О природе распадного фононного спектра в сверхтекучем гелии

Э.А. Пашицкий

Институт физики НАН Украины, пр. Науки, 46, г. Киев, 03028, Украина E-mail: pashitsk@iop.kiev.ua

С.И. Вильчинский, А.В. Чумаченко

Киевский национальный университет имени Тараса Шевченко пр. Глушкова, 2, к. 1, г. Киев, 02033, Украина

Статья поступила в редакцию 1 февраля 2010 г.

Показано, что распадный характер фононного спектра в сверхтекучем гелии является следствием аналитичности и четности собственной энергии бозонов как функции энергии и импульса. Согласно проведенным ранее самосогласованным численным расчетам, в изотропной сверхтекучей бозе-жидкости с подавленным («истощенным») в результате сильного взаимодействия между частицами бозе-эйнштейновским конденсатом нормальная и аномальная собственно энергетические части бозонов являются аналитическими функциями импульса и энергии и на массовой поверхности в длинноволновом пределе зависят только от квадрата импульса. На основе этого показано, что фононный спектр бозе-жидкости является распадным в полном соответствии с экспериментальными данными по нейтронному рассеянию и взаимодействию высокочастотных и низкочастотных фононов в сверхтекучем гелии.

Показано, що розпадний характер фононного спектру у надплинному гелії є наслідком аналітичності та парності власної енергії бозонів як функції енергії та імпульсу. Згідно проведеним раніше самоузгодженим чисельним розрахункам, у ізотропній надплинній бозе-рідині з подавленим («виснаженим») внаслідок сильної взаємодії між частинками бозе-ейнштейнівським конденсатом нормальна і аномальна власно енергетичні частини бозонів є аналітичними функціями імпульсу та енергії і на масовій поверхні у довгохвильовій границі залежать лише від квадрату імпульсу. На основі цього показано, що фононний спектр бозе-рідини є розпадним у повному узгодженні з експериментальними даними з нейтронного розсіяння та взаємодії високочастотних та низькочастотних фононів у надплинному гелії.

PACS: 67.25.D- Сверхтекучая фаза; 67.25.dt Звук и возбуждения.

Ключевые слова: фононный спектр, бозе-жидкость, сверхтекучий гелий.

1. Введение

Как известно, в теории Боголюбова [1] для разреженного слабонеидеального бозе-газа точечных частиц с нулевым спином спектр элементарных возбуждений (квазичастиц) имеет следующий вид:

$$E_B(p) = \sqrt{c_B^2 p^2 + \left(\frac{p^2}{2m}\right)^2}; \quad c_B = \sqrt{n_0 \frac{V_0}{m}}, \qquad (1)$$

где c_B — скорость звука, n_0 — число частиц в бозеэйнштейновском конденсате (БЭК), почти совпадающее с полным числом частиц *n* в единице объема при температуре, стремящейся к нулю $(T \rightarrow 0)$, V_0 — нулевая фурье-компонента слабого взаимодействия (отталкивания) между частицами, а *m* — масса бозона. Такой спектр, будучи акустическим $E_B(p) = c_B p$ при малых импульсах $p \ll c_B m$ и квадратичным $E_B(p) \approx p^2 / 2m$ при больших импульсах $p \gg c_B m$, является распадным, т.е. неустойчивым по отношению к самопроизвольным распадам квазичастиц на пары, для которых выполняются законы сохранения энергии и импульса.

Распадный характер спектра (1) послужил одним из главных аргументов против применимости теории Боголюбова [1] для описания сверхтекучести гелия (⁴He), в спектре которого существует так называемый ротонный минимум, теоретически предсказанный Ландау [2] и экспериментально наблюдавшийся в [3–5] с помощью рассеяния нейтронов в сверхтекучей (СТ) бозежидкости ⁴He (He II).

