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We discuss the structure of spin-1 Bose–Einstein condensates in the presence of a homogenous magnetic 
field. We demonstrate that the phase separation can occur in the ground state of antiferromagnetic (polar) con-
densates, while the spin components of the ferromagnetic condensates are always miscible, and no phase separa-
tion occurs. Our analysis predicts that this phenomenon takes place when the energy of the lowest homogenous 
state is a concave function of the magnetization. We propose a method for generation of spin domains by adia-
batic switching of the magnetic field. We also discuss the phenomena of dynamical instability and spin domain 
formation. 

PACS: 03.75.Lm Tunneling, Josephson effect, Bose–Einstein condensates in periodic potentials, solitons, vor-
tices, and topological excitations; 
05.45.Yv Solitons. 
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1. Introduction 

The analysis of the properties of spin domains and 
magnetic solitons is one of the major topics of the theory 
of crystalline magnetic structures [1]. However, the recent 
development in the physics of cold gases gave a birth to an 
exciting new field where the spinor dynamics and magnet-
ic domain formation are the key ingredients of a new and 
seemingly different physics which, however, borrows 
many important results and techniques from the solid state 
physics. More specifically, the spin degree of freedom of 
spinor Bose–Einstein condensates (BECs) [2–4] leads to a 
wealth of new phenomena not possessed by single-
component (spin-frozen) condensates. New spin-induced 
dynamics such as spin waves [3], spin-mixing [5] and spin 
textures [3,6] have all been predicted theoretically and ob-
served in experiment. The observation of these spin-
dependent phenomena became possible due to the devel-
opment of optical traps [7] which trap all spin components, 
rather than just the low-magnetic-field seeking spin states 
of magnetic traps. However, the effect of an additional 
small non-zero magnetic field on the condensate in these 
optical traps was studied even in the seminal theoretical [4] 
and experimental [2] works. In fact the interplay of spin 
and magnetic field has been at the heart of some of the 
most impressive spinor BEC experiments, including the 
demonstration of spin domains [2], spin oscillations [8] 
and observation of spin textures and vortices [9]. 

A spin-1 BEC in a magnetic field is subjected to the 
well-known Zeeman effect. At low fields the effect is dom-
inated by the linear Zeeman effect, which leads to a Lar-
mor precession of the spin vector about the magnetic field 
at a constant rate, which is unaffected by spatial inhomo-
geneities in the condensate [10]. At higher magnetic fields 
the quadratic Zeeman effect becomes important, and leads 
to much more dramatic effects in the condensate, such as 
coherent population exchange between spin components 
[8,11,12] and the breaking of the single-mode approxima-
tion (SMA) [13,14], which assumes that all the spin com-
ponents share the same spatial density and phase profile. 
The study of the behavior of a spin-1 condensate in the 
presence of a magnetic field began with the work of Sten-
ger et al. [2], where the existence of magnetic (spin) do-
mains were predicted and observed in the ground state of a 
polar 23Na condensate subject to a magnetic field gradient. 
At the same time, the ground states of both ferromagnetic 
and antiferromagnetic (polar) condensates in homogenous 
magnetic field were found to be free of spin domains in the 
local density approximation. It was later found that the 
SMA was broken in the ground state of a condensate con-
fined in a harmonic trap even in a homogenous field [13]. 
Nevertheless, the SMA continued to be used in studies of 
spinor condensates for its simplicity and validity in a broad 
range of experimental situations [11,15], in particular when 
the condensate size is smaller than the spin healing length, 
which determines the minimum domain size. On the other 
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hand, the dynamical instability, leading to the spontaneous 
formation of dynamic spin domains, was found to occur in 
large ferromagnetic condensates prepared in excited initial 
states [9,16–18], while no such phenomenon was predicted 
to occur [16] or observed [19] in antiferromagnetic con-
densates. Similar instabilities were found in the transport 
of both types of spin-1 condensates in optical lattices [20]. 
It seemed however that spin domains were only to be found 
in antiferromagnetic condensates in the presence of inho-
mogeneous magnetic fields [2] or trapping potentials. 

