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The point-contact spectra of the Andreev reflection /dV dI  curves of the superconducting rare-earth nickel 
borocarbide ErNi2B2C ( cT ≈ 11 K) have been analyzed in the «one-gap» and «two-gap» approximations using 
the generalized Blonder–Tinkham–Klapwijk model and the Beloborod'ko model allowing for the pair-breaking 
effect of magnetic impurities. Experimental and calculated curves have been compared not only in shape, but in 
magnitude as well, which provide more reliable data for determining the temperature dependence of the energy 
gap (or superconducting order parameter) ( ).TΔ  The anisotropic effect of antiferromagnetic ordering at NT ≈

6 K≈  on the superconducting gap/order parameter has been determined: as the temperature is lowered, Δ  
decreases by ∼ 25% in the c-direction and only by ∼ 4% in the ab-plane. It is found that the pair-breaking 
parameter increases in the vicinity of the magnetic transitions, the increase being more pronounced in the c-di-
rection. The efficiency of the models was tested for providing ( )TΔ  data for ErNi2B2C from Andreev reflection 
spectra. 

PACS: 74.45.+c Proximity effects; Andreev reflection; SN and SNS junctions; 
74.70.Dd Ternary, quaternary, and multinary compounds (including Chevrel phases, borocarbides, etc.). 

Keywords: nickel borocarbides, point contacts, multiband superconductivity, superconducting gap, antiferromag-
netic transition. 
 

Introduction 

Quaternary intermetallic nickel borocarbides (hereafter 
borocarbides) of the RNi2B2C type (R is a rare-earth ele-
ment) attract special interest (see surveys [1,2,3] and fur-
ther references) as they include compounds with rather 
high superconducting transition temperatures (up to 

17cT ≈  K, R = Lu) and compounds with different types of 
magnetic ordering that include states with commensurate 
and incommensurate spin-density waves. 

Borocarbides have a body centered tetragonal crystal-
line structure with the ratio c/a∼ 3 [1,2]. They have a ra-
ther complex Fermi surface (FS) consisting of several 
sheets [4,5]. FS is anisotropic [1,2] and has two characte-
ristic groups of electrons possessing different Fermi veloci-
ties Fν  (this was mentioned in [6] from the de Haas-van 
Alphen experiments [7,8]). The Tc of borocarbides is de-
termined not by the total density of states ( )FN E , but by 
the contribution to the density of states which is made by 

the slow electrons of the nodal regions [2]. In the normal 
state the transport properties of borocarbides, in particular 
their resistivity ρ , are practically isotropic [1,2] because 
they are related to the groups of electrons that have rela-
tively high velocities Fν  with lower anisotropy and are 
unrelated to the nodal points at the Fermi surface [2]. 

In RNi2B2C (R = Dy, Ho, Er, Tm) compounds the ele-
ment R contains 4f-electrons with partially filled f-shells 
having a magnetic moment. As a result, Tc of these com-
pounds is appreciably lower in comparison with nonmag-
netic borocarbides (R = Y, Lu [1–3]). The object of this 
study, ErNi2B2C, undergoes a superconducting transition 
at ~ 11cT  K [1–3] and two magnetic transitions below ,cT  
which do not destroy superconductivity. The AFM order-
ing occurs at the Neel temperature TN ~ 6 K when the Er 
ions form a transverse-polarized incommensurate spin-den-
sity wave state [1–3]. The AFM ordering entails structural 
distortions and thus reduces the crystal symmetry from 
tetragonal to orthorhombic [9]. This magneto-elastic effect 
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is regarded as a structural Jahn–Teller transition [10]. The 
modulation wave vector of the spin-density waves is prac-
tically independent of temperature and is along the a-axis 
(direction [100]), or the equivalent b-axis (direction [010]), 
the spins being aligned along the b-axis or the a-axis, 
respectively. As the temperature lowers further, the 
compound changes into a weakly ferromagnetic (WFM) 
state with WFMT ∼ 2.3 K in which a spontaneous vortex 
lattice is formed [11]. 

To understand the features of the superconducting state 
in magnetic borocarbides, it is essential to have inform-
ation about the superconducting gap Δ  (magnitude, beha-
vior, anisotropy, etc.) or the superconducting order para-
meter (OP). The investigations of the gap Δ  in ErNi2B2C 
[12–16] give = 1.6–1.82Δ  meV. Its temperature depen-
dence corresponds on the whole to the BCS theory. It is 
noted [13,14] that on a paramagnetic–AFM transition Δ  
decreases and the pair-breaking parameter Γ  [17] reaches 
a maximum in the transition region. The authors [13] 
interpreted the results using the theory [18] which predicts 
a decrease in Δ  due to spin-density wave gaps that open in 
some parts of the FS. On the other hand, the influence of 
the AFM transition on Δ  was not observed in subsequent 
tunnel measurements on ErNi2B2C [15]. 

Detailed point-contact (PC) spectra of the Andreev re-
flection in ErNi2B2C in two principal crystallographic 
directions have been obtained in our recent study [19]. The 
analysis of these spectra shows that: 

1. They are essentially anisotropic and their behavior 
differs qualitatively from that in LuNi2B2C. 

2. The AFM ordering lowered the gap. 
3. The two-gap model can be efficient at describing the 

experimental results. 
However, the large (six) number of fitting parameters 

involved in the two-gap model casts some doubt on the un-
iqueness of results. On the other hand, it is quite appro-
priate to determine to what extent the one-gap approx-
imation can account for the nontrivial behavior of the 
superconducting OP (gap) [19]. In this study we have also 
analyzed the one- and two-gap approximation within the 
Beloborod'ko (BB) model [19,20] allowing for the pair-
breaking influence of magnetic ions and on the basis of the 
generalized Blonder–Tinkham–Klapwijk (GBTK) model 
[21] allowing for the Dynes pair-breaking parameter [17]. 

Experimental technique 

Here we detail the experimental technique, which was 
described in [19] only briefly because of the space limit-
ations. The PC measurements were made on ErNi2B2C 
single crystals ( cT ≈ 11 K) grown from the melt (Ames 
Laboratory, Prof. P. Canfield's group) and were similar to 
those used in [22]. The crystals were thin (0.1–0.2  mm) 
plates with the c-axis normal to the plane of the plate. The 
surface pretreatment was similar to that for LuNi2B2C 

[23,24] (either by etching in a 5% nitric acid-alcohol so-
lution or by of cleavage). The other electrode was a high-
purity Ag rod or Ag wire of 0.15 mm in diameter. In the 
latter case the wire surface was pre-washed in concentrated 
nitric acid. The contact was made between the pretreated 
single crystal surface and the loop-shaped wire. The use of 
the wire loop as a damper improved the mechanical sta-
bility of the contacts and made it possible to measure the 
characteristics of one of the contacts (in the ab-plane) both 
on heating from 1.45 K to >T 11 K (normal state) and on 
subsequent cooling from the normal sate to the starting 
lowest temperature. 