Заметим, что спектр квазичастиц, аналогичный эмпирическому спектру Не II с ротонным минимумом, был получен в [6,7] для разреженной бозе-системы в модели «твердых сферических оболочек» диаметром a с бесконечным отталкиванием на поверхности $V(r) = V_0 \delta(r-a)$ и в [8] для модели «полупрозрачных сфер» с конечным отталкиванием в области $r \le a$. Фурье-компоненты соответствующих потенциалов равны:

$$V(p) = V_0 j_0(pa); \quad V(p) = V_0 \frac{j_1(pa)}{pa},$$
 (2)

где $j_0(x)$ и $j_1(x)$ — сферические функции Бесселя нулевого и первого порядка. Подстановка осциллирующих знакопеременных функций (2) в боголюбовский спектр (1) вместо V_0 = const приводит к немонотонной импульсной зависимости $E_B(p)$, которая путем подбора параметров V_0 , *a* и *m* позволяет получить спектр квазичастиц, близкий к экспериментальному (рис. 1). Такой спектр не является распадным, за исключением точки с энергией, равной удвоенной энергии ротонной щели, в которой возможен распад квазичастицы на два ротона [9].

Тем не менее, как показали прецизионные эксперименты по рассеянию холодных нейтронов [10-13], фононный спектр в Не II является распадным, что приводит к взаимодействию и взаимному превращению низкочастотных и высокочастотных фононов [14-17]. При этом скорость первого звука в Не II растет с ростом импульса р по квадратичному закону $c_1(p) \sim (1 + \gamma p^2)$, достигает своего максимального значения, которое на (4–5%) превышает значение $c_1(0)$ при $p \rightarrow 0$, а затем по мере приближения к максимуму спектра квазичастиц в Не II начинает убывать. До настоящего времени причина такой импульсной зависимости скорости первого звука в Не II не получила объяснения.

В настоящей работе показано, что распадный характер фононного спектра в квантовой бозе-жидкости непосредственно следует из результатов развитого в работах [18–25] теоретико-полевого подхода, в рамках которого перенормированные нормальная $\tilde{\Sigma}_{11}(\mathbf{p},\varepsilon)$ и аномальная $\tilde{\Sigma}_{12}(\mathbf{p},\varepsilon)$ собственно энергетические части, определяющие перенормировку спектра квазичастиц и скорость первого звука, являются аналитическими функциями импульса \mathbf{p} и энергии ω при $\mathbf{p} \rightarrow 0$ и $\omega \rightarrow 0$, причем $\tilde{\Sigma}_{12}(0,0) \neq 0$, в отличие от неперенормированных моделей с локальным взаимодействием между бозонами [26-29]. В работах [22-25] для построения самосогласованной теории СТ квантовой бозе-жидкости с сильным нелокальным взаимодействием между бозонами был учтен экспериментально наблюдаемый эффект «истощения» одночастичного БЭК в He II [30,31], в результате которого плотность БЭК не превышает 10% полной плотности частиц, $n_0 \le 0, 1n$, даже при $T \rightarrow 0$, в отличие от слабонеидеального бозе-газа [1], в котором $n_0 \approx n$. Наличие малого параметра n₀ / n << 1 в бозе-жидкости позволяет с точностью ≤1% оборвать бесконечный ряд в разложении собственных энергий $\Sigma_{ii}(\mathbf{p},\omega)$ по конденсатным линиям [26], сохраняя только члены, пропорциональные n₀. Проведенные в [22-25] численные расчеты самосогласованной замкнутой системы нелинейных интегральных уравнений для перенормированных нормальных и аномальных одночастичных функций Грина $\hat{G}_{ii}(\mathbf{p}, \omega)$ и собственно энергетических частей $\tilde{\Sigma}_{ii}(\mathbf{p},\omega)$ позволили получить вполне удовлетворительное количественное согласие между теоретическим и экспериментальным спектрами квазичастиц $E(\mathbf{p})$ в He II для различных более или менее реалистических модельных потенциалов парного взаимодействия между бозонами (атомами ⁴He). При этом было показано, что входящие в определение перенормированного спектра собственно энергетические части на «массовой поверхности» $\Sigma_{ij}(p, E(p))$ являются аналитическими функциями p при $p \rightarrow 0$ и в изотропной бозе-жидкости зависят только от p^2 . Как будет показано ниже, разложение этих функций по p^2 при малых р позволяет получить распадный закон дисперсии в фононной области спектра квазичастиц в Не II, в соответствии с экспериментальными данными [10-13].

