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Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at 
the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on mag-
non energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant 
tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas 
at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direc-
tion of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon. 

PACS: 05.60.Gg Quantum transport; 
85.75.–d Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated 
magnetic fields. 

Keywords: magnon, nanochain, transmission, tunneling. 
 

1. Introduction 

Modern electronics including spintronics, operates with 
the structures that have an effective size of the order of 
several tens nanometers [1–6]. Further minimization of 
element base for electronics is associated with molecular 
architecture where single molecules or their combinations 
have to demonstrate the properties of wires, diodes, tran-
sistors, storage cells, etc. [7–12]. In specific cases when 
single molecules contain paramagnetic ions, these ions can 
polarize an electron current through a molecule and even 
block the current [13–16]. The work of electronic devices 
is based on switching on/off the microcurrents and thus 
the physics of information transmission is associated with 
the transfer of electrons or holes. Such transfer is accom-
panied by a rather large energy dissipation. It is obviously 
that much more less power is required if the information 
is transmitted by uncharged carriers. In present communi-
cation, a principally new mechanism of information trans-
mission is proposed. It is associated with a distant transfer 
of spin excitation (magnon) from one magnetic contact 
to another magnetic contact via magnetically ordered na-
nochain. 

2. Model and theory 

We consider the simplest magnetic device that consists 
of ferrodielectric contacts A and B connected by a ferro-
magnetic nanochain (AFB-device, Fig. 1). The chain in-
volves a regular interior part and edge groups a  and b  
coupled to respective contacts. Let Bμ  be the Bohr magne-

Fig. 1. Magnon transferring device. Exchange couplings in the 
device are characterized by parameters AJ  and BJ  (between 
sites related to ferromagnetic contacts), AaJ  and BbJ  (between 
edge sites of ferromagnetic chain and surface sites belonging the 
adjacent contacts), 1aJ  and bNJ  (between edge sites and end 
sites of regular part of chain), and J  (between interior sites of 
chain). ( ) ,A BS  ( )a bS  and S  are the spins belonging the contact 
sites, the edge sites of chain and the interior sites of chain, respec-
tively. 
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ton and let ˆ
mS , mD , mg  and mH  be, respectively, the 

spin operator, the parameter of single-ion anisotropy, the 
g-factor and the magnetic field related to device site m. 
Denoting via (> 0)mnJ  the parameter that characterizes an 
exchange interaction between the nearest neighboring sites 
m  and n , we represent the device's magnetic Hamiltonian 
in conventional form [17] 

 2ˆ ˆ= ( )z
B m m m m m

m m
H g D Sμ − −∑ ∑H S   

 1 ˆ ˆ .
2 mn m n

mn
J− ∑ S S  (1) 

Ground state | 0〉  of device corresponds to minimal spin 
projection =m mM S−  for each site m  ( mS  is the spin 
value at site m ) so that | 0 = | =m m mm S M S〉 − 〉∏  where 

| =m m mS M S− 〉  denotes a ground spin state for the mth 
site Ground magnetic energy of device appears as (magnet-
ic fields are directed along axis z)  
 0 = 0 | | 0 = B j m m

m
E H g H S〈 〉 −μ −∑   

 2 .m m mn m n
m mn

D S J S S− −∑ ∑  (2) 

In what follows, the lowest spin excitations (magnons) are 
considered only. This excitation appears at site n  if the 
spin projection varies from =n nM S−  to = ( 1).n nM S− −  
Respective device state becomes | =| =n nn S M〉

= ( 1) | =n m m mm nS S M S≠− − 〉 − 〉∏ . In line with theory of 
magnetic excitons [18–20] we introduce the operators of 
creation and annihilation of spin excitation as =| 0 |nb n+ 〉〈  
and =| 0 |nb n〉〈 . Expanding Hamiltonian (1) with respect 
to these excitations one derives the following form of Ha-
miltonian of spin excitations 