The temperature measurements were made using a con-
tinuous flow He cryostat (its analog is described in [25]). 
An insert was placed inside the cryostat, which made a PC 
by touching the sample surface with the silver electrode at 
helium temperature. The typical PC resistance varied from 
several to tens of Ohms. For more elaborate investigations, 
the PCs were selected, which had the highest possible 
«tunneling» characteristics seen as an intensive maximum 
in the / ( )dV dI V  curve at = 0V  and the strongest non-
linearity corresponding to at least a 10% change in 

/ ( )dV dI V  in the interval ± 8 mV. On some contacts the 
/ ( )dV dI V  spectra were measured in the interval from 

minT  = 1.45 K to temperatures 1–2 K higher than cT ≈
11≈  K. The results were quite reproducible irrespective of 

the resistance of a particular contact. Therefore, here we 
analyze the measurements on two contacts along the 
principal crystallographic directions — along the c-axis 
and in the ab-plane. The detailed series of the / ( )dV dI V  
spectra were obtained at approximately equal temperature 
intervals. 30 curves were taken at rising temperature and 
34 curves were measured at lowering temperature in the 
ab-plane, while 49 curves were measured in the c-direction 
at rising temperature. The contacts remained stable during 
the whole period of measurement. 

Results and discussion 

The temperature series of / ( )dV dI V  curves measured 
on two ErNi2B2C–Ag contacts in the ab-plane and along 
the c-axis are shown in Fig. 1. 

Parameters characterizing the contacts and ErNi2B2C 
are described in [19]. The most important of them is the 
PC size (diameter) estimated as abd ≈ 9.1 nm, cd ≈ 4.4 nm 
for the corresponding directions (Fig. 1). The coherence 
length ξ  in this compound increases from 15 to ∼ 23 nm 
[26] when T  increases from 3 K to 8 K, which satisfies the 
requirement <d ξ  for the theory [27]. 

For better visualization, some / ( )dV dI V  curves of 
Fig. 1 were symmetrized and then scaled by dividing by 

/ ( )dV dI V  in the normal state at the lowest temperature 
and the bias interval ± 8 mV. They are shown in Fig. 2 
along with the results (lines) of the one-gap calculation 
within the GBTK model [21]. The scaled curved are 



N.L. Bobrov, V.N. Chernobay, Yu.G. Naidyuk, L.V. Tyutrina, I.K. Yanson , D.G. Naugle, and K.D.D. Rathnayaka 

1230 Fizika Nizkikh Temperatur, 2010, v. 36, Nos. 10/11 

reduced to equal amplitude norm = ( ) / ( )A A T M T . Here 
( ) = ( ) / (0)M T A T A , is a coefficient, where ( )A T  is the 

amplitude at the temperature T . (0)A  is the amplitude of 
the curve normalized to the normal state at the lowest 
temperature in the bias interval ± 8 mV ( norm = (0)A A ). 
Note that the smooth jump-free dependence ( )M T  in the 
ab-plane and c-direction (Fig. 3) is indicative of the 
temperature stability of the point contacts. 

Of interest is the unusual temperature dependence of the 
distance between the minima in /dV dI  of the ErNi2B2C–Ag 
point contact (Fig. 4). It differs drastically from the corres-
ponding dependence in /dV dI  of a ErNi2B2C–Ag point 
contact having a similar tunneling parameter Z [23,24]. It 
is known that at low temperatures the half-distance bet-
ween the minima in the / ( )dV dI V  curve of high-tun-
neling ( 1Z ∼  SN point contacts correlates quite well the 
superconducting energy gap)*. It should be noted that in 
the ErNi2B2C–Ag PC the two-minima structure of the 

/dV dI  curve persists up to cT  in the ab-plane and 0.95 cT  
in the c-direction. This is typical of tunnel contacts (e.g., 
[28]) and rather unusual in PCs, where the Andreev ref-
lection is important and the tunnel parameter is <Z 1(0.8). 

Besides, there is another feature in the ErNi2B2C spect-
ra that is unobservable in LuNi2B2C: the distance between 
the minima in the /dV dI  curve increases with tempera-
ture up to a maximum slightly above the temperature of the 
AFM transition. It is reasonable to attribute this behavior 
to the magnetic transition in ErNi2B2C. Such transitions 
are absent in LuNi2B2C. 

It is also important that the local critical temperature in 
the investigated PCs (at which the main minimum disap-
pears from the /dV dI  curve) practically coincides with 

* Even at the lowest temperature the interminima half-distance can correspond to the OP only when the broadening parameter γ [20]
or Γ [17] is zero and the tunneling parameter Z is non-zero. Besides, the OP can vary in different regions of the Fermi surface e.q.,
due to anisotropy. There is no reason to expect that the interminima half-distance would coincide with the OP averaged over the
Fermi surface. Therefore, it is expedient to calculate the temperature dependence of the averaged OP from the fitting results for the
theoretical and experimental curves. 

Fig. 1. Differential resistances of ErNi2B2C–Ag point contact
formed in two principal directions at different temperatures. To
avoid overloading, only a few of the curves are shown. 
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cT  of the crystal, which suggests that the properties of the 
material remain unaltered in the contact. 

As is mentioned in the introduction, experimental data 
were analyzed in the one- and two gap approximations 
using two models. 

1. The traditional GBTK model [21], which includes 
the broadening parameter Γ  [17] characterizing inelastic 
pair-breaking processes. 

2. The BB model [20] which introduces the pair-
breaking parameter γ  to account for the finite lifetime of 
Cooper pairs due to the pair-breaking action of (dis-
ordered) magnetic moments (in our case the Er ions 
possessing a magnetic moment). 

The terms «energy gap» (GBTK model [21]) and 
«order parameter» [20] used in this model are of equivalent 
physical sense (see the detailed discussion in [20], 
p. 014512-3 and are therefore denoted identically with Δ . 
This, however, does not refer to the term «energy gap 0Δ » 
in the BB model [20] which differentiates the supercon-

ducting order parameter Δ  and the energy gap 0Δ  [20]. 
The energy gap 0Δ  and the order parameter Δ  are related as 

 2/3 3/2
0 = (1 )Δ Δ − γ  (1) 

Here γ  = 1/ sτ Δ  is the pair-breaking parameter, sτ  is the 
electron mean free time under spin–flip scattering. When 
this scattering is absent, sτ  tends to infinity and the 
equation describing the current-voltage characteristics 
(IVCs) [20] coincides with the corresponding equation of 
the classical BTK theory [27]. The equations describing 
the IVCs of PCs within this model are presented in [20,24]. 

One-gap approximation 

The calculation technique of the most popular GBTK 
model minimizing the rms deviations F  between the sha-
pes of experimental and theoretical curves (see [24], 
Fig. 3) faces a certain problem: when the magnitudes of Γ  
and the gap Δ  become comparable, the error curve for Δ  
has no distinct minimum, which is most typical of the c-di-
rection (see Appendix, Fig. 18). 

