

The possibility of visualizing the Fermi surface of Cu in 
real space by investigation of interference patterns caused 
by subsurface Co atoms has been demonstrated by Weis-
mann et al. [33]. 

5. Subsurface magnetic defects 

5.1. Kondo impurity 

In the case of a magnetic defect at low temperatures 
( ,KT T�  where KT  is the Kondo temperature) the Kondo 
resonance results in a dramatic enhancement of the effec-
tive electron–impurity interaction [55] and perturbation 
methods become inapplicable. Kondo correlations give rise 
to a sharp resonance in the density of states at the energy 

( ) = Kε εk  near the Fermi level. For ( ) Kε → εk  the effec-

Fig. 5. a — Fermi surface described by Eq. (48) relative to the
contact axis for three principal lattice orientations. b — plot of
the tunnelling point-contact conductance G as a function of the
contact position for a defect at the origin, at a depth of 5 Fλ  and
for a (100) surface plane; the x and y directions each correspond
to 100  directions. c — Same plot for a (111) surface orienta-
tion; the x and y directions correspond to [112]

  
and [1 10]  di-

rections, respectively. d — Same plot for a (110) surface orienta-
tion; the x and y directions correspond to [001]

 
and [1 10]

directions, respectively [69]. 
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tive electron scattering cross section acquires a maximum 
value corresponding to the Kondo phase shift 0 = / 2Kδ π  
[55]. In this case, multiple scattering needs to be taken into 
account, even for a single defect, because of electron ref-
lection by the metal surface. 

In this subsection the conductance is expressed by 
means of a s-wave scattering phase shift 0.δ  The results 
describe the influence to the conductance of multiple scat-
tering of the electrons, which results in the appearance of 
harmonics in the dependencies of G  on the applied vol-
tage, and on the distance between the contact and the de-
fect. The analysis of the nonmonotonic voltage dependence 
of the conductance is applied specifically to the interesting 
problem of Kondo scattering, using an appropriate phase 
shift [56]: 

 1
0 0

( )
( ) = .tan

2
K

D
K

k
T

−⎡ ⎤⎛ ⎞ε −επ
δ − +δ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

k
 (49) 

The first term in Eq. (49) describes the resonant scatter-
ing on a Kondo impurity level Kε  ( KT  is the Kondo tem-
perature). For a nonmagnetic impurity this term is absent. 
The second term 0Dδ  takes into account the usual poten-
tial scattering. 

Taking Eq. (17) for the wave function of a spherical 
Fermi surface and Eq. (19) for the scattering matrix makes 
it possible to find the differential conductance, =G

/ ,dI dV=  of the tunnel point contact in the approximation 
of s-wave scattering. For | | < FeV ε  and for > 0,eV  

( )G V  is given by [46] 

 
� �

�

( )
4

5
0 6

2( ) = ( ) ( ) ,
k F

F
F

F F kF

kG V G q V k dkk k
k k

⎡ ⎤⎛ ⎞⎢ ⎥+ Φ − Φ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫   

  (50) 

and for < 0,eV  

 
� �

2

0( ) = ( ) ( )F
F

F

kG V G q V k
k

⎡ ⎛ ⎞⎢ + Φ −⎜ ⎟⎢ ⎝ ⎠⎣  

 
�

( )3 2
6 2
4 2k F

F kF

m eVdkk k k
k

∗ ⎤⎛ ⎞ ⎥− − Φ⎜ ⎟⎜ ⎟ ⎥⎝ ⎠ ⎦
∫ =

. (51) 

Here 0G  is given by Eq. (27), � 2 2= 2 / ,F Fk k m eV∗+ =  
and 

 [
2

1 0
0 1 0 1 0 02

0
( ) = sin 12 ( )( ( )cos

z
k F j kr y kr

r
−Φ δ − δ +   
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 4 2
0 0 0 0 06(1 (2 ))( ) (1 ( ) )sin ,j kz kr kr− ⎤+ − + δ ⎦  (52) 

 0= 1 2 sinF + δ ×   

( )
0 0 0 0 0 02

0

1 (2 ) sin (2 )cos ,
2 2

j kz y kz
kz

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟× − δ − δ
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (53) 

( )0 kδ  is s-wave phase shift (49), and ( )lj x  and ( )ly x  
are the spherical Bessel functions. 