 =s n n n nm n m
n nm

H E b b V b b+ +Δ +∑ ∑  (3) 

where 0= | |nE n H n EΔ 〈 〉 −  and = | |nmV n H m〈 〉  are, 
respectively, the energy of local spin excitation in device 
and the matrix element characterizing the hopping of spin 
excitation between sites n  and m . Restriction by a qua-
dratic form over nb+  and nb  supposes small number of 
spin excitations in device. This is satisfied at condition 

1n nb b+〈 〉�  where symbol ...〈 〉  denotes the thermodynam-
ic average. Bearing in mind the fact that matrix element 
from the product ˆ ˆ

m nS S  has a form 

 ˆ ˆ, | | , =n n m m m n m m n nS M S M S M S M′ ′〈 〉S S   

 , ,
1 ( )( )
2m n M M M M m m m mm m n n

M M S M S M′ ′ ′= δ δ + + − ×   

 , 1 , 1( )( )n n n n M M M Mm m n n
S M S M ′ ′− +′× − + δ δ +   

 1 ( )( )
2 m m m mS M S M ′+ − + ×   

 , 1 , 1( )( ) ,n n n n M M M Mm m n n
S M S M ′ ′+ −′× + − δ δ  (4) 

one derives 

 = (2 1)n B n n n n mn m
m n

E g H D S J S
≠

Δ μ + − + ∑  (5) 

and 

 = | | = .nm nm n mV n H m J S S〈 〉 −  (6) 

We rewrite now a Hamiltonian of spin excitations with 
taken into account the fact that contacts A and B are regular 
structures and thus spin excitations in these structures are 
magnons. Let vector n indicates the position of site n  be-
longing to the rth contact ( , ).r A B=  Using the transfor-

mation ( )= ( )r
n n rb T b∑ k

k
k  we achieve the following di-

agonal form of respective Hamiltonian,  

 = ( )r r r rH E b b+∑ k k
k

k  (7) 

where ( )
cont( ) = ( )r

r rE E z− β γk k  is the energy of magnon 
with wave vector k [21]. Position of the center of magnon 
band is determined by expression ( )

cont =r
B r rE g Hμ +

(2 1) .r r rD S z+ − + β  In a simple case of cubic crystal where 
the number of nearest neighbors z is equal to 6, one derives 

=r r rJ Sβ  and ( ) = (1/ 3)(cos cos cos )x y zak ak akγ + +k  

where rS  is the site spin in the rth contact, rJ  is the ex-
change parameter for the nearest neighbors, and a  is the 
cell constant. For a regular part of chain, we utilize an exact 

transformation 
=1

=
N

n nb U bμ μ
μ
∑  where 1/2= ( 1)nU N −

μ + ×

sin( / 1)n N× π μ +  Such transformation diagonalizes a 
Hamiltonian of interior part of nanochain yielding 

 reg
=1

=
N

H E b b+μ μ μ
μ
∑  (8) 

where 

 (0)
reg= 2 cos

1
E E

Nμ
πμ

− β
+

 (9) 

is the energy of spin excitation in regular chain with 
(0)
reg = (2 1) 2BE gH D Sμ + − + β  being the center of discrete 

magnon band. Here, g, D  and J  are the g-factor, para-
meter of single-ion anisotropy and exchange parameter, 
respectively, while .JSβ ≡  

After above transformations, Hamiltonian of spin exci-
tations appears in the form  

 0 tr= .SH H V+  (10) 

The first term, 

 0 reg= ,A B a bH H H H H H+ + + +  (11) 
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includes Hamiltonians related to the contacts A and B, the 
interior part of chain, and the edge chain sites a  and b . 
The latter Hamiltonians read as  

 = , ( = , ),l l l lH E b b l a b+  (12) 

where 

 1= (2 1) ,a B a a a a Aa aE g H D Sμ + − +β +β  (13) 

and 

 = (2 1)b B b b b b Bb bNE g H D Sμ + − +β +β  (14) 

are the energies of spin excitation at the edge sites. In Eqs. 
(13) and (14), we have introduced the following notations 
(see also Fig. 2) Aa A Aa Az J Sβ ≡ , Bb B Bb Bz J Sβ ≡  and 