2. Исходные уравнения для сверхтекучей бозежидкости с подавленным БЭК

В рамках развитой Беляевым [26] полевой теории сверхтекучести разреженных бозе-систем при $T \rightarrow 0$ спектр квазичастиц определяется выражением [27]

$$E(\mathbf{p}) = \sqrt{\left[\frac{\mathbf{p}^{2}}{2m} + \Sigma_{11}^{s}(\mathbf{p}, E(p)) - \mu\right]^{2} - |\Sigma_{12}(\mathbf{p}, E(\mathbf{p}))|^{2} + \Sigma_{11}^{a}(\mathbf{p}, E(\mathbf{p})), \qquad (3)$$

где

$$\Sigma_{11}^{s,a}(\mathbf{p},\varepsilon) = \frac{1}{2} \big[\Sigma_{11}(\mathbf{p},\varepsilon) \pm \Sigma_{11}(-\mathbf{p},-\varepsilon) \big], \tag{4}$$

 Σ_{11} и Σ_{12} — нормальная и аномальная собственно энергетические части, а μ — химический потенциал бозонов, который, согласно теореме Гугенгольтца– Пайнса [32], определяется соотношением

$$\mu = \Sigma_{11}(0,0) - \Sigma_{12}(0,0). \tag{5}$$

Физика низких температур, 2010, т. 36, № 7

Благодаря этому спектр (3) при малых импульсах является акустическим $E(\mathbf{p}) = c |\mathbf{p}|$ со скоростью звука, равной

$$c = \sqrt{\Sigma_{12}(0,0) / m^*}, \qquad (6)$$

где m^* — эффективная масса квазичастиц, определяемая соотношениями

$$\frac{1}{m^*} = \frac{1}{B} \left[\frac{1}{m} + 2 \frac{\partial \Sigma_{11}(0,0)}{\partial |\mathbf{p}|^2} - 2 \frac{\partial \Sigma_{12}(0,0)}{\partial |\mathbf{p}|^2} \right]; \quad (7)$$

$$B = \left[1 - \frac{\partial \Sigma_{11}(0,0)}{\partial \varepsilon}\right]^2 - \Sigma_{12}(0,0) \frac{\partial^2 \Sigma_{11}(0,0)}{\partial \varepsilon^2} + \frac{1}{2} \frac{\partial^2}{\partial \varepsilon^2} |\Sigma_{12}(0,0)|^2 .$$
(8)

В неперенормированной полевой теории с локальным взаимодействием между бозонами в исходном лагранжиане типа $U_0 |\Psi|^4$ (см. [28]) аномальная собственная энергия $\Sigma_{12}(\mathbf{p},\varepsilon)$ является неаналитической функцией и стремится к нулю при $|\mathbf{p}| \rightarrow 0$ и $\varepsilon \rightarrow 0$ как $p \ln(1/p)$. При этом, как было показано в [18,29], величина *B* и, следовательно, эффективная масса m^* также обращаются в нуль, что приводит к неопределенности типа 0/0 в выражении (6) для скорости звука.

С другой стороны, скорость гидродинамического звука при $p \rightarrow 0$ определяется соотношениями [28,33]

$$c_1^2 = \frac{\partial P}{\partial \rho} = \frac{n}{m} \frac{d\mu}{dn},\tag{9}$$

где P — давление, а ρ — плотность бозе-жидкости, и совпадает со скоростью первого звука в Не II, что позволяет устранить неопределенность в (6). Однако, как будет показано ниже, в правильной, перенормированной и самосогласованной теории $\tilde{\Sigma}_{12}(0,0) \neq 0$ и $\tilde{m}^* \neq 0$.

Как было показано в [22–24], система уравнений для нормальной $\tilde{\Sigma}_{11}(\mathbf{p},\varepsilon)$ и аномальной $\tilde{\Sigma}_{12}(\mathbf{p},\varepsilon)$ перенормированных собственных энергий с точностью до малых членов порядка $n_0^2 / n^2 \le 0,01$ имеет вид

$$\widetilde{\Sigma}_{11}(\mathbf{p},\varepsilon) = n_0 \Lambda(\mathbf{p},\varepsilon) \widetilde{V}(\mathbf{p},\varepsilon) + n_1 V(0) + \widetilde{\Psi}_{11}(\mathbf{p},\varepsilon) , \quad (10)$$

$$\widetilde{\Sigma}_{12}(\mathbf{p},\varepsilon) = n_0 \Lambda(\mathbf{p},\varepsilon) \widetilde{V}(\mathbf{p},\varepsilon) + \widetilde{\Psi}_{12}(\mathbf{p},\varepsilon) .$$
(11)