At low voltage the conductance can be expressed by an 
expansion in the small parameter ( )F 01/ < 1,k z  

 
( )

( )
( )

2
0 0

0 2 2 1
=10 0 0

1 sin(0) = 1 12 1
2

nn
n

nF F

z
G G

r k r k z

∞

−

⎧ δ⎪ + − ×⎨
⎪⎩

∑   

 
( )

( )( )( )0 0 02
0

1 11 sin 2 1
2 F

F

k r n z n
k r

⎡ ⎛ ⎞
⎢ ⎜ ⎟× − + − + δ +
⎢ ⎜ ⎟

⎝ ⎠⎣
  

 ( )( )( )0 0 0
0

1 cos 2 1 .F
F

k r n z n
k r

⎫⎤⎪+ + − + δ ⎬⎥
⎪⎦⎭

 (54) 

The second term in Eq. (54) gives the sum over n  scatter-
ing events by the defect and 1n −  reflections by the sur-
face. If we keep only the term for = 1n  Eq. (54) reduces 
to the result obtained by perturbation theory in Sec. 3 
above, which is valid for 2

0 / 2 1.Fgm k∗δ − π=� �  The 
arguments of the sine and cosine functions in Eq. (54) cor-
respond to the phase that the electron accumulates while 
moving along semiclassical trajectories. 

The voltage dependence of the conductance is not 
symmetric around = 0V . This asymmetry arises from the 
dependencies of the phase shift �

0 ( )Fkδ  (49) and the abso-

lute value of the wave vector � 2 2= 2 /F Fk k m eV∗+ =  on 
the sign of .eV  The physical origin of this asymmetry 
comes from the fact that the scattering amplitude depends 
on the electron energy in the lower half-space (see Fig. 1), 
where the defect is situated. This energy is different for 
different directions of the current. 

It is interesting to observe that the sign of the Kondo 
anomaly depends on the distance between the contact and 
the defect 0.r  This distance in combination with the value 
of the wave vector �Fk  determines the period of oscillation 
of ( ).G V  If the bias KeV  coincides with a maximum in 
the oscillatory part of conductance the sign of the Kondo 
anomaly is positive and vice versa, a negative sign of the 
Kondo anomaly is found at a minimum in the periodic var-
iation of ( ).G V  

The Fig. 6 shows the difference 0( ) / =KG V Gδ  
0( ) /m nG G G= −  between voltage dependencies for a 

magnetic mG  and a nonmagnetic nG  impurity, having the 
same potential scattering strength. The plots in Fig. 6 dem-
onstrate the evolution of the shape of the Kondo anomaly 
for several values of the distance between the contact and 
the impurity, placed on the contact axis. The change of 
distance changes the periodicity of the normal-scattering 
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oscillations which leads to a changing of sign in the Kondo 
signal. A similar dependence of the differential conduc-
tance with the distance between an STM tip and an adatom 
on the surface of a metal has been obtained theoretically in 
Refs. 57, 58 in terms of a Anderson impurity Hamiltonian 
[59]. Note that we obtain a Fano-like shape of the Kondo 
resonance in the framework of a single-electron approxi-
mation [46], while in Refs. 57, 58 many-body effects were 
taken into account. 

5.2. Magnetic cluster 

In this subsection we consider the influence on the con-
ductance of a tunnel point contact between magnetic and 
nonmagnetic metals of a defect having an unscreened 
magnetic moment, in a spin-polarized scanning tunnelling 
microscope (SP-STM) geometry [24]. A magnetic cluster 
is assumed to be embedded in a nonmagnetic metal in the 
vicinity of the contact. As first predicted by Frenkel and 
Dorfman [60] particles of a ferromagnetic material are 
expected to organize into a single magnetic domain below 
a critical particle size (a typical value for this critical size 
for Co is about 35 nm). Depending on the size and the ma-
terial, the magnetic moments of such particles can be 

effμ ∼  102–105 μB [61]. 
Generally, the moment effμ  of the cluster in a non-

magnetic metal is free to choose an arbitrary direction. 
This direction can be held fixed by an external magnetic 
field H , the value of which is estimated as eff/ ,H T μ�  
where T  is the temperature (see, for example, Ref. 61). 
For 2

eff 10 Bμ μ�  and 1T ∼  K the field H  is of the or-
der of  0.01 T. If H  is much larger than the magnetocrys-
talline anisotropy field of the magnetic STM tip, the direc-
tion of the external magnetic field controls the direction of 
the cluster magnetic moment but its influence on the spin-

polarization of the tunnel current is negligible. In this case 
the magnetic moment effμ  of the cluster is «frozen» by 
the field H  and the problem becomes a stationary one. 

If the external magnetic field is sufficiently weak and 
the radius of the electron trajectories = /H Fr ck eH=  is 
much larger than the distance between the contact and the 
cluster 0r , the effects of modulation of the tunnel current 
due to electron spin precession [62] and trajectory magne-
tic effects [63] are negligible. 