1 1a aJ Sβ ≡ , bN bNJ Sβ ≡  with Az  and Bz  being the 
number of identical contact sites coupled to the adjacent 
edge site. Quantities AaJ  and BbJ  are the parameters that 
characterize an exchange coupling of edge sites to respec-
tive contacts whereas 1aJ  and bNJ  are the parameters 
related to an exchange coupling of edge sites a  and b  to 
the 1st and the Nth sites of interior part of chain, respec-
tively. Operator 

 tr = Aa ac Bb bcV V V V V+ + +  (15) 

describes the transfer of spin excitation between edge site 
( )a b  and adjacent contact A(B) as well as between the 

same edge site ( )a b  and site 1( N ) of regular chain (terms 
( )Aa BbV V  and ( )ac bcV V , respectively). The terms read 

( = , )rl Aa Bb  

 *
, ,= [ ],rl l r l r l r r l

k
V b b b b+ +β +β∑ k k k k  (16) 

and ( = , )l a b  

 *

=1
= [ ].

N

lc l l l lV b b b b+ +
μ μ μ μ

μ
β +β∑  (17) 

In Eqs. (16) and (17), the coupling parameters are defined 
through the relations ( )

, = ( )r
l r rl nl

Tβ βk k  and =l lm mUμ μβ β  

with =rl rl r lJ S Sβ −  and =lm lm lJ S Sβ − . Symbol ln  

indicates the position of surface contact site coupled to the 
chain edge site = ( , )l a b  coupled to respective contact 

(= , )r A B  while index (= 1, )m N  numbers the end site of 
interior part of chain. (Fig. 2 shows a relative position of 
magnon energies in the AFB-device along with the coupl-
ings responsible for magnon hoppings). 

Our aim is to derive expression for a distant flow of mag-
nons from one magnetic contact to another one. To this end, 
we suppose that interaction between nanochain and precise 
macroscopic contact does not distinctly perturb the contact's 
magnon energy ( )rE k  so that magnon vector k  can be refer 
to a good quantum number. Quantum mechanics shows [22] 
that in a dynamic system, the probability ,Pβ α  of a transition 
from the state α  to the state β  per unit time is given by ex-

pression 2
,

ˆ= (2 / ) | | | | ( )P T E Eβ α α βπ 〈β α〉 δ −  where 

int int int
ˆ = ( )T H H G E H+  is the operator for a transition on 

the energy shell =E Eα . Quantity 1( ) = ( 0 )G E E H i + −− +  
is the Green's operator with 0 int=H H H+  being the Ha-
miltonian of entire dynamic system. In the case of distant 
magnon transmission under consideration, the states α  
and β  are associated with magnon wave vectors k and q. 
Therefore, a probability to transfer a separate magnon 
from the contact A to the contact B is given by expres-
sion 2

, ,= (2 / ) | | ( ( ) ( ))A B B A A BP T E Eπ δ −k q q k k q  where 

, tr tr= | ( ) |B AT B V G E V A〈 〉q k q k , = ( )AE E k , and ( ) =G E
1= ( 0 )sE H i + −− + . Since the device is an open quantum 

system, an integral transmission probability A BP →  appears 
as the sum of probabilities ,A BP k q  each weighted with 

magnon distribution function ( ( ))A AW E k . Thus,  

 ,= ( ( )) .A B A A A BP W E P→ ∑ k q
kq

k  (18) 

Analogous form is valid for reverse probability B AP →  (in 
Eq. (18), one has only to substitute ( ( ))A AW E k  for the 

( ( ))B BW E q ). 
Let transform now Eq. (18) to more convenient form. 