In this work, first we overview the results of our recent 
works [21,22] and discuss the structure of spin-1 Bose–
Einstein condensates in the presence of a homogenous 
magnetic field. We show that the translational symmetry of 
a homogenous BEC is spontaneously broken and phase 
separation occurs in magnetized polar condensates if the 
magnetic field is strong enough. An analogous phenome-
non has been predicted and observed previously in binary 
condensates [23,24]. In contrast, the cases when domain 
formation is driven by inhomogeneous external potentials 
or magnetic field gradients may be referred to as potential 
separation according to the naming used in Ref. 24. Here, 
we show that for a range of experimental conditions, it is 
energetically favorable for the system to consist of two 
separate phases composed of different stationary states. 
Finally, we demonstrate numerically that this phenomenon 
can be observed in a polar condensate trapped in a harmon-
ic optical potential. 

2. Model 

We consider dilute spin-1 BEC in a homogenous mag-
netic field pointing in the z -direction. The mean-field 
Hamiltonian of this system is given by the expression, 

2
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where 0, ,− +ψ ψ ψ  are the wavefunctions of atoms in mag-
netic sub-levels = 1,0, 1m − + , M  is the atomic mass, 

( )V r  is an external potential and 2= = | |j jn n ψ∑ ∑  is 
the total atom density. The asymmetric part of the Hamil-
tonian is presented as: 
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where jE  is the Zeeman energy shift for state jψ  and the 
spin density is, 
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where , ,
ˆ
x y zF  are the spin matrices [25] and =ψ  

0( , , )+ −= ψ ψ ψ . The nonlinear coefficients are given by 
2

0 2 0= 4 (2 ) / 3c a a Mπ +h  and 2
2 2 0= 4 ( ) / 3c a a Mπ −h , 

where Sa  is the s-wave scattering length for colliding 

atoms with total spin S . The total number of atoms and 
the total magnetization 

 = ,N n d∫ r  (4) 

 ( )= = ,zF d n n d+ −−∫ ∫r rM  (5) 

are conserved quantities. The Zeeman energy shift for each 
of the components, jE  can be calculated using the Breit–
Rabi formula [26] 
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where HFSE  is the hyperfine energy splitting at zero mag-
netic field, = ( ) /I J B HFSg g B Eα + μ , where Bμ  is the 
Bohr magneton, Ig  and Jg  are the gyromagnetic ratios of 
electron and nucleus, and B  is the magnetic field strength. 
The linear part of the Zeeman effect gives rise to an overall 
shift of the energy, and so we can remove it with the trans-
formation 

 ( ) / 2 ( ) / 2.H H N E N E+ −→ + + + −M M  (7) 

This transformation is equivalent to the removal of the 
Larmor precession of the spin vector around the z-axis 
[21]. We thus consider only the effects of the quadratic 
Zeeman shift. For sufficiently weak magnetic field we can 
approximate it by 2

0= ( 2 ) / 2 /16HFSE E E E E+ −δ + − ≈ α , 
which is always positive. 

The asymmetric part of the Hamiltonian (2) can now be 
rewritten as 
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where the energy per atom ( )e r  is given by [11] 
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We express the wavefunctions as = exp ( )j j jn iψ ρ θ  
where the relative densities are = /j jn nρ . We also intro-
duced the relative phase 0= 2+ −θ θ + θ − θ , spin per atom 

= / nf F , and magnetization per atom = =zm f + −ρ −ρ . 
The perpendicular spin component per atom is 

2 2 2| | = x yf f⊥ +f . 
The Hamiltonian (1) generates the Gross–Pitaevskii eq-

uations describing the mean-field dynamics of the system 
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By comparing the kinetic energy with the interaction 
energy, we can define a characteristic healing length 

0=2 / 2Mc nξ πh  and spin healing length 2=2 / 2 .s Mc nξ πh  
These quantities give the length scales of spatial variations 
in the condensate profile induced by the spin-independent 
or spin-dependent interactions, respectively. Analogously, 
we define magnetic healing length as = 2 / 2B M Eξ π δh . 

In real spinor condensates, the 0a  and 2a  scattering 
lengths have similar magnitude. The spin-dependent inte-
raction coefficient 2c  is therefore much smaller than its 
spin-independent counterpart 0c . For example, this ratio is 
about 1:30 in a 23Na condensate and 1:220 in a 87Rb con-
densate far from Feshbach resonances [27]. As a result, the 
excitations that change the total density require much more 
energy than those that keep ( )n r  close to the ground state 
profile. In our considerations we will assume that the 
amount of energy present in the system is not sufficient to 
excite the high-energy modes, and we will treat the total 
atom density ( )n r  as a constant. 