The geometry of a SP-STM experiment can be described 
in the framework of the model presented in Fig. 1, in which 
the half-space < 0z  is taken up by a ferromagnetic conduc-
tor with magnetization .M  In Ref. 64 the direction of the 
vector ,M  which defines the direction of the polarization of 
tunnel current is chosen along the z axis. In real SP-STM the 
polarization of STM current is defined by the magnetization 
of the last atom of the tip [24]. A magnetization oriented 
along the contact axis can be obtained, for example, for a 
Fe/Gd-coated W STM tip [65]. 

The interaction potential l( )D r  of the electrons with the 
cluster is a matrix consisting of two parts 

 eff 0 0
1ˆ ˆ( ) = (| |) ,

2 B
D gI J D

⎛ ⎞
+ −⎜ ⎟μ⎝ ⎠

r r r� μ σ  (55) 

where g  is the constant describing the nonmagnetic 
part of the interaction (for > 0g  the potential is repul-
sive), J is the constant of exchange interaction, eff =μ  

eff (sin , 0, cos )= μ α α is the magnetic moment of the clus-
ter, ˆ ˆ ˆ ˆ= ( , , )x y zσ σ σσ  with ˆ zμσ  the Pauli matrixes, and I�  
is the unit matrix. The function 0 ( )D r  satisfies the condi-
tion (3). In the case of spin–flip scattering the spinor elec-
tron wave functions satisfy the Schrödinger equation (4), in 
which the scattering potential must be replaced by the ma-
trix ˆ ( )D r  (55). Under the assumptions that the potential 
ˆ ( )D r  and the transparency of the tunnel barrier in the con-

tact plane are small the two-component wave function can 
be found by the method described in Sec. 2. 

The difference in absolute values of the wave vectors 
σk  for spin-up and spin-down electrons (for the same 

energy ε ), which move towards the contact from the fer-
romagnetic bank, 

 ( )1= 2 4 ,e Bk m g M∗
↑↓ ε π μ∓

=
 (56) 

results in different amplitudes = ( )t tσ σk  (see Eq. (12)) of 
the electron waves injected into the nonmagnetic metal for 
different directions of the spin ( eg  is the electron g-factor). 
The total effective polarization effP  of the current depends 
on the difference between the probabilities of tunnelling 
for different ,σ  

 
2 2

eff 2 2( ) = .
t t

P
t t

↑ ↓

↑ ↓

−
ε

+
 (57) 

Fig. 6. Difference 0( ) /KG V Gδ  between the voltage dependen-
cies of the conductance for a magnetic and a nonmagnetic impuri-
ty. The parameters = 0.9 ,K Fε ε  = 0.01 ,K FT ε  and 0 = 0.1Dδ  in 
Eq. (49) are used [46]. 
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The conductance G  of the contact at = 0T  and 
FeV ε�  is given by [64] 

 0 2
6

= = 1 Fm kIG G
V

∗⎡
+ ×⎢

π⎢⎣ =
  

 eff 0
=

1 ( ) cos ( ) ,
2 F

B
F

g P J W
ε ε

⎤⎛ ⎞
× + ε α ⎥⎜ ⎟μ ⎥⎝ ⎠ ⎦

r  (58) 

where 0G  is the conductance of the contact in absence of 
the cluster 

 ( )
2 3 4

2 2
0 2

0

( )
= ,

72 ( )
F

F F
e k a

G k k
m U↑ ↓ ∗

+
π

=
 (59) 

Fk σ  is the absolute value of the Fermi wave vector in the 
magnetic metal for spin direction σ  (see Eq. (56)), and 

 
2

0 0 0( ) = (| |) ( ).zW d D w kr
r
′⎛ ⎞′ ′ ′− ⎜ ⎟′⎝ ⎠∫r r r r  (60) 

The function w is defined by Eq. (29). When the radius of 
action Dr  of the function 0 0(| |)D −r r  is much smaller 
than the distance between the contact and the center of the 
cluster, 0 ,r  0( )W r  is an oscillatory function of 0kr  for 

1,Dkr ≥  as for point defect with 1Dkr �  (see, Eq. (26) at 
= 0V ), but the oscillation amplitude is reduced as a result 

of superposition of waves scattered by different points of 
the cluster. The integral 0( )W r  (60) can be calculated 
asymptotically for 0 ,Dr r�  0 1,kr �  and 1.Dkr 2  For a 
homogeneous spherical potential 1

0 (| |) = ( )D DD V r r− Θ −r  
( DV  is the cluster volume) the function 0( )W r  takes the 
form 

 
( )

2
0 0 1

0 2
0 0

sin 2 ( )
( ) 3 ,

2

z kr j kd
W

r kdkr

⎛ ⎞
⎜ ⎟
⎝ ⎠

r �  (61) 

where = 2 Dd r  is the cluster diameter. The last factor in 
Eq. (61) describes the quantum size effect related with 
electron reflections by the cluster boundary. Such oscilla-
tions may exist, if the cluster boundary is sharp on the 
scale of the electron wave length. Figure 7 shows the de-
pendence of the amplitude of the conductance oscillations 
on the cluster diameter. It demonstrates that a π-phase shift 
may occur resulting from interference of electron waves 
over a distance of the cluster diameter. 