Bearing in mind that exchange interaction couples only the 
nearest neighbors one derives *

, , ,= ( )B A b B ba a AT G Eβ βq k q k  

where 1( ) = | ( 0 ) |ba sG E b E H i a+ −〈 − + 〉  is the quantity 
that establishes a coupling between spin states of spatially 
separated edge sites a  and b . Its form is similar those 
used in theory of elastic electron transmission through or-
ganic molecules [23,24]. Following the method derived 
in Ref. 24 we reduce exact Hamiltonian sH  to the 

(eff )(eff )
chain

= ,
=s r

r A B
H H H+∑  where contact Hamiltonians 

conserve their form (7) whereas the effective chain Hamil-
tonian reads 

 (eff )
chain = .H b b+λ λ λ

λ
∑ E  (19) 

Fig. 2. Relative position of magnon energies in AFB-device.
Magnon energy at contact A(B) is presented in the effective mass
model. Couplings of edge chain site ( )a b  to the contact A(B) and
to the end site 1( )N  of interior part of chain are characterized by
quantities , ,( )a A b Bβ βk q  and 1( )a bNβ β , respectively. 
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Here, λE  is the magnon energy in proper state λ  of Hamil-

tonian (19), = j j
j

b bλ λΘ∑  and *= j j
j

b b+ +
λ λΘ∑  are new 

operators of annihilation and creation of magnon in the chain, 
and = |j jλΘ 〈 λ〉  are the elements of matrix that trans-

forms chain states (= , , )j a b μ  formed at 1 = = 0a bNV V  
and = = 0Aa BbV V , into proper states λ  formed with taken 
into consideration off-diagonal interaction (15). Substitution 
of Hamiltonian sH  for the (eff )

sH  yields 

 ( ) = .b a
baG E

E
λ λ

λλ

Θ Θ
−∑ E

 (20) 

Note an important fact that proper chain energy λE  con-
tains an image addition caused by interactions of edge 
chain sites with macroscopic contacts (operators aAV  and 

bBV  in Eq. (15)). As an example, we consider the case 
where exchange interaction of edge sites a  and b  with 
adjacent contacts and interior part of chain does not exceed 
exchange interactions within the contacts as well as within 
the interior part of chain. At such conditions, a mixture of 
extended states | ,|A B〉 〉k q  and |μ〉  with localized states 
| a〉  and | b〉  is not large. This allows one to reduce exact 
form (20) to the expression  

 1( )
( ( ))( ( ))

a bN
ba

a b
G E

E E E E
β β

×
− −E E

�   

 1

=1 ( )

N NU U
E E

μ μ

μμ
×

−∑ E
 (21) 

where jE  is the proper chain energy for magnon states 
= , ,j a b μ . Proper energy is derived from relation 
( ) = ( )j j jE E E+ ΣE  with 

 
2

,

= ,

| |
( ) =

( ) 0
j rk

j r A B r
E

E E i +

β

− +
∑ ∑ ∑

k k
 (22) 

being the magnon self-energy. Self-energy characterizes 
the influence of macroscopic contacts on the chain through 
exchange couplings ,j rβ k . Real part of self-energy deter-
mines a small alteration of energies and can be omitted. It 
is not the case for image part which plays a fundamental 
role in magnon transmission. Thus, in Eq. (21), magnon 
chain energies appear as 

 ( ) ( ) / 2j j jE E i E− Γ�E  (23) 

where quantities jE  are defined through expressions (9), 
(13), and (14) while image additions read ( = ( )l a b  if 

= ( )r A B ) 

 2
,( ) = 2 | | ( ( )),l l r rE E EΓ π β δ −∑ k

k
k  (24) 

and ( = 1,...Nμ ) 

 2
,

= ,
( ) = 2 | | ( ( )).r r

r A B
E E Eμ μΓ π β δ −∑ ∑ k

k
k  (25) 

Couplings ,a Aβ k  and ,b Bβ k  have been written above 
whereas *

, tr tr ,= | ( ) | = / ( )r l r l lV G E V r Eμ μβ 〈μ 〉 β β −k kk E , 
( = ( )l a b  if = ( )r A B ). 