3. Condensate without a trapping potential 

The ground states of spin-1 condensates in homogenous 
magnetic field have been studied in a number of previous 
works [2,13,28]. The most common procedure [2] involves 
minimization of the energy functional with constraints on 
the number of atoms N  and the total magnetization M. 
The resulting Lagrange multipliers p  and q  serve as pa-
rameters related to the quadratic Zeeman shift Eδ  and the 
magnetization m . An alternative method, elaborated in 
[13], consists of minimization of the energy functional in 
the parameter space of physically relevant variables B  and 
m . Most of the previous studies, however, were assuming 
that the condensate remains homogenous and well de-
scribed by the single-mode approximation; in particular, 
the spatial structure observed in [2] resulted from the ap-
plied magnetic field gradient, but the BEC was assumed to 
be well described by the homogenous model at each point 
in space (local density approximation). In Ref. 13, the 
breakdown of the single-mode approximation was shown 
numerically for a condensate confined in a harmonic po-
tential. 

We correct the previous studies by showing that when 
the condensate size is larger than the spin healing length 

sξ , the translational symmetry is spontaneously broken 
and phase separation occurs in magnetized polar conden-
sates if the magnetic field is strong enough. This pheno-
menon takes place when the energy of the spin state with 
the lowest energy is a concave function of m  for a given 

Eδ . On the contrary, the energy is always a convex func-
tion of m  for the ferromagnetic condensate, and no phase 
separation occurs. Note that phase separation has been pre-
viously predicted in binary condensates [23,24] and in fer-
romagnetic condensates at finite temperature [29]. 

We construct ground states of the condensate using 
homogeneous stationary solutions of the GP equations (10) 

 ( )( , ) = e ,i t ij S j
j jt n − μ +μ + θ

ψ r  (11) 

where 0= /S c nμ h  is a constant and 0= 2+ −μ +μ μ  due 
to a phase matching condition. Following [22], we distin-
guish several types of stationary states. The states where 
only a single Zeeman component is populated ( = 1jn  for 
a specified = ,0,j −  or + ) are named −ρ , 0ρ , and +ρ , 
respectively. The state where 0 = 0n  but , 0n n− + ≠  is the 
two-component (2C) state. The three-component states are 
classified according to the value of 0= 2+ −θ θ + θ − θ . The 
states with = 0θ  are called phase-matched (PM) states, 
and the ones with =θ π  are called anti-phase-matched 
(APM) states. For more details about this classification and 
the properties of the stationary states, refer to [22]. 

Two types of domain structures, depicted in Fig. 1, are 
composed of two different stationary states connected with 
a shaded region where all three components are nonzero. 
These two domain states have the advantage that the per-
pendicular spin is nonzero only in the transitory region, 
hence their energy is relatively low in polar condensates. 
In fact, these are the only phase separated states that can be 
the ground states of a homogenous condensate. Their ener-
gies per atom in the limit of infinite condensate size, which 
allows for neglecting of the relatively small intermediate 
region are 

 0 0= | | (1 | |) ,e m e m eρ +ρ ρ ρ± ± + −   

Fig. 1. Schematic structure of the phase separated states 0±ρ + ρ
(a) and 02C + ρ  (b). The shaded region, in which all three com-
ponents are nonzero, has the approximate extent of one spin heal-
ing length sξ  or magnetic healing length Bξ , whichever is 
greater. The relative size of the domains is indicated with arrows. 
The corresponding wavefunction profiles obtained numerically 
with periodic boundary conditions in the case of 23Na for 

= 0.5m  with 2/ ( ) = 0.8E c nδ  (c) and 2/ ( ) = 0.23E c nδ  (d). The 
n+ , 0n , and n−  components are depicted by dash-dotted, da-
shed, and dotted lines, respectively. The solid lines show the total 
density. 
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where = /m NM  is the average magnetization and the 
magnetization of the 2C component 2Cm  is a free parame-
ter that has to be optimized to obtain the lowest energy 
state. 