In Eq. (58) the term proportional to effP  takes into ac-
count the difference in the probabilities of scattering of 
electrons with different σ  by the localized magnetic mo-
ment eff .μ  It depends on the angle α  between the tip 
magnetization and eff ,μ  as cos .α  The same dependence 
was first predicted for a tunnel junction between ferromag-
nets for which the magnetization vectors are misaligned by 
an angle α  [66], and this was observed in SP-STM expe-
riments [24]. 

Note that once the spin-polarized current-induced tor-
que pulls the magnetic moment away from alignment with 

,H  the cluster moment will start precessing around the 
field axis. The Larmor frequency is defined by the magnet-
ic field due to combining the external field H  and the 
effective magnetic field produced by the polarized current. 
The precession of the cluster magnetic moment gives rise 
to a time modulation of the SP-STM current as for clusters 
on a sample surface [25,26]. 

6. Magneto-quantum oscillations 

6.1. Conductance oscillations in perpendicular magnetic 
field 

In a strong magnetic field the STM conductance exhi-
bits characteristic oscillations in magnetic field, which are 
attributed to Landau quantization. This effect has been 
observed in Ref. 67 and the energy dependence of the ef-
fective electron mass was determined. An influence of the 
magnetic field on the interference pattern, which is pro-
duced by two adatoms, in the STM conductance has been 
investigated theoretically [68] and horizontal stripes re-
lated to the Aharonov–Bohm effect were predicted. 

In Sec. 3 it is demonstrated that the dependence 
0( , )G Vr  undergoes oscillations in 0r  and eV  resulting 

from the variation of the phase shift between transmitted 
and scattered electron waves. Here we discuss another way 
to control the phase shift between the interfering waves: an 
applied external magnetic field H  produces oscillations of 
the conductance as a function of H .  

Let us consider the contact described in Sec. 2, now 
placed in a magnetic field directed along the contact axis, 

Fig. 7. Dependence of the oscillatory part of the conductance on
the tip position on the metal surface for a subsurface magnetic
cluster with different cluster diameters. The ρ-coordinate is
measured from the point 0 = 0ρ  at which the contact is situated
directly above the cluster; 0 = (0,0,10) / ;Fr k  = 0.5;g�  i =J

2
eff( / ) = 2.5;F Bm k J∗= μ μ=  eff = 0.4;P  = 0α  [64]. 
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= (0, 0, ).HH  Figure 8 shows schematically the trajecto-
ries of the electrons that are injected into the metal and 
interact with the defect. 

In what follows the Schrödinger equation is solved 
along the same lines as in Sec. 2, and as zeroth approxima-
tion we use the well-known wave function for an electron 
in a homogeneous magnetic field. In Ref. 63 the depen-
dence of the STM conductance on magnetic field has been 
obtained under the assumptions that the contact diameter 
a  is much smaller than the magnetic quantum length, 

= / ,Ha m∗Ω=  the radius of the electron trajectory, 

= / ,H Fr k m∗Ω=  is much smaller than the mean free path 
of the electrons, 0 ,l r�  and the separation between the 
magnetic quantum levels, the Landau levels, Ω=  is larger 
than the temperature Bk T  ( = /eH m c∗Ω  is the Larmor 
frequency). Although these conditions restrict the possibili-
ties for observing the oscillations severely, all conditions 
can be realized, e.g., in single crystals of semimetals (Bi, 
Sb and their ordered alloys) where the electron mean free 
path can be up to millimeters and the Fermi wave length 

810F
−λ ∼ m. Under condition of the inequalities listed the 

dependence of the conductance of the tunnel point contact 
on H  is given by [63] 

 ( )
( )3 2 4( ) = 1

2
c

HF F

gmG H G H
N N a

∗

↑ ↓

⎡
⎢ + ×
⎢ π +⎣ =

  

 
max

0 0
= 0 = 0

Im ( , ) Re ( , ) .
n

n n
n n

∞

σ σ
′σ

⎤⎛ ⎞ ⎛ ⎞
⎥⎜ ⎟ ⎜ ⎟′× χ χ

⎜ ⎟⎜ ⎟ ⎥⎝ ⎠⎝ ⎠ ⎦
∑ ∑ ∑r r  (62) 

Here 

 0
0 0( , ) = exp ( )

2 nn Lσ
ξ⎛ ⎞χ − ξ ×⎜ ⎟

⎝ ⎠
r  

 ( )0exp 2 ,F B n
i z m H∗⎛ ⎞× ε + σμ − ε⎜ ⎟

⎝ ⎠=
 (63) 