Quantity =A B A B B AQ P P→ → →−  characterizes a nor-
malized net flow of magnons. With introduction of width 
parameters (24) and (25), this flow can be represented in 
form 

 1= ( , )
2A BQ dE T N E

+∞

→
−∞

×
π ∫   

 ( ( ) ( ))A BW E W E× −  (26) 

where 

 2( , ) = ( ) | ( ) | ( )b ba aT N E E G E EΓ Γ  (27) 

is the transmission function that specifies a dynamics of 
direct contact-contact transfer of single magnon depen-
dently on both the number of chain sites and the character 
of exchange couplings within the AFB-device. 

3. Results and discussion 

Magnon flow (26) depends strongly on precise form of 
distribution functions ( )AW E  and ( )BW E  as well as 
transmission function (27). To specify distribution function 
one has to know a regime of magnon formation in the con-
tacts. This problem requires a separate consideration. In 
this communication, we discuss only the properties of 
transmission function. To this end, let rewrite the ( , )T N E  
in more detail form  

 1
2 2
( )

( , ) =
[( ) ( ) / 4]

a a

a a

E
T N E

E E E
Γ β

×
− +Γ

  

2
1

2 2 2 2
=1

( )( )
[( ) ( ) / 4] ( ) ( ) / 4

N Nb bN

b b

U U E EE
E E E E E E

μ μ μ

μ μ μ

⎡⎛ ⎞−Γ β ⎢⎜ ⎟× +⎢⎜ ⎟− + Γ − +Γ⎝ ⎠⎢⎣

∑   

 
2

1
2 2

=1

( ( ) / 2)
.

( ) ( ) / 4

N NU U E

E E E
μ μ μ

μ μ μ

⎤⎛ ⎞Γ ⎥⎜ ⎟+ ⎥⎜ ⎟− + Γ⎝ ⎠ ⎥⎦

∑  (28) 

Bearing in mind that, generally, the magnons are generated 
at 0k ≈ , the widths can be calculated in the effective mass 
approximation with taken into account the fact that 

(0)rE E≥ . Calculations yield  

2 (0)1( ) = ,
2

rl r
l

r r

E E
E

β −
Γ

π β β
( = ( ), = ( ))r A B l a b  (29) 
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Fig. 3. Behavior of transmission function at different length of
ferromagnetic chain. Peaks correspond to such transmission ener-
gies that coincide with magnon energies within the ferromagnetic
chain of 2N +  sites (regime of resonant tunneling). The curves
are calculated in using Eq. (28) with = = = =A B Aa Bbβ β β β

1= = = 10a bNβ β cm–1, = 15β cm–1, (0)
reg = 80E cm–1, (0) =AE

(0) = 80BE= cm–1, = = 40a bE E  cm–1. 
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Fig. 4. Off-resonant regime of magnon tunneling. At fixed trans-
mission energy, the transmission function drops exponentially 
when the number of chain sites increases. The curves are calculated 
in using Eq. (28) with the same parameters as those for Fig. 3. 
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2[ / ( 1)]sin( ) =

1
NE

Nμ
πμ +

Γ ×
+

  

 
2 2
1

2 2 2 2
( ) ( )

.
( ) ( ) / 4 ( ) ( ) / 4

a a bN b

a a b b

E E
E E E E E Eμ μ

⎡ ⎤β Γ β Γ⎢ ⎥× +
⎢ ⎥− + Γ − + Γ⎣ ⎦

  

  (30) 

Figure 3 manifests a typical dependence of transmission 
function on magnon energy = ( ) = ( ).A BE E Ek q  The 
peaks appear at elastic resonant transmission regime when 
magnon energy at the contacts coincides exactly with mag-
non energies at the ferromagnetic chain. The coincidence 
occurs at condition = ,jE E  ( = , , )j a b μ . Broadening the 
peaks is completely determined by quantities (29) and (30). 
It is necessary to note an important fact that independently 
on the number of chain sites, the peak's heights differ insig-
nificantly from each other. It is not the case at off-resonant 
transmission regime. As it follows from Fig. 4, at such re-
gime, a transmission function exhibits an exponential drop 
showing, thus, the tunneling like behavior. Respective ana-
lytical expression for transmission function follows from Eq. 
(28) if one sets 2 2( ) ( ) / 4.E E Eμ μ− Γ�  Then at 