Table 1. Ground states of spin-1 condensates in homogenous 
magnetic field. The states 02C + ρ  and 0±ρ + ρ  correspond to 
phase separation (see Fig. 1) 

Condensate Parameter range Ground state 

Ferromagnetic 
2

2
| |

E
c n
δ

≤  and = 0m   0ρ  

2
< 2

| |
E

c n
δ  or 0m ≠   PM 

Polar 

= 0m   0ρ  
2

2 2
E m

c n
δ

≤   2C  

2

2

1< <
2 2

m E
c n
δ  and 0m ≠   02C + ρ  

2

1
2

E
c n
δ

≤  and 0m ≠   0±ρ +ρ  

The ground states can be determined by comparing 
energies of the phase separated states with the energies of 
the homogenous solutions. The form of formulas (12) indi-
cates that the phase separation will occur when the energy 
of the lowest homogenous state is a concave function of 
magnetization. The results for both polar and ferromagnet-
ic condensates are collected in Table 1. In the cases when 
no phase separation occurs, our results are in agreement 
with those obtained in [13]. Note that we assumed that the 
condensate size is much larger than sξ  and Bξ . For small 
condensates, the results of [13] are correct. 

In the case of high magnetic field strength, one of the 
Zeeman sub-levels is practically depleted [13] and the 
condensate becomes effectively two-component. The exis-
tence of the 0±ρ + ρ  phase in a polar condensate can then 
be understood within the binary condensate model [23,24]. 
We note that the experiment reported in Ref. 30, performed 
in this regime, can be viewed as the first confirmation of 
phase separation in spin-1 BEC in a homogenous magnetic 
field. However, the ground state was not achieved, and a 
multiple domain structure was observed. 

In Fig. 2 we present the phase diagram of polar conden-
sates, obtained both numerically and using analytical for-
mulas from Table 1. The ground state profiles for a quasi-
1D condensate were found numerically by solving the 1D 
version of Eqs. (10) [21] 

 2 *
2 0 2 0= ( ) ,i c n n n c

t
±

± ±
∂ψ ⎡ ⎤+ + − ψ + ψ ψ⎣ ⎦∂ m m
% % % % %% % % % %h L  (13) 

 *0
2 0 2 0= ( ) 2 ,i E c n n c

t + − + −
∂ψ ⎡ ⎤− δ + + ψ + ψ ψ ψ⎣ ⎦∂
% % % % % %% % % %h L  

with 2 2 2
0= ( /2 ) /m x c− ∂ ∂ +% %hL , where 0 2 0=4 (2 )/3c a a⊥ω +% h , 

2 2 0= 4 ( )/3c a a⊥ω −% h , | | =jdx Nψ∫ ∑ % , and ⊥ω  is the 
transverse trapping frequency. We imposed periodic boun-
dary conditions on ( )j xψ%  and used the parameters corres-
ponding to a 23Na BEC containing 4= 5.2·10N  atoms con-
fined in a transverse trap with frequency 3= 2 ·10⊥ω π . The 
Fermi radius of the transverse trapping potential is smaller 
than the spin healing length, and the nonlinear energy scale 
is much smaller than the transverse trap energy scale, 
which allows us to reduce the problem to one spatial di-
mension [27,31]. The solutions were found numerically 
using the normalized gradient flow method [32,33], which 
is able to find a state which minimizes the total energy for 
given N  and M, and fulfills the phase matching condi-
tion. The stability of the resulting states was verified using 
numerical time evolution according to Eqs. (13). The slight 
discrepancy between numerical and analytical results can 
be accounted for by the finite size of the condensate (the 
box size was 10 sξ∼ ), and by the deviation from the as-
sumption that the total density is constant (see the discus-
sion at the end of Sec. 2). Due to the finite value of the 
ratio 2 0/c c  there is a slight density modulation, as is evi-
dent in Fig. 1,c,d. 

4. Condensate trapped in a harmonic optical potential 

The results from the preceding subsection can be veri-
fied experimentally in configurations involving toroidal or 
square-shaped optical traps [34]. However, in most expe-
riments on BECs, harmonic potentials are used. The relev-
ance of these results is not obvious in the case of harmonic 
trapping, since the coefficient 2/ ( )E c nδ , one of the main 

Fig. 2. Ground state phase diagram of the polar condensate. The 
symbols correspond to numerical data obtained for the parameters 
of 23Na, with solid triangles representing 2C, open circles 2C+

0+ρ  and open squares 0±ρ + ρ . The solid lines and shading are 
given by the analytical formulas from Table 1. 
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parameters controlling the condensate properties, varies in 
space due to the varying total density n . 