Note that in this comparison of the theoretical and 
experimental curves the parameter F  characterizes only 
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the degree of their discrepancy in shape, while the distinc-
tions in intensity are compensated using a scaling factor 

exp theor= ( / ) / ( / )S dV dI dV dT . The scaling factor S , 
which characterizes the intensity ratio between experi-
mental and theoretical curves, must be equal to 1. Some-
times this requirement of the GBTK model is violated and 
we have S ≠ 1. Such factors and the ways of their selection 
are considered in Appendix B. 

Calculation in GBTK and BB models with fixed S 

The dependencies Δ (T) in the ab-plane and c-direction 
calculated with properly chosen S-factors are shown in 
Fig. 5. 

Table 1 contains (0)Δ  estimates (bold type) for both 
directions obtained with proper S-factors. Also, it includes 
GBTK data ( (0)Δ ) for the maximum ( S  = 1) and mini-
mum ( S  = 0.25) possible cases. Such S  values appear be-
cause in this model the error in F  changes only slightly 
when S  deviates from its proper value (Figs. 18, 20). 

Note that in the ab-plane the relation 2 / = 3.52ckTΔ  
agrees with the BCS theory at S  = 0.31 (our proper selec-
tion). In the c-direction the BCS relation 2 / = 3.53ckTΔ  
(Δ (0)) = 1.62 meV in the PM region is achieved at (S = 0. 
In this case the error in F  increases only slightly, see 
Fig. 20,b). 

Table 1. Superconducting energy gaps (GBTK) or OPS (BB) 
Δ  at different scaling factors S  in the ab-plane and c-direction. 

S  
Direction, 

Face 

GBTK BB 

(0)Δ  2 / ckTΔ  (0)Δ  c2 / kTΔ

0.25 ab,PM 1.8 3.76 1.95 4.08 

 c,PM 2.17 4.73 2.36 5.14 

0.31 ab,PM 1.68 3.52 — — 

0.65 c,PM 1.48 3.23 — — 

1 ab,PM 1.03 2.15 — — 

 c,PM 1.23 2.68 — — 

The calculation in the BB model gives 2 / = 4–5ckTΔ . 
This correlates with the tunnel investigation on nonmag-
netic YNi2B2C, in which 2 / = 5.2ckTΔ  for the maximum 
gap (see [29], Fig. 6). 

The critical temperature extrapolated to the paramag-
netic region of the BCS curve is close to the values of the 
bulk compound cT  = 10.64 K (c-direction) and cT =
 = 11.1 K (ab-plane ). At the same time at the AFM–PM 
transition the growth of Δ  is essentially dependent on the 
direction. According to the BCS extrapolation, Δ  in-
creases by 25–28% in the c-direction and only by 4–5% in 
the ab-plane. Proceeding from the magnetic structure of 
ground-state ErNi2B2C [1], this anisotropic influence of 
the magnetic transition on Δ  can be attributed to orienta-
tionally-dependent spin-density waves. The AFM incom-

mensurate ordering below the Neel temperature induces 
spin-density waves whose propagation vector q is in the 
ab-plane. Such waves reduce the superconducting gap for 
the electrons having the wave vector k perpendicular to the 
vector q, i.e., for the c-direction, due to the pair-breaking 
exchange field [30,31]. The same approach was used to 
interpret the anisotropy of the superconducting energy gap 
in the AFM heavy-fermion URu2Si2 compound [32]. The 
anisotropic effect of spin-density waves is also evident in 
the behavior of the parameter M  (see Fig. 3), which has 
an extremum only in the c-direction. It is important that 
M  characterizes the «gap minima» intensity of the origi-
nal /dV dI  spectra and is unrelated to any theoretical 
model. 

The effect of spin fluctuations and the AFM molecular 
field on the superconducting gap is determined by the sum 
rule [33]. Their competition dictates whether the AFM 
phase will enhance or suppress the pair-breaking processes 
below NT . The temperature dependence of the supercon-
ducting gap was calculated within the Chi–Nagi model 
[34] (Fig. 3 in [33]). In the paramagnetic region the super-
conducting gap follows the BCS dependence and in the 
AFM region (below NT ) its behavior is determined by the 
interaction between the temperature-dependent AFM mo-
lecular field and the spin-fluctuation scattering of conduc-

Fig. 5. Temperature dependencies of gaps (GBTK triangles) and 
OPS (BB circles) calculated for the best-selected scaling factors 
S  (Fig. 20.) for the PC in Fig. 1. Solid lines are BCS 
extrapolations. 
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tion electrons at both magnetic rare-earth ions and non-
magnetic impurities. The molecular field opens AFM gaps 
in the some parts of the FS and destroys the super-
conducting gaps in them. Nonmagnetic impurities have no 
effect on the BCS states of a s-wave superconductor, but 
they attenuate the AFM field effect suppressing the pairing 
states of charge-density or spin-density waves. The degree 
of suppression of the superconducting gap is dependent on 
the single crystal perfection — elastic scattering assists in 
restoring superconductivity. 

The temperature dependence of the energy gap 
2/3 3/2

0 = (1 )Δ Δ − γ  (Fig. 6) can be obtained clearly within 
the BB model [20] as well. The BCS extrapolations on 
changing to gapless superconductivity in the AFM (6.6 K) 
and PM (9.3–9.6 K) regions correlate well in both direction 
with the BCS extrapolations of Tc for the OPs in these 
regions (Fig. 5). As in the OP case, the gap increases on 
changing to the PM state in the c-direction and exhibits a 
monotonic dependence in the ab-plane. 

Note that the results of this study and [19] (decreasing 
OPs/gaps in the AFM region) correlate with the tempe-
rature dependencies of the coherence length, the penetra-
tion depth and the critical magnetic fields measured in 
single crystalline ErNi2B2C which has features near TN: an 
N-shaped curve of the coherence length and a local mini-
mum in the penetration depth ([35], Fig. 1). There is also 

indirect evidence for the anisotropy of Δ  which is based 
on measurements of the anisotropy of the upper critical 
magnetic field 2cH  (it is known that 2 2

2 )cH −ξ Δ∼ ∼ . 
A 3D fourfold modulation of the upper critical field 2cH  
was measured in the field H⊥ c at T  = 2 K as a function 
of the direction in the ab-plane (see [35], Fig. 4, insert). Its 
shape is similar to the anisotropic function of the super-
conducting energy gap in the model proposed in [36]. Note 
a distinct peak at NT  in the dependence 2cH (T) in the 
field along the c-direction (Fig. 2 in [35]), which indicates 
indirectly that the AFM transition reduces the supercon-
ducting gap. 