2 2
0 0= / 2 ,Haξ ρ  and ( )nL ξ  are Laguerre polynomials, 

= ( 1 / 2),n nε Ω +=  = 1σ ± is the spin index, FN σ  is the 
number of electron states for one spin direction per unit 
volume at the Fermi energy, 

 
( )

( )
max

2
=0

2 | |= 2 ,
2

n

F F B n
n

e HN m H
c

∗
σ ε + σμ − ε

π
∑

=
 (64) 

max = [ / ]Fn ε Ω=  is the maximum value of the quantum 
number n  for which < ,n Fε ε  and [ ]x  is the integer part 
of the number x , cG  is the conductance in absence of a 
defect, 

 ( ) ( )
22

3

0
( ) = .F F

c
ea N N

G H
m U

↑ ↓
∗

⎛ ⎞+
⎜ ⎟π
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⎝ ⎠

=  (65) 

The conductance (65) undergoes oscillations having the 
periodicity of the de Haas–van Alphen effect that origi-
nates from the step-wise dependence of the number of 
electron states FN σ  (64) on the magnetic field. At 

max ( ) 1,Fn ε �  / 1B FHμ ε �  (semiclassical approxima-
tion), Eq. (65) can be expanded in the small parameter 

/ FΩ ε=  

 

( )
( )

3/2

0 3/2
=1

19( ) 1 sin 2 ,
2 42

s
F

c
F s

G H G s
s

∞⎡ ⎤−⎛ ⎞ εΩ π⎛ ⎞⎢ ⎥+ π −⎜ ⎟ ⎜ ⎟ε Ω⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑=

=
�

  (66) 

where 0G  is the conductance of the contact at = 0H  (see 
Eq. (59)). 

The oscillatory part of the conductance, ( ) =G HΔ  
( ) ( ) ,cG H G H= − which results from the electron scatter-

ing on the defect, is plotted in Fig. 9 for a defect placed at 
( , ) = (50,30) / .Fz kρ  Figure 10 illustrates the dependence 
of the conductance (62) on 0ρ  coordinate of the defects for 
different .H  The beating of the oscillation amplitude due 
to the difference of electron energies for different spin is 
seen at higher magnetic field. 

The dependence plotted in Fig. 9, ( ),G H  (62), con-
tains oscillations with different periods. The semiclassical 
asymptotes at FΩ ε= �  of the expression for the conduc-
tance Eq. (62) allows us to explain the physical origin of 
these oscillations. By using the Poisson summation formu-
la in Eq. (62) the part of the conductance ( )G HΔ  related 
with the scattering by the defect can be written as a sum of 
two terms 

 1 2( ) = ,G H G GΔ Δ + Δ  (67) 

each of them describing conductance oscillations with dif-
ferent periods, which are discussed in more detail below. 

Fig. 8. Schematic representation of the electron trajectories in a
vicinity of a point contact in an external magnetic field oriented
along the contact axis. 
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6.2. Effect of flux quantization through the trajectory of the 
scattered electrons 

The first term 1 0( , )G HΔ r  in Eq. (67) describes the 
long-period oscillations  

 
2
0

1 0 0 F 02 4
00

( , ) = sin 2 2 .
F

z
G H G g k r

k r

⎛ ⎞Φ
Δ − − π⎜ ⎟Φ⎝ ⎠

r �  (68) 

where 0 = 2 /c eΦ π=  is the flux quantum. The flux, 
pr= ,HSΦ  is given by the field lines penetrating the areas 

of the projections prS  on the plane = 0z  of the trajecto-
ries of the electrons moving from the contact to the defect 

and back (see, the trajectory 2 in Fig. 8). Such trajectories 
consist of two arcs, and there are a lot of trajectories with 
different pr .S  As was shown in Ref. 63 among these tra-
jectories the signal is dominated by the one that has mi-
nimal area given by pr seg= 2 .S S  Here seg =S  

2 ( sin 2 )r= θ− θ  is the area of the segment formed by the 
chord of length 0ρ  and the arc of radius = sin ,Hr r θ  with 
θ  the angle between the vector 0r  and the z axis, 

0 0sin = / .rθ ρ  Therefore, the oscillation 1GΔ  disappears 
when the defect sits on the contact axis, 0 = 0.ρ  Obvious-
ly, the origin of these oscillations lies in the curvature of 
the electron trajectories in a magnetic field. As we can see 
from Eq. (68) the oscillations in the conductance 1GΔ  
have a nature similar to the Aharonov–Bohm effect (the 
conductance undergoes oscillations with a period 0/Φ Φ ) 
and are related to the quantization of the magnetic flux 
through the area enclosed by the electron trajectory. For 
illustration of this fact in Fig. 9 the full expression for the 
oscillatory part ( )G HΔ  of the conductance (the second 
term in Eq. (62)) is compared with the semiclassical ap-
proximation 1 0 0( , , ),G H zΔ ρ  Eq. (68). 