The ground states in a highly elongated harmonic trap, 
where the parallel part of the potential has the form 

2 2( ) = (1/2)V x M xω& , are presented in Fig. 3 [33]. We can 
see that as the magnetic field strength is increased, phase 
separation occurs and the 0±ρ + ρ  domain state is formed. 
However, in contrast to the previous case, the transition is 
not sharp, and in particular there is no distinct 02C + ρ  
phase for any value of the magnetic field. Note that the 
state in Fig. 3,a is also spatially separated due to different 
Thomas–Fermi radii of the −ψ  and +ψ  components; 
however, this is an example of potential separation, as op-
posed to phase separation [24], since it is does not occur in 
the absence of the potential. On the other hand, Fig. 3,d 
shows that the components of ferromagnetic condensate 
are miscible even in the regime of strong magnetic field. In 
the regions where the wavefunctions overlap, the relative 
phase is equal to = 0θ  for ferromagnetic and =θ π  for 
polar ground states, since these configurations minimize 
the spin energy (9). 

The characteristic feature of phase separation in the po-
lar BEC is that the = 0m  domain tends to be localized in 
the center of the trap, as shown in Fig. 1,b and c. This can 

be explained by calculating the total asymmetric energy of 
the condensate (8), again assuming that the contribution 
from the intermediate region connecting the domains is 
negligible, 

 

( ) 2

0

2

2

= ( | |) ,
2

a
c n

H d n E d n

c N
E N n

r r
ρ ρ±

ρ±

≈ −δ + =

−δ − + 〈 〉

∫ ∫

M  (14) 

where n ρ±〈 〉  is the mean condensate density within the 
area of the ±ρ  domain. We see that the energy will be the 
lowest if this domain is localized in the outer regions, 
where the condensate density is low. 

5. Generation of spin domains 

We propose a method for generation of spin domains 
described in the previous section by adiabatic switching of 
the magnetic field. We start with a condensate with all the 
atoms in the = 1m  sublevel, in the ground state of a har-
monic potential. Subsequently, some of the atoms are 
transferred to the = 1m −  component in the rapid adiabatic 
passage process. The magnetic field is then suddenly 
switched off. In this way we can obtain a condensate with 

Fig. 3. Ground state profiles in a harmonic trap potential. Phase separation occurs in the polar 23 Na condensate when the magnetic
field strength is increased from = 0.1B G, 2 max/ ( ) = 0.09E c nδ  (a) to = 0.12B G, 2 max/ ( ) = 0.13E c nδ  (b) and = 0.25B G,

2 max/ ( ) = 0.56E c nδ  (c). For comparison, the ground state of a 87Rb condensate is shown in for = 0.2B G, 2 max/ ( ) = 0.41E c nδ −  (d).
The n+ , 0n , and n−  components are depicted by dash-dotted, dashed, and dotted lines, respectively. The solid lines shows the total
density. Other parameters are 4= 2.1·10N , = 2 ·10ω π&  (23Na), = 2 ·7.6ω π&  (87Rb), 3= 2 ·10⊥ω π  and = 0.5m . 
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arbitrary magnetization in the 2C state, which is the ground 
state in = 0B , see Fig. 2. Next, we gradually increase the 
magnetic field strength in an adiabatic process according to 
the formula 

 final
switch

= tB B
t

 (15) 

where = 0t  at the beginning of the switching process, 
switcht  is the switching time, and finalB  is the desired final 

value of the magnetic field. The form of Eq. (15) assures 
that the quadratic Zeeman splitting grows linearly in time. 
We have confirmed that this condition improves the adia-
baticity of the generation process. We present examples of 
the evolution of the condensate in Fig. 4. The left column 

shows the time dependence of the atom density in the in-
itially unoccupied = 0m  component, and the right column 
shows the final domain profiles. These should be compared 
with the ground state profiles in Fig. 3. The domains are 
generated for both the low and high magnetic field cases in 
times of the order of seconds, as shown in panels (a, d) and 
(b, e). However, when the switching time is significantly 
reduced, yielding the process no longer adiabatic, multiple 
metastable domains are formed as presented in panels 
(c, f). This picture is in qualitative agreement with the ex-
periment [30], where metastable spin domains were 
formed in nonadiabatic process within 50–100 ms. 