Figures 7 and 8 illustrate the pair-breaking parameters 
Γ  and γ  reduced to the same dimensionality: γ  is compared 
with Γ /Δ  and Γ  with γΔ . The dependencies have featu-
res near the Neel temperature — a maximum in the c-di-
rection and a smeared shoulder in the ab-plane. In the c-di-
rection the pair-breaking parameter increases slightly near the 
transition to weak ferromagnetism (∼ 2 K). In the ab-
plane such increase is hard to identify because of the scat-
ter of experimental points. 
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There is a certain correlation between the pair-breaking 
parameter γ  (hence, increasing scattering of supercon-
ducting electrons) and the tunneling parameter Z charac-
terizing the potential barrier or the scattering at the NS 
boundary (see Fig. 8). Thus, the parameter Z may account 
for both the elastic scattering intensity and the spin–flip 
scattering. It is likely that the growth of these parameters 
near the AFM transition is more evident in the c-direction 
because of the anisotropic influence of the spin-density 
waves. On approaching cT , γ  and Z increase in both the 
ab-plane and the c-direction. 

Calculation with a varying S-factor (BB model) 

Note that the use of a fixed S  in the BB model reduced 
the quality of fitting of theoretical to experimental curves. 
The reasons for such reduction in quality are considered in 
Appendix B. The temperature dependencies of OPs having 
freely varying S  factors are shown in Fig. 9 for the ab-
plane and c-direction (two-gap approximation with free S  
was used in [19]). 

In both directions the OPs deviate from the BCS curve 
on approaching cT  (at T ∼ 10 K) and turn zero at cT  of 
the contact. The critical temperature obtained for these 
parameters through a BCS extrapolation is cT = 11.9 K in 
both directions. The temperature dependencies of the scal-
ing factors S  (Fig. 3) correlate in shape with those of the 
amplitude coefficients ( )M T . Such temperature depend-
encies are due to the density of states curve in this model 
which differs from the BCS dependence (see the Appen-
dix), as well as to the two-gap character of superconduc-
tivity in this compound whose OPs have significantly dif-
ferent magnitudes in the paramagnetic region (detailed in 
the following section). 

Finally, Fig. 10 illustrates the temperature dependencies 
of the pair-breaking parameter γ . On the whole, they are 
similar to the temperature dependencies of the pair-break-
ing parameters for a large OP in the two-gap approx-
imation [19] and differ considerably from the correspond-
ing dependencies in the one-gap approximation obtained 
with a fixed scaling factor (Fig. 8), which is particularly 
evident in the high-temperature region. This may be 
because in the latter case we try to hold the scaling factor 
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invariable at the expense of a certain departure from 
coincidence of the shapes of experimental and theoretical 
curves. In the vicinity of magnetic transitions pair-breaking 
parameters also increase in both ab-plane and c-direction. 

Thus, the behavior of OPs and other parameters esti-
mated in the one-gap approximation within the BB model 
with a free factor S  is similar qualitatively to the results 
obtained in the two-gap approximation [19]. 

Two-gap approximation 

The two-gap approximation assumes that the total con-
ductivity is a superposition of conductivities from two 
region (bands) of the FS with corresponding gaps. This can 
be expressed for /dV dI  as 

 
( ) ( )( )1 1 2 2

=
, , , , 1

dV S
dI dIdI Z K Z K
dV dV

Δ γ + Δ γ −
. (2) 

Here the coefficient K  accounts for the contribution to the 
conductivity from the FS region with a smaller gap 1Δ , Z  
is the tunnel parameter, S  is the scaling factor character-
izing the intensity ratio of the experimental and theoretical 
curves, like in the one-gap approximation. This expression 
was used to fit experimental curves and to derive the 

parameters 1,2Δ , 1,2Γ  (or 1,2 )γ , Z , S  and K . The cal-
culation technique is detailed in [24], Appendix. 

The average gap is found from the expression 

 aver 1 2= (1 )K KΔ Δ + Δ − . (3) 

GBTK model 

The temperature dependencies of the larger, smaller and 
the average gaps obtained in the two-gap approximation 
within the GBTK model with a fixed contribution K  are 
shown in Fig. 11 (also see Appendix B). 

Although K  is fixed, the critical temperatures obtained 
through a BCS extrapolation are different for the larger and 
smaller gaps in the PM region, which may point to the 
two-gap character of superconductivity with a weak inter-
band scattering. Such behavior is impossible in the case of 
ordinary OP anisotropy where these is only one critical 
temperature, according to Pokrovsky's theorem [37,38]. 
Besides, BCS extrapolation can be employed to estimate 

cT  in the AFM region for the larger gap in the ab-plane 
and for the smaller one in the c-direction. The temperature 
dependencies of the broadening parameters Γ  are illustrat-
ed in Fig. 12. In the AFM region 1 2>Γ Γ  in the ab-plane 
and 1 2Γ Γ∼  in the c-direction. The comparison with the 
one-gap calculation (Fig. 7) shows that the shapes of the 
curves in Fig. 7 are closer to 2Γ , i.e., the smearing of the 
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high-energy part of the gap is important in the one-gap 
approximation. The temperature dependencies of gaps and 
broadening parameters discussed in this section are of 
illustrative character because of K = const. The goal was to 
show that they have different shapes and cT  differs from 
BCS extrapolated critical temperatures. Note that the 
average gaps shown in this figure practically coincide with 
those calculated in the one-gap approximation (Fig. 5). 

BB model 

The two-band approximation in the BB model was 
considered in [19] using a free scaling factor S . Here we 
report the results obtained with a fixed scaling factor 
(S = 0.25) for both directions (see Appendix B and 
Fig. 20,c,d). In contrast to the GBTK approximation, the 
contribution K  of the smaller gap to conductivity was not 
constant. Nevertheless the number of fitting parameters 
was the same because at >T 2 K 1γ  turns zero in both di-
rections and hence is no longer a fitting parameter. 
Besides, unlike the broadening parameter Γ , the pair-
breaking parameter γ  does not increase the uncertainty in 

calculating the rms deviation (cf. Fig. 18 with free S  and 
Fig. 19, Appendix B). 

The temperature dependencies of the larger Δ2, smaller 
1Δ  and the average OP averΔ , Eq. (3), are shown in Fig. 13. 
Note that the use of another model and a non-fixed K  

to conductivity affect the behavior of the temperature de-
pendencies of the OPs (mainly the smaller OP) in com-
parison to the GBTK model and BB approximation with 
varying S  [19]. In the ab-plane the smaller OP decreases 
rapidly with temperature and the BCS extrapolation gives 

cT ~ 3.3 K. At >T 3 K 1Δ  in the AFM region changes 
into the BCS dependence with cT ~ 6.15 K. In the PM re-
gion there is a region of a smoothly decreasing gap which 
persists up to the normal state. This region may be due to 
the interband interaction. In the c-direction the BCS extra-
polated cT  values for 1Δ  are somewhat higher: ∼ 4.8 K 
(AFM region) and ∼ 8 K (PM region). 