For the observation of the Aharonov–Bohm-type oscil-
lations the position 0ρ  of the defect in the plane parallel to 
the interface must be smaller then ,Hr  i.e., the defect must 
be situated inside the «tube» of electron trajectories pass-
ing through the contact. At the same time the inequality 

0 > Haρ  must hold in order that a magnetic flux quantum 
0Φ  is enclosed by the area of the closed trajectory. 

6.3. Effect of longitudinal focusing of electrons on the 
defect by the magnetic field 

The short-period oscillations originate from the effect 
of the electron being focused by the magnetic field, and is 
described by the term 2 0( , )G HΔ r  in Eq. (67). At 0 = 0ρ  
this term can be written as  
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 (69) 

In the absence of a magnetic field only those electrons that 
are scattered off the defect in the direction directly oppo-
site to the incoming electrons can come back to the point 
contact. When 0H ≠  the electrons move along a spiral 
trajectory and may come back to the contact after scatter-
ing under a finite angle to the initial direction (the trajecto-
ry 1 in Fig. 8). For example, if the defect is placed on the 
contact axis an electron moving from the contact with a 
wave vector =z Fk k  along the magnetic field returns to 
the contact when the z-component of the momentum 

0= / 2 ,zsk z m s∗Ω π =  for integer .s  For these orbits the 
time of the motion over a distance 0z  in the z  direction is 
a multiple of the cyclotron period = 2 / .HT π Ω  Thus, after 
s  revolutions the electron returns to the contact axis at the 

Fig. 9. Oscillatory part of the conductance of a tunneling point
contact with a single defect placed at 0 = 50,Fk ρ  0 = 30.Fk z
The full curve is a plot for Eq. (62), while the dashed curve 
shows the component 1GΔ  for the semiclassical approximation,
Eq. (68). The field scale is given in units 1 / ;F Hk r  = 0.5.g�  
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point = 0.z  The phase which the electron acquires along 
the spiral trajectory is composed of two parts, 

1 2= .Δφ Δφ + Δφ  The first, 1 0= zsk zΔφ  is the «geometric» 
phase accumulated by an electron with wave vector zsk  

over the distance 0z . The second, 2
2 = ( / )ss eHr cΔφ π =  is 

the phase acquired during s  rotations in the field ,H  

where 2 2= /s F zsr c k k eH−=  is the radius of the spiral 
trajectory. Substituting zsk  and sr  in the equation for Δφ  
we find 

 2 2
0= 2 / / 4 .F Hs z saΔφ π ε Ω+ π=  (70) 

This is just the phase shift that defines the period of oscil-
lation in the contribution 2GΔ  (69) to the conductance. It 
describes a trajectory which is straight for the part from the 
contact to the defect and spirals back to the contact by s  
windings as it is shown in Fig. 8. There are trajectories 
consisting of helices in the forward and reverse paths, with 
s  and s ′  coils, respectively. However, the contribution of 
these trajectories to the conductance is smaller than 2GΔ  
(69) by a factor 1 / ( ) 1.F Hk a∼ �  Note that, although the 
amplitude of the oscillation 2GΔ  (69) is smaller by a fac-
tor / FΩ ε=  than the amplitude of the contribution 1GΔ  
(68), the first depends on the depth of the defect as 3/2

0z−  
while 2

1 0 .G z−Δ ∼  The slower decreasing of the amplitude 
for 2GΔ  is explained by the effect of focusing of the elec-
trons in the magnetic field. The predicted oscillations, Eq. 
(69), are not periodic in H  nor in 1/ .H  Their typical pe-
riod can be estimated as the difference HΔ  between two 
nearest-neighbor maxima 

 

12
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21 .
2F F H

zH
H k a

−
⎡ ⎤⎛ ⎞Δ Ω⎛ ⎞ ⎢ ⎥− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ε⎝ ⎠ π⎝ ⎠⎢ ⎥⎣ ⎦

=�  (71) 

The period (71) depends on the position of the defect. It is 
larger than the period of de Haas–van Alphen oscillation, 
( )dHvA/ / .FH HΔ Ω ε=�  Both of these periods are of the 
same order of magnitude. 