Fig. 4. Generation of spin domains by switching the magnetic field on. The magnetic field is gradually increased from zero to final val-
ue = 0.15B G during = 1t s (a, d), = 0.25B G during = 2t s (b, e), and = 0.25B G during = 0.5t s (c, f). The left column shows the
time dependence of the atom density in the initially unoccupied = 0m  component, and the right column shows the final domain pro-
files. In the last case, corresponding to nonadiabatic switching, multiple domains are formed. Other parameters are the same as in Fig. 3.
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6. Spin domains and dynamical stability 

Our results presented above show that the domain struc-
ture forming in polar condensates is absent in ferromagnet-
ic BECs. This may seem to contradict the common under-
standing of ferromagnetism and the results of the quenched 
BEC experiment Ref. 9. The conventional picture of a fer-
romagnet involves many domains pointing in various di-
rections separated by domain walls. Similar structure has 
been observed in Ref. 9. However, these cases correspond 
to the situations when there is an excess kinetic energy 
present in the system, due to finite temperature or excita-
tion of the spatial modes. On the other hand, our study is 
limited to the ground states at = 0T . It is easy to see from 
Eq. (9) that in zero magnetic field the ground state of a 
ferromagnetic BEC will always consist of a single domain 
with maximum possible value of the spin vector | |= 1f , 
pointing in the same direction at all points in space. How-
ever, when the temperature is finite, more domains can be 
formed each with a different direction of the spin vector. 

We emphasize that the domain structure of the ground 
state in polar condensates is very different from the do-
mains formed when the kinetic energy is injected in the 
system as in Ref. 9. The latter constantly appear and disap-
pear in a random sequence [9,16,17,21,35,36]. On the con-
trary, the ground state domains are stationary and are posi-
tioned in the center of the trap. They exist in the lowest-
energy state, while the dynamical domains require an 
amount of kinetic energy to be formed. The ground state 
domains can be prepared in an adiabatic process, involving 
adiabatic rf sweep or a slow change of the magnetic field 
[30,35], while the kinetic domains require a sudden quench 
[9,35]. 

The dynamical instability of ferromagnetic condensates 
that leads to spontaneous formation of spin domains has 
been investigated theoretically [18,16,35] and observed in 
experiment [9]. An analogous phenomenon has been pre-
dicted recently for polar condensates in presence of mag-
netic field [21]. Here we correct the results of Ref. 21, by 
noting that the 0 = 1ρ  state is stable in ferromagnetic con-
densates for 2> 2 | |E c nδ , and the 2C ( 0 = 0ρ ) state is 
stable in polar BECs if 2< /2E mδ . Both states become the 
ground states for these values of parameters. By investigat-
ing stability in various ranges of parameters, we are able to 
formulate a phenomenological law governing the dynami-
cal stability of condensates: (i) The only stable state for 
both polar and ferromagnetic BECs in finite magnetic field 
is the ground state, as shown in Table 1; (ii) in zero mag-
netic field, the same is true for ferromagnetic condensates; 
However, all stationary states of polar condensates are dy-
namically stable in zero magnetic field [16,18,21]. The 
reason for the stability of polar condensates in vanishing 
magnetic field case is not yet clear. We note that the polar 
condensates in weak magnetic field may also be effectively 
stable on a finite time scale. As shown in Ref. 21, in this 

latter case the instability growth rate of unstable modes is 
proportional to the fourth power of the magnetic field 
strength. The time required for the development of instabil-
ity may be much longer than the condensate lifetime [3]. 

7. Conclusions 

We have studied the ground state of a spin-1 BEC in the 
presence of a homogenous magnetic field with and without 
an external trapping potential. We have found that without 
a trapping potential the translational symmetry can be 
spontaneously broken in polar BEC, with the formation of 
magnetic domains in the ground state. We have shown that 
these results may be used to understand the ground state 
structure in the presence of a trapping potential by map-
ping the locally varying density in the trap to the homo-
genous state. We have found that, depending on the mag-
netic field, the antiferromagnetic BEC ground state in the 
trap displays pronounced spin domains for a range of poss-
ible experimental conditions. Finally, we have discussed 
the relationship between the phenomenon of phase separa-
tion and the dynamical instability leading to the formation 
of dynamic spin textures. 
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