The temperature dependencies of the larger OP 2Δ  es-
pecially in the PM region closely resemble the shapes of 
the curves for the OP calculated in the one-gap approx-
imation within the BB model with a varying scaling factor 
(Fig. 9). The reason for the coincidence is quite obvious. In 
the PM region the shape of the curve is mainly dependent 
on the larger OP because its value is several times higher 
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than that of the smaller OP. In contrast to the one-gap 
approximation, the contribution of the smaller OP to the 
conductivity holds the scaling factor S  constant. Since in 
the low temperature region OPs of different bands are 
comparable in magnitude, the distinctions between the 
larger OP of two-band calculations and the OP in the one-
gap approximation are more explicit in the shapes of the 
curves. The critical temperatures obtained by BCS extra-
polation for 2Δ  in the PM region practically coincide with 
the one-gap calculation ( cT ~ 12 K) and exceed the super-
conducting transition temperature of the compound. On 
approaching 10T ∼  K the OPs start to depart from the 
BCS dependence tending to 0 at cT  of the sample. It is 
interesting that the temperature dependencies of the aver-
age OP averΔ  have sections in both directions in the PM 
region that decrease almost linearly and go through zero at 

cT  of the sample. 
Let us consider the temperature-dependent contribution 

K  to conductivity made by the smaller gap (Fig. 14 and 
Eq. (2)). 

At low temperatures the dependence ( )K T  is readily 
predictable qualitatively: K  decreases with a decrease in 

1Δ . On a further rise of temperature these parameters 
exhibit a correlated change in the c-direction: the growth of 

1Δ  due to the reduced influence of spin density waves is 

attended with an increase in K . The somewhat different 
degrees of the changes in these parameters in the c-di-
rection and the absence of a similar correlation in the ab-
plane might be attributed to the increasing pair-breaking 
parameter for 2Δ  (Fig. 15) but this assumption is in con-
flict with the sharp growth of K  in PM region. It is then, 
reasonable to assume that K  grows because the relative 
share of the FS containing the large gap decreases. This 
fact can be explained as follows. 

It is pointed above that the scaling factor S  is depen-
dent in particular on what part of the whole FS is occupied 
by superconductivity. If S  = const., this share is indepen-
dent of temperature. Also, the areas of the FS bands that 
contain a larger and a smaller gap are also temperature-
independent. This suggests that if the FS area with a large 
OP decreases, superconductivity in this part of the band is 
not suppressed fully. In terms of our assumption, the OP in 
the «vacant» part of the band reduces and becomes compa-
rable to the OP in the second zone. We may thus conclude 
that the superconducting share of the total FS area remains 
invariable. This can account for the redistribution of the re-
lative FS shares between the large and small OPs. Near cT  
on approach of 10T ∼  K the contribution of the large OP 
to conductivity falls below ∼ 20%. As a result, 2Δ  deviates 
from the BCS dependence and turns rapidly to zero. The 
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physical reason for the reduction of the FS area with a 
large OP may be connected with the spin fluctuations 
which enhance with temperature. It is likely that larger OP 
occurs in the FS part less protected by the presence of the 
localized rare-earth magnetic moments. This assumption is 
supported by the values of pair-breaking parameters 2γ  of 
large OP which increase with temperature. Note that the 

2γ  magnitudes of larger OP calculated in the two-gap 
approximation within the BB model for nonmagnetic 
LuNi2B2C are lower and decrease (faster in the ab-plane) 
with temperature (see [23], Fig. 9). Since spin–flip scatter-
ing is absent in this compound, the parameter γ  in this cal-
culation tends to exceed the degree of the superconducting 
gap broadening. Note that in YNi2B2Cthe gap is most 
broadened in the low-energy part ([29], Fig. 6). Assuming 
that this reasoning holds for ErNi2B2C too, we can con-
clude that no broadening of larger and smaller gaps occurs 
above 2 K (Fig. 15) where the parameter γ  is determined 
solely by the processes of scattering at magnetic moments. 
It is therefore most justified to apply the two-gap modifi-
cation of the BB model in this case. The temperature 
dependencies of broadening parameters γ  are shown in 
Fig. 15. Two practically parallel parts of a linear growth of 

2γ  in the AFM and PM regions are distinctly seen in the 

c-direction. There is only one linear portion in the ab-
plane, which may indicate that spin-density waves are inef-
fective during a magnetic transition. Note that the illustrat-
ed curves correlate to a certain degree with the curves 
describing the contribution of a smaller OP to conductivity 
(Fig. 14). 

Figure 16 illustrates the temperature dependence of the 
energy gap 0Δ  corresponding to 2Δ  of the larger OP. 
There are different BCS extrapolations for changing to 
gapless superconductivity in the AFM (9 K and ∼ 6 K in 
the ab-plane and c -direction, respectively) and PM (~11 K 
in both directions) regions. The gap, like the OP, grows 
during the transition to the PM state in the c-direction and 
has a monotonic dependence in the ab-plane. 

It is interesting that the tunnel parameter Z  (Fig. 17) 
has a feature at NT  only in the c-direction, like in the one-
gap case (Fig. 9), which may be attributed to the effect of 
spin-density waves. 

Conclusions 

A detailed analysis of the temperature dependencies of 
PC Andreev reflection spectra / ( )dV dI V  has been per-
formed for ErNi2B2C ( 11cT ≈ K) in the ab-plane and c-di-

Fig. 15. Temperature dependencies of the pair-breaking para-
meter γ  calculated in the two-gap BB model. 2γ  and 1γ  corres-
pond to the larger OP ( 2Δ ) and to the smaller OP ( 1Δ ) respecti-
vely (Fig. 13). For clarity, a linear fit is drawn through the points.
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rection using one-gap and two-gap approximations. Two 
models were used: the traditional GBTK model including 
the broadening parameter Γ  [21] and the BB model [20] 
in which the parameter γ  characterizes the pair-breaking 
effect of magnetic moments (likely Er). For the first time 
the calculation has been made comparing both the shape 
and the intensity of experimental and theoretical curves. 
This has decreased the degree of uncertainty in the tem-
perature dependence Δ (T) for contacts with high broaden-
ing parameters Γ . 

The following conclusions have been drawn. 
1. An anisotropic effect of AFM ordering has been 

detected irrespective of the data processing model. For 
example, the magnitude of the superconducting gap 
calculated within the one-gap GBTK model decreases on 
transition to the AFM state by ∼  25% in the c-direction 
and by ∼  4–7% in the ab-plane, which correlates with the 
behavior of the averaged gap in the two-gap approximation 
within the BB model [19]. 

2. The intensity of the PC spectra / ( )dV dI V  changes 
in correlation with the gap: the intensity decreases 
monotonically in the ab-plane and has an extremum near 
the AFM transition in the c-direction. This behavior may 
be due to the orientation-dependent pair-breaking effect of 
spin-density waves. Thus it has been found unambiguously 

that the AFM transition has an anisotropic effect on the 
superconducting state. 