7. Nonmagnetic defect in a superconductor 

In this section we present the results of a theoretical in-
vestigation of the conductance, ,nsG  of a normal metal–
superconductor (NS) point contact (with radius < )Fa λ  in 
the tunnelling limit and discuss the quantum interference 
effects originating from the scattering of quasiparticles by 
a point-like nonmagnetic defect [69]. The model is de-
scribed in Sec. 2 and illustrated in Fig. 1, modified with 
having the half-space > 0z  occupied by a (s-wave) super-
conductor. At zero temperature a tunnel current flows 
through the contact for an applied bias eV  larger than the 
energy gap of the superconductor 0 .Δ  In order to evaluate 
the total current through the contact, ( ) ,I V  the current 
density ( )kj r  of quasiparticles with momentum k  at 

> 0,z  formed by electrons transmitted through the contact 
must be found. The current density ( )kj r  is expressed in 
terms of the coefficients ( )uk r  and ( )k rv  of the canoni-
cal Bogoliubov transformation [70]. The functions ( )uk r  
and ( )vk r  satisfy the Bogoliubov–de Gennes (BdG) equa-
tions [71], which must be supplemented with a self-
consistency condition for the order parameter ( ),Δ r  and 
boundary conditions which connect uk  and kv  in the 
normal metal to those in the superconductor at the contact. 
For a tunnel contact one can neglect Andreev reflections, 
because these lead to corrections to the conductance pro-
portional to 4| |t  [72]; the functions uk  and kv  satisfy the 
same boundary conditions (10), (11) as the wave function 
for a contact between normal metals. 

It is obvious that the method described in Sec. 2 and 
Sec. 3 can be generalized to NS contacts. As a first step the 
BdG equations must be solved in linear approximation in 
the transmission amplitude t  in the absence of the defect, 

= 0,D  after which the corrections due to the scattering by 
the defect can be found. In Ref. 69 an analytical solution 
for the BdG equations was found with the approximation 
of a homogeneous order parameter 0( ) = ( ).zΔ Δ Θr  

At small applied bias D FeV ω ε=� �  ( Dω  is the 
Debye frequency), and in linear approximation in the elec-
tron-defect interaction constant g  the conductance nsG  of 
a NS tunnel point contact can be presented as the sum of 
two terms, 

 ( ) ( ) ( )0 0 osc 0 0, = , , > .nsG V r G V G V r eV+ Δ Δ  (72) 

The first term, 0 ( ),nsG V  in Eq. (72) is the conductance of 
the NS tunnel point contact in the absence of the defect 

 ( ) ( )0 0= ,ns sG V G N eV  (73) 

where 0G  is the conductance of a contact between normal 
metals (27), which is multiplied by the normalized density 

of states of the superconductor ( ) 2 2
0= /sN E E E − Δ  at 

= .E eV  Although such result is not unexpected and has 
been confirmed by experiment [22], for a contact of radius 

< 1Fk a  it was not obvious and it is first obtained in 
Ref. 69. The second term describes the oscillatory depen-
dence of the conductance with the distance between the 
contact and the defect. If the defect is situated in the super-
conductor 0( < 0)z  

 ( ) ( )
2

0
osc 0 0 0

0 =
, = ( ) ( ) ,ns

z
G V r G V g eV w k r

r α α
α ±

⎛ ⎞
Δ − ψ⎜ ⎟

⎝ ⎠
∑�   

  (74) 

where 

 ( )
( )2 2

01= 1 ,
2

eV
eV

eV±

⎛ ⎞− Δ⎜ ⎟ψ ±⎜ ⎟⎜ ⎟
⎝ ⎠

 (75) 
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 ( )
1/2

2 2
0

2= ,F
mk eV
∗

±
⎡ ⎤ε ± − Δ⎢ ⎥⎣ ⎦=

 (76) 

and the function ( )0w k rα  is given by Eq. (29). Equation 
(74) is obtained by neglecting all small terms of the order 
of 0 / FΔ ε  and / .FeV ε  Note that we kept the second 
term in square brackets in the formula for k±  (Eq. (76)) 

because for large 0 ,r  2 2
0 0( ( ) / )( ) 1,F FeV k r− Δ ε �  the 

phase shift of the oscillations may be important. 

8. Conclusions 

Thus, we have reviewed some theoretical aspects of the 
possibility of investigating subsurface defects by STM expe-
riments. The theoretical results show that the amplitude of 
the oscillations of the STM conductance resulting from 
quantum interference of electron waves injected by the STM 
tip and scattered by the defect remains sufficiently large 

3
0( 10 ),G−∼  even for defects located more than 10 atomic 

layers below the surface. For example, in the STM experi-
ments of Ref. 73 signal-to-noise ratios of 45 10−⋅  (at 1 nA, 
400 Hz sample frequency) have been achieved. Recently, 
the possibility of observing defects at such depths below the 
surface has been demonstrated in experiment [33]. 