Здесь

$$\widetilde{\Psi}_{ij}(\mathbf{p},\varepsilon) = i\int \frac{d\mathbf{k}}{(2\pi)^3} \int \frac{d\omega}{2\pi} \widetilde{G}_{ij}(\mathbf{k},\omega) \widetilde{V}(\mathbf{p}-\mathbf{k},\varepsilon-\omega) \Gamma(\mathbf{p},\varepsilon,\mathbf{k},\omega).$$
(12)

$$\tilde{V}(\mathbf{p},\varepsilon) = \frac{V(\mathbf{p})}{1 - V(\mathbf{p})\Pi(\mathbf{p},\varepsilon)},$$
(13)

$$n_1 = n - n_0 = i \int \frac{d\mathbf{k}}{(2\pi)^3} \int \frac{d\omega}{2\pi} \tilde{G}_{11}(\mathbf{k}, \omega) , \qquad (14)$$

где $\tilde{G}_{ij}(\mathbf{k},\omega)$ — нормальная и аномальная функции Грина бозонов:

$$\tilde{G}_{11}(\mathbf{k},\omega) = \frac{\omega^2 + (\mathbf{k}^2 / 2m) - \mu + \tilde{\Sigma}_{11}(-\mathbf{k},\omega)}{\omega^2 - E^2(\mathbf{k}) + i\delta}, \quad (15)$$

$$\tilde{G}_{12}(\mathbf{k},\omega) = \frac{\tilde{\Sigma}_{12}(\mathbf{k},\omega)}{\omega^2 - E^2(\mathbf{k}) + i\delta}, \ \delta \to 0.$$
(16)

 $V(\mathbf{p})$ — фурье-компонента исходного потенциала парного взаимодействия бозонов, $\Gamma(\mathbf{p}, \varepsilon; \mathbf{k}, \omega)$ — вершинная часть (трехполюсник), описывающая многочастичные корреляции типа эффектов локального поля, $\Lambda(\mathbf{p}, \varepsilon) = \Gamma(\mathbf{p}, \varepsilon; 0, 0) = \Gamma(0, 0; \mathbf{p}, \varepsilon)$, а $\Pi(\mathbf{p}, \varepsilon)$ — поляризационный оператор бозонов:

$$\Pi(\mathbf{p},\varepsilon) = i \int \frac{d\mathbf{k}}{(2\pi)^3} \int \frac{d\omega}{2\pi} \Gamma(\mathbf{p},\varepsilon,\mathbf{k},\omega) \times [\widetilde{G}_{11}(\mathbf{k},\omega)\widetilde{G}_{11}(\mathbf{k}+\mathbf{p},\varepsilon+\omega) + \widetilde{G}_{12}(\mathbf{k},\omega)\widetilde{G}_{12}(\mathbf{k}+\mathbf{p},\varepsilon+\omega)].$$
(17)

3. Спектр квазичастиц в бозе-жидкости с подавленным БЭК

Подставляя приближенные выражения (10) и (11) в точные соотношения (3)–(5) и учитывая четность собственно энергетических частей $\tilde{\Sigma}_{ij}(\mathbf{p},\varepsilon)$ по **р** и ε в изотропной бозе-жидкости, получаем следующее выражение для спектра квазичастиц:

$$E(p) = \sqrt{A^{2}(\mathbf{p}, E(\mathbf{p})) - \left[n_{0}\Lambda(\mathbf{p}, E(\mathbf{p}))\tilde{V}(\mathbf{p}, E(\mathbf{p})) + \tilde{\Psi}_{12}(\mathbf{p}, E(\mathbf{p}))\right]^{2}},$$
(18)

где

$$A(\mathbf{p},\varepsilon) = n_0 \Lambda(\mathbf{p},\varepsilon) \tilde{V}(\mathbf{p},\varepsilon) + \frac{\mathbf{p}^2}{2m} + \tilde{\Psi}_{11}(\mathbf{p},\varepsilon) - \tilde{\Psi}_{11}(0,0) + \tilde{\Psi}_{12}(0,0).$$
(19)