3. As in [19], the pair-breaking parameter γ  increases 
in the vicinity of magnetic transitions, which is natural to 
attribute to the effect of spin fluctuations under a change of 
the magnetic order. 

4. It has been shown that the proper choice of the scal-
ing factor S  in the one-gap GBTK calculation gives the 
ratio 2 (0)Δ /k cT ~ 3.52 for the gap in the PM region and its 
BCS like temperature dependence. The ratio obtained in 
the one-gap calculation within the BB model is 
2 (0) / 4.08–5.14ckTΔ ∼ . 

5. The analysis of the models shows that the two-gap 
calculation in the BB model with a fixed scaling factor S  
provides the most adequate information. This calculation 
gives different BCS extrapolation data for cT  of the larger 
and smaller OPs, which points to the multiband nature of 
superconductivity in ErNi2B2C. Its physical sense is that 
there are FS parts with a weaker electron–phonon inter-
action (EPI) in which the temperature induced suppression 
of superconductivity is faster. This is supported by the 
calculation of the anisotropy of the EPI parameter in 
LuNi2B2C [4], which can vary from 0.3–0.8 on a sphero-
idal FS to 1.0–2.7 on a cube-like FS. 
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Appendix A: Some details of calculation technique 

The technique used (detailed in [23]) is based on a 
selection of parameters that can ensure the smallest rms 
divergence between experimental and theoretical curves. 
First, the curves / ( )dV dI V  were normalized to the curve 

/ ( )dV dI V  taken above Tc and symmetrized. The curve 
fitting was performed in the interval ± 8 mV to avoid the 
effect of the phonon features (inflection points) in the 
vicinity of 10 mV in some curves (see Fig. 1). 

Appendix B: Choice of proper scaling factor S 

Theoretically S  = 1. But <S 1 happens very often too. 
The reasons may be as follows. 

1. The electron transport through a PC deviates from 
the ballistic conditions [39]. 

2. An inhomogeneity at which the PC region at the S-elec-
trode side is not fully superconducting because of the nor-
mal region (regions) near the NS boundary in the super-
conductor. 

3. A superconducting gap can occur only in a part of the 
FS. For example, the AFM molecular field induces a gap 
in some FS parts in ErNi2B2C and suppresses the 
superconducting gap in these regions. 
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A more exotic case of >S 1 is also possible. For example, 
to improve the description of the shapes of smeared 
experimental curves, the parameter Γ  which assumes a 
finite lifetime of carriers is usually increased. As a result, 
the intensity of theoretical curves decreases. However, if 
the spectra / ( )dV dI V  are smeared e.g., because of 
different values (distribution) of the superconducting gap 
in different FS parts due to anisotropy or multiband 
superconductivity, the theoretical Γ -broadening curve can 
approach the shape of the experimental curve, but its in-
tensity will be lower, and the scaling factor S  can exceed 
1. This can be used as a criterion of validity for a model. 
As an example, we consider the spectrum from Fig. 14 in 
[24]. The gap is distributed in the interval 1–3.35 meV 
(insert). The calculation in [23] gives: 

1. GBTK (1-gap): Δ  = 2.565 meV, Γ  = 0.523 meV, 
Z = 0.8, S  = 1.467. 

2. GBTK (2-gaps): 1Δ  = 2.18 meV; 2Δ  = 2.99 meV; 
1Γ  = 0.36 meV; 2Γ  = 0.067 meV; Z  = 0.78; K  = 0.56; 
averΔ  = 2.538 meV; S  = 1.144. 
3. BB (1-gap): Δ  = 2.79 meV, γ  = 0.04, Z  = 0.74, 

S = 0.968. 
4. BB (2-gaps): 1Δ  = 2.15 meV; 2Δ  = 2.984 meV; 

γ1 = 0.046; 2γ = 0.011; Z  = 0.75; K  = 0.315; averΔ =
 = 2.72 meV; S  = 0.968. 

Thus, the one-gap GBTK calculation results in the 
highest value in the S  estimate. Therefore one-gap GBTK 
calculations [40] can be regarded as oversimplified and can 
be used only as a first approximation. In ordinary super-
conductors, e.g., Zn [41], S ≈ 1 is independent of tem-

perature because the gap opened isotropically on the whole 
FS at <T Tc. 

In Fig. 18 the smooth broad arc-like curve corresponds 
shows rms deviation of the shapes of theoretical and ex-
perimental curves for the gap Δ  in the interval 0.6–2 meV. 
The lowest error is at Δ  = 0.96 meV. The scaling factor 
varies along the curve from =S 3.58 at Δ  = 0.6 meV to 
S = 0.23 at Δ  = 2 meV and = 1.3S  at the minimal F . 

> 1S  is possible only assuming the gap distribution (see 
above), and therefore the lowest F  (shape error) alone is 
not sufficient to be a criterion. Besides, for the curves 
taken at higher Γ  values a comparatively small change in 
the shape of the temperature-neighboring curves / ( )dV dI V  
can shift arbitrarily the error minimum and the corres-
ponding Δ . 

Unlike the GBTK model, the error curves obtained in 
the BB model have distinct minima (Fig. 19). In our case 
the criterion of the proper choice of the scaling factor S  
was its value at which the shapes of the theoretical and 
experimental curves coincided most closely in the whole 
interval of temperatures used. To avoid overloading, Fig. 20 
contains the F  and S  calculation for two characteristic 
temperatures: T  = 3.5 K in the middle of the AFM region 
and T  = 7 K, i.e., above the temperature of AFM ordering. 
It follows from Fig. 20 that S  can vary from 1 to 0.2, 
being the lowest at Γ → 0 (Fig. 20). The vertical lines 
show the best S-values corresponding to the minimum 
error along with their associated gaps (OPs) and broaden-
ing (pair-breaking) parameters. Note that in the BB model 
a departure from the best-chosen S-value caused a sharp 
increase in the error F, and therefore the limits of S va-
riation are rather narrow. On the other hand, the GBTK 

Fig. 18. The dependence of the rms deviation F  of the shape of the
theoretical curve from experimental Δ  at 7 K in the c-direction. The
intensity ratio S  = ( exp/ ( ))dV dI V /( theor/ ( ))dV dI V  between
experimental and theoretical curves is changing from 3.58 to 0.23
The lowest F  corresponds to the best coincidence of the experi-
mental and theoretical curves is obtained at Δ = 0.96 meV and
S = 1.The narrow parabolic error curves were taken at S = const
(one-gap GBTK model [21]. 
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Fig. 19. The dependence of the mutual rms deviation F  of the 
theoretical and experimental curve shapes from Δ  (BB model) in 
the c-direction at different temperatures. S  varies along the 
curves and at the minima, T  = 3.5, 5.5, and 7 K, being S =
= 0.24, 0.2, and 0.22, respectively. 
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model [21] allows more freedom of selecting S, especially 
in the c-direction. However, this variation has practically 
no effect on the shape of temperature dependence ( )TΔ  

because the curves ( )SΔ  are nearly parallel at both tem-
peratures. The gap can be estimated readily at another S  
value using the dependence ( )SΔ . 