(0)
reg| | 2E E− ≥ β  one derives 

 ( , ) = ( )T N E D E ×   

 
2 2 2
1

2 2 2 2
( ) ( )( / )

[( ) ( ) / 4][( ) ( ) / 4]
a b a bN

a a b b

E E

E E E E E E

Γ Γ β β β
×

− + Γ − + Γ
 (31) 

where we have introduced a specific superexchange de-
crease factor  

 sinh ( )( ) =
sinh[ ( )( 1)]

ED E
E N
ζ

ζ +
 (32) 

with 

 

2(0) (0)
reg reg| |

( ) = ln 1
2 2

E E E E
E

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟ζ + −⎢ ⎥⎜ ⎟β β⎢ ⎥⎝ ⎠⎣ ⎦

 (33) 

being the decrease parameter. When exp ( ) 1Eζ �  the de-
crease factor reduces to simple form ( ) exp[ ( ) ]D E E N−ζ�  
reflecting thus an exponential drop of transmission func-
tion. The drop strongly depends on transmission gap 

(0)
reg| |E E− . 
It is seen from Fig. 4 that the less is the gap, the slower 

drop of transmission function. For instance, if generation 
of magnons in contact A occurs near the bottom of magnon 
band so that magnon distribution function ( )AW E  has a 
maximum value at 0k � , then the main contribution in 
integral of expression (26) give the energies of the order 

(0)AE E�  and thus, exp[ ( (0)) ]A B AQ E N→ −ζ∼ . 

4. Conclusion 

In this communication, we propose a physical mechan-
ism for a coherent distant transmission of spin excitation 
(magnon) from one magnetic contact to another magnetic 
contact via a linear ferromagnetic chain embedded between 
the contacts, Fig. 1. Coupling of structure units in such 
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device is performed through the Heisenberg's site-site ex-
change interaction which is also responsible for a magnon 
hopping within the device. It is assumed that a magnon 
transit-time is mach less the magnon life-time and, thus, 
one can describe a magnon transmission as a stationary 
transfer process. Zero temperature case is considered only 
so that a temperature excitation of magnons is ignored. It is 
assumed that generation of magnons in ferromagnetic con-
tacts is caused by an external source. But, the concentra-
tion of magnons is too small that the use of single-magnon 
model is quite enough to describe a magnon transmission 
between the contacts. We show that a ferromagnetic chain 
is able to form a distant (superexchange) coupling ,B AT q k  
between single-magnon states | A 〉k  and | B 〉q  related to 
different contacts. The character of superexchange coupl-
ing depends strongly on value of magnon energies ( )rE k  
and jE  at the rth contact and at the chain, respectively 
(see Fig. 2). When magnon energy = ( ) = ( )A BE E Ek q  
coincides with the ,jE  transmission function ( , )T N E  
demonstrates the presence of resonant peaks well seen at 
the Fig. 3. Appearance of the peaks indicates an effective 
coherent contact-contact magnon transfer independently of 
the number of chain sites. Another situation occurs if the 
contact's magnon energy differs from the chain's magnon 
energy. In this case, a transmission function drops expo-
nentially with increase of chain length, Fig. 4. Such expo-
nential drop corresponds to a tunnel mechanism of trans-
mission and, thus, one can say about magnon tunneling. 
Magnon transmission in the AFB-device under considera-
tion is strongly controlled by an external magnetic field. 
For instance, let one change a direction of magnetic field 
applied to one of the contacts (or to the chain). After such 
change, a direction of spins in the contact and the chain 
becomes opposite. As a result, the hopping matrix element 
(4) vanishes, and magnon hopping from the contact to the 
chain is blocked. 
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