The STM tip plays the role of «locator», which detects 
a defect below the metal surface by using electron waves. 
The defect in turn produces information about its (defect) 
characteristics, as well as showing properties of the host 
metal by producing Friedel-like oscillations in the STM 
conductance. The phase of the oscillations, 02 ,Fk r  is de-
fined by the Fermi wave vector Fk  and the tip-defect dis-
tance 0.r  One of the possibilities to determine the defect 
depth 0z  below surface is by changing the maximal value 
of the wave vector by accelerating the electrons with an 
applied bias eV  [47,74]. When the tip is situated above the 
defect, the period of the oscillations in ( )G V , 

0( ) = ,Fk eV zΔ π  uniquely defines 0.z  As the period of the 
oscillations becomes longer for small 0z  the minimum 
detectable depth will be determined by the maximum vol-
tage that can be applied over the junction. For example, 
30 mV is sufficient for probing a quarter of a conductance 
oscillation caused by a defect at 1 nm depth. 

Another factor in setting the oscillation phase is the 
shape of the Fermi surface (FS). As was shown, for an ani-
sotropic FS ( ) = Fε εk  the phase and amplitude of conduc-
tance oscillations depend on the characteristics of the FS in 
the point for which the direction of the velocity 0=v v  is 
parallel to the vector 0r  directed from the STM tip to the 
defect [51]. Namely, the phase of the oscillations is defined 
by the projection of k  on the direction of 0 ,v  and the 
oscillation amplitude depends on the curvature of the FS. 
Depending on the geometry of the FS there can be several 
points with the same direction of the velocity, or, if the FS 
has open parts, certain directions of the velocity can be 

forbidden. It follows from the results above that curves of 
constant phase 0 0 0/ | |rkv v  (maxima and minima) in the 
interference pattern of the STM conductance show the con-
tours formed by projections of the vector k  on the vector 
normal to the FS. Although such contours reflect the main 
features of the FS geometry, they cannot be considered as a 
direct imaging of the FS. 

Electron scattering by subsurface magnetic defects in 
STM conductance possesses some features distinct from 
the scattering by magnetic adatoms and the form and sign 
of the Kondo anomaly due to a subsurface magnetic defect 
depend on the depth [46]. Near the Kondo resonance the 
scattering phase shift 0δ  tends to / 2,π  and including mul-
tiple electron scattering events after reflections by the met-
al surface becomes essential. This explains the appearance 
of harmonics in the oscillatory part of the conductance, 
which have an additional phase shift =Δφ

0 02( 1) ,Fn k z n= − + δ  where n  is the number of electron 
reflections by the surface. The determination of this phase 
shift near the Kondo resonance ( )KV V�  and far from it 
(where 0 1δ � ) for the first ( = 0)n  and second ( = 1)n  
harmonics provides an alternative way to find the depth of 
the defect 0.z  

The possibilities of investigating magnetic defects are 
extended by injecting a spin-polarized current. If the sub-
surface cluster possesses an unscreened magnetic moment 

eff ,μ  the scattering amplitudes of spin-up and spin-down 
electrons are different. This results in a dependence of the 
oscillation amplitude on the angle between the vector effμ  
and the polarization direction of the STM current-referred 
to as a magneto-orientational effect [64]. 

A strong magnetic field perpendicular to the metal sur-
face changes the interference pattern in the STM conduc-
tance fundamentally. As a result of Zeeman splitting 

e Bg H± μ  of the Landau energy levels the interference 
patterns formed in the dependence 0( )G r  by electrons 
with different spin directions do not coincide because of 
different electron wave lengths for energies .F e Bg Hε ± μ  
The superposition of the two oscillatory parts may result in 
a beating of the total amplitude of the oscillations. Along 
with the well-known quantum oscillations having the peri-
odicity in 1H −  of the de Haas–van Alphen effect in the 
STM conductance, in the presence of a defect two new 
types of oscillations are present. The first is related to flux 
quantization through the projection of the electron trajecto-
ry on the surface plane. The second type of oscillation 

( )G H  is related to a focusing effect of the magnetic field. 
As in Sharvin's two-point contact experiments, in which 
electrons were focused on a collector by a magnetic field 
directed along the line connecting the contacts (geometry 
of longitudinal electron focusing) [75], the magnetic field 
can periodically focus the electrons injected by the tip onto 
the defect. This results in periodic increasing or decreasing 
of the part of the conductance related to the scattering by 
the defect [63]. 
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If the electrons tunnel from a normal-metal STM tip in-
to a superconductor the wave incident on the contact is 
transformed into a superposition of «electron-like» and 
«hole-like» quasiparticles. In the case of a location of the 
defect in the superconductor quantum interference takes 
place between the partial wave that is transmitted and the 
one that is scattered by the defect, for both types of quasi-
particles independently (Eq. (74)). Although the difference 
between wave vectors ( ) ( )k eV±  of «electrons» and 
«holes» is small the shift ( ) ( )

0( )k k r+ −−  between the two 
oscillations should be observable [69]. 
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