Fig. 20. Dependence of the relative deviation of the shapes F  of theoretical and experimental curves from S  calculated in the GBTK
(a,b) and BB (c,d) models at T = 3.5 K and 7 K in the ab-plane and in the c-direction. The lower part of each figure shows the
corresponding dependencies of the gap (OP) Δ  and the broadening Γ  (pair-breaking )γ  parameters. The vertical line marks the best
choice of S  corresponding to the closest coincidence of the curve shapes at both temperatures 
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Appendix C: One-gap BB calculation with S ≠ const 

Unlike the GBTK model, the ( )F Δ  curves obtained in 
the BB model have distinct minima (Fig. 19). Using a fix-
ed S  impairs considerably the quality of fitting in this ap-
proximation. The results of the one-gap calculation allow-
ing for the minima in the curves are illustrated in Fig. 9 
and the dependencies ( )S T  are shown in Fig. 3. The de-
crease in the S-value is due to the two-gap character of 
superconductivity in this compound, which determines dif-
ferent OP magnitudes and a different (in comparison to the 
GBTK result) shape of the density of states. The relative 
share of the FS with a larger OP decreases at rising tem-
perature (see the Two-gap BB calculation section). Used in 
BB theory the density of states terminates abruptly at the 
gap edge. In the one-gap approximation of the experi-
mental curve this entails termination of the contribution to 
conductivity from the FS parts with smaller OPs. However, 
since the spectrum intensity is estimated assuming that the 
OP obtained is related to the whole Fermi surface, S  de-
creases. The difference between the dependencies ( )S T  in 
the c-direction and the ab-plane can be attribute to the 
anisotropic effect of spin-density waves (see the above in-
terpretation of the quantity M  and Fig. 3). The tempera-
ture-dependent AFM molecular field induces a gap in some 
parts of FS in the c-direction and destroys the supercon-
ducting gap in them. An AFM gap is more probable in the 
FS parts which have a smaller superconducting gap taking 
into account the temperature dependence of the OP in the 
corresponding temperature region. 

The sharp decrease in the OP on approaching cT  can 
also be caused by the two-band structure of the FS and the 
reduction of the FS share with a larger OP. There may 
exist a certain minimal FS share with a large OP below 
which superconductivity is destroyed rapidly due to the 
interband interaction. In our case the departure from the 
BCS dependence started in both directions at T ∼ 10 K at 
which the contribution of the larger OP to conductivity 
dropped below 20% (two-gap calculation). 

Appendix D: Reducing the number of fitting 
parameters for the two-gap GBTK model 

As noted in the Introduction, in the general case the 
two-gap calculation by Eq. (2) involves seven fitting para-
meters ( 1Δ , 2Δ , 1Γ , 2Γ , Z, S and )K . This has an un-
favorable effect on the estimates obtained. It is therefore 
desirable to minimize the number of such parameters on 
the basis of physically reasonable limitations. In the strict 
sense, the scaling factor S  is not a fitting parameter. It 
does not enter into the theoretical formulas describing cur-
rent-voltage characteristics. It is intended to equalize the 
intensities of experimental and theoretical curves on calcu-
lating the mutual rms deviation of their shapes. However, a 
use of S  = const restricts the range of permissible values 
for the rest of the fitting parameters. A fixed S  reduces the 

number of fitting parameters at least by one parameter 
(Fig. 18). We did not fix the tunnel parameter Z  which 
was found to be approximately constant except near cT . 
As a result, we have four fitting parameters instead of 
seven. Besides, it is reasonable to fix the relative contri-
bution K  to conductivity from each band. 

Thus, the calculation was made using fixed S  = 0.35 in 
the ab-plane and S  = 0.5 in the c-direction. The relative 
contribution of the smaller gap to conductivity was K = 0.8 
in both directions. Fixed K  actually couples Δ  and Γ , 
which can distort their temperature dependencies. Indeed, 
if, for example, the first gap remains constant and the 
second one decreases, the relative contribution of the first 
gap increases (it is assumed that the FS share of each gap 
does not change). To exclude this, it is necessary to 
decrease the broadening parameter of the second gap or to 
increase it for the first one. Identical temperature 
dependencies for gaps and broadening parameters is the 
simplest version free of distortions. 

Note added in proof 

After the paper was sent to arXiv, we were aware about 
recent three-dimensional study of the Fermi surface of 
LuNi2B2C in [42]. This study shows that (i) the Fermi 
surface topology of the rare-earth nickel borocarbides 
varies little for rare-earth elements such as Er, Tm and Yb, 
(ii) there are 3 bands which contribution to the density-of-
states (DoS) at the Fermi energy is 0.24%, 22.64% and 
77.1%. That is, two bands basically contribute to DoS and 
therefore our two-band approach is reasonable. 

 
1. K.-H. Müller and V.N. Narozhnyi, Rep. Prog. Phys. 64, 943 

(2001). 
2. K.-H. Müller, M. Schneider, G. Fuchs, and S.-L. Drechsler, 

Handbook on the Physics and Chemistry of Rare Earths, 
A. Karl, Jr. Gschneidner, Jean-Claude Bünzli, and Vitalij K. 
Pecharsky (eds.), North-Holland, Elsevier (2008), v. 38, 
p. 175. 

3. L.C. Gupta, Adv. Phys. 55, 691 (2006). 
4. B. Bergk, V. Petzold, H. Rosner, S.-L. Drechsler, M. Bart-

kowiak, O. Ignatchik, A.D. Bianchi, I. Sheikin, P.C. Can-
field, and J. Wosnitza, Phys. Rev. Lett. 100, 257004 (2008). 

5. S.-L. Drechsler, S.V. Shulga, K.-H. Müller, G. Fuchs, J. Freu-
denberger, G. Behr, H. Eschrig, L. Schultz, M.S. Golden, 
H. von Lips, J. Fink, V.N. Narozhnyi, H. Rosner, P. Zahn, 
A. Gladun, D. Lipp, A. Kreyssig, M. Loewenhaupt, K. Koe-
pernik, K. Winzer, and K. Krug, Physica C17–318, 117 (1999). 

6. S.V. Shulga, S.-L. Drechsler, G. Fuchs, K.-H. Müller, K. Win-
zer, M. Heinecke, and K. Krug, Phys. Rev. Lett. 80, 1730 
(1998). 

7. G. Goll, M. Heinecke, A.G. M. Jansen, W. Joss, L. Nguyen, 
E. Steep, K. Winzer, and P. Wyder, Phys. Rev. B3, R8871 
(1996). 

8. L.H. Nguyen, G. Goll, E. Steep, A.G. M. Jansen, P. Wyder, 
O. Jepsen, M. Heinecke, and K. Winzer, J. Low Temp. Phys. 
105, 1653 (1996). 



Observation of anisotropic effect of antiferromagnetic ordering on the superconducting gap in ErNi2B2C 

Fizika Nizkikh Temperatur, 2010, v. 36, Nos. 10/11 1243 

9. C. Detlefs, A.H. M.Z. Islam, T. Gu, A.I. Goldman, C. Stas-
sis, P.C. Canfield, J.P. Hill, and T. Vogt, Phys. Rev. B6, 
7843 (1997). 

10. V.D. Fil', private communication. 
11. E.E. M. Chia, M.B. Salamon, T. Park, H.-J. Kim, S.-I. Lee, 

and H. Takeya, Europhys. Lett. 73, 772 (2006). 
12. L.F. Rybalchenko, I.K. Yanson, A.G.M. Jansen, P. Mandal, 

P. Wyder, C.V. Tomy, and D.McK. Paul, Physica B18, 189 
(1996). 

13. T. Watanabe, K. Kitazawa, T. Hasegawa, Z. Hossain, R. Na-
garajan, L. Watanabe, and C. Gupta, J. Phys. Soc. Jpn. 69, 
2708 (2000). 

14. I.K. Yanson, in: Rare Earth Transition Metal Borocarbides 
(Nitrides): Superconducting, Magnetic and Normal State 
Properties, K.-H. Müller and V.N. Narozhnyi (eds.), Klu-
wer Academic Publishers, The Netherlands (2001). 

15. M. Crespo, H. Suderow, S. Vieira, S. Bud'ko, and P.C. Can-
field, Phys. Rev. Lett. 96, 027003 (2006). 

16. T. Baba, T. Yokoya, S. Tsuda, T. Kiss, T. Shimojima, K. Ishi-
zaka, H. Takeya, K. Hirata, T. Watanabe, M. Nohara, H. Ta-
kagi, N. Nakai, K. Machida, T. Togashi, S. Watanabe, X.-Y. 
Wang, C.T. Chen, and S. Shin, Phys. Rev. Lett. 100, 017003 
(2008); T. Baba, T. Yokoya, S. Tsuda, T. Kiss, T. Shimojima, 
K. Ishizaka, H. Takeya, K. Hirata, N. Nakai, K. Machida, 
T. Togashi, C.T. Chen, C.Q. Zhang, S. Watanabe, and 
S. Shin, Physica C69, 928 (2009). 

17. R.C. Dynes, V. Narayanamurty, and J.P. Garno, Phys. Rev. 
Lett. 21, 1509 (1978). 

18. K. Machida, K. Nokura, and T. Matsubara, Phys. Rev. B2, 
2307 (1980). 

19. N.L. Bobrov, V.N. Chernobay, Yu.G. Naidyuk, L.V. Tyut-
rina, D.G. Naugle, K.D.D. Rathnayaka, S.L. Budko, P.C. 
Canfield, and I.K. Yanson, Europhys. Lett. 83, 37003 (2008). 

20. S.I. Beloborod’ko, Fiz. Nizk. Temp. 29, 868 (2003) [Low 
Temp. Phys. 29, 650 (2003)]. 

21. A. Plecenik, M. Grajcar, P. Seidel, and A. Pfuch, Phys. Rev. 
B1, 16185 (1995). 

22. X.Y. Miao, S.L. Bud'ko, and P.C. Canfield, J. Alloys and 
Compounds 338, 13 (2002). 

23. N.L. Bobrov, S.I. Beloborod'ko, L.V. Tyutrina, V.N. Cher-
nobay, I.K. Yanson, D.G. Naugle, and K.D.D. Rathnayaka, 

Fiz. Nizk. Temp. 32, 641 (2006) [Low Temp. Phys. 32, 489 
(2006)]. 

24. N.L. Bobrov, S.I. Beloborod'ko, L.V. Tyutrina, I.K. Yanson, 
D.G. Naugle, and K.D.D. Rathnayaka, Phys. Rev. B1, 
014512 (2005). 

25. B.N. Engel, G.G. Ihas, E.D. Adams, and C. Fombarlet, Rev. 
Sci. Inst. 55, 1489 (1984). 

26. S. Skanthakumar and J.W. Lynn, Physica B59–261, 576 
(1999). 

27. G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. 
B5, 4515 (1982). 

28. T. Claeson, in: Tunneling Phenomena in Solids, E. Burstein 
and S. Lundquist (eds.), Plenum Press, New York (1969). 

29. H. Nishimori, K. Uchiyama, Sh. Kaneko, A. Tokura, H. Ta-
keya, K. Hirata, and N. Nishida, J. Phys. Soc. Jpn. 73, 3247 
(2004). 

30. M.L. Kulic, J. Keller, and K.D. Schotte, Solid State Com-
mun. 80, 345 (1991). 

31. J.P. Brison, P. Lejay, A. Buzdin, and J. Flouquet, Physica 
C229, 79 (1994). 

32. Yu.G. Naidyuk, H. von Löhneysen, G. Goll, I.K. Yanson, 
and A.A. Menovsky, Europhys. Lett., 33, 557 (1996). 

33. E.E.M. Chia, W. Cheong, Tuson Park, M.B. Salamon, Eun-
Mi Choi, and Sung-Ik Lee, Phys. Rev. B72, 214505 (2005). 

34. H. Chi and A.D.S. Nagi, J. Low Temp. Phys. 86, 139 (1992). 
35. P.L. Gammel, B.P. Barber, A.P. Ramirez, C.M. Varma, D.J. 

Bishop, P.C. Canfield, V.G. Kogan, M.R. Eskildsen, N.H. 
Andersen, K. Mortensen, and K. Harada, Phys. Rev. Lett. 
82, 1756 (1999). 

36. K. Maki, H. Won, and S. Haas, Phys. Rev. B9, 012502 (2004). 
37. V.L. Pokrovsky, Zh. Eksp. Teor. Fiz. 40, 641 (1961). 
38. V.L. Pokrovsky and M.S. Ryvkin, Zh. Eksp. Teor. Fiz. 43, 

92 (1962). 
39. I.N. Askerzade and I.O. Kulik, Mod. Phys. Lett. B17, 649 

(2003). 
40. X. Lu, W.K. Park, S. Yeo, K.-H. Oh, S.-I. Lee, S.L. Bud'ko, 

P.C. Canfield, and L.H. Greene, arXiv:1004.3846. 
41. Yu.G. Naidyuk, H. von Löhneysen, and I.K. Yanson, Phys. 

Rev. B4, 16077 (1996). 
42. S.B. Dugdale, C. Utfeld, I. Wilkinson, J. Laverock, Zs. Major, 

M.A. Alam, and P.C. Canfield, Supercond. Sci. Technol. 22, 
014002 (2009).

 