С другой стороны, соотношения (12) для $\tilde{\Psi}_{11}(\mathbf{p},\epsilon)$ и $\tilde{\Psi}_{12}(\mathbf{p},\epsilon)$ в результате интегрирования по ω с учетом полюсов функций Грина (15) и (16) принимают вид

$$\widetilde{\Psi}_{11}(\mathbf{p},\varepsilon) = \frac{1}{2} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \Gamma(\mathbf{p},\varepsilon;\mathbf{k}, E(\mathbf{k})) \widetilde{V}(\mathbf{p}-\mathbf{k},\varepsilon-E(\mathbf{k})) \times \left[\frac{A(\mathbf{k}, E(\mathbf{k}))}{E(\mathbf{k})} - 1\right], \qquad (20)$$

$$\widetilde{\Psi}_{12}(\mathbf{p},\varepsilon) = -\frac{1}{2} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \Gamma(\mathbf{p},\varepsilon;\mathbf{k},E(\mathbf{k})) \widetilde{V}(\mathbf{p}-\mathbf{k},\varepsilon-E(\mathbf{k})) \times \frac{n_0 \Lambda(\mathbf{k},E(\mathbf{k})) \widetilde{V}(\mathbf{k},E(\mathbf{k})) + \widetilde{\Psi}_{12}(\mathbf{k},E(\mathbf{k}))}{E(\mathbf{k})}.$$
(21)

В работах [22-24] система нелинейных интегральных уравнений (20) и (21) с учетом выражений (18) и (19) для спектра квазичастиц, (13) и (17) для перенормированной фурье-компоненты парного взаимодействия и поляризационного оператора, а также выражений (15) и (16) для функций Грина, численно решалась методом итераций с использованием в качестве нулевого приближения боголюбовского спектра (1) для модели «твердых сферических оболочек», близкого к экспериментальному (рис. 1). Стартуя с такого исходного нулевого приближения, удается за 3-4 итерации с точностью ≤1% выйти на самосогласованное решение с перенормированным спектром, который удовлетворительно согласуется с эмпирическим спектром квазичастиц в Не II в широкой области импульсов как для модельных потенциалов «твердых сферических оболочек» или «полупрозрачных сфер» [23] с учетом его перенормировки (13) и отрицательных значений поляризационного оператора (17) на массовой поверхности (см. рис. 2, 3, 4), так и для более реалистических потенциалов исходного взаимодействия между атомами ⁴Не, например, в виде комбинации потенциала Ленарда-Джонса на больших расстояниях с экранированным электронными оболочками атомов кулоновским потенциалом на малых расстояниях [24] (см. рис. 5). Однако вычислительной точности итерационного метода, использованного в [22-24], оказалось недостаточно для выявления распадного характера фононного спек-

Рис. 1. Боголюбовский спектр (1) для потенциала «твердых сферических оболочек» (сплошная кривая), максимально приближенный к экспериментальному спектру (точечная кривая) в области $p < 2,5 \text{ Å}^{-1}$ для $V_0 / a^3 = 169 \text{ K}$ при a = 2,4 Å и $m = m_4$ (m_4 — масса атома гелия).

0,2-0,2-0,4012 p, A^{-1} 34

Рис. 2. Фурье-компонента потенциала «полупрозрачных сфер» (штриховая кривая) и соответствующий перенормированный потенциал (сплошная кривая), полученный в [23–25] с учетом импульсной зависимости поляризационного оператора (см. формулу (17)), который является отрицательным на массовой поверхности (см. рис. 3).

Рис. 3. Импульсная зависимость поляризационного оператора бозонов на «массовой поверхности», полученная в [23], в результате самосогласованных численных расчетов при $\Gamma = 1$ (сплошная кривая) и при $\Gamma = 1,5$ (штриховая кривая).

Рис. 4. Теоретический спектр квазичастиц, полученный в [23–25] в результате самосогласованных расчетов в модели «полупрозрачных сфер» (сплошная кривая), с учетом импульсной зависимости поляризационного оператора при $\Gamma = 1$. Точками показан экспериментальный спектр He II.

Физика низких температур, 2010, т. 36, № 7

Puc. 5. Теоретический спектр квазичастиц, вычисленный в [24], на основе комбинированного потенциала, полученного путем сшивки потенциала Ленарда-Джонса с экранированным кулоновским потенциалом при учете импульсных зависимостей поляризационного оператора и вершинной части Г (сплошная кривая). Точками и звездочками показаны экспериментальные данные по измерению спектра He II [5,34,35].

тра в Не II.

4. Спектр квазичастиц в длинноволновой области

Поскольку в выражении для перенормированного спектра квазичастиц (3) или (18) входят значения собственно энергетических частей $\tilde{\Sigma}_{ij}(\mathbf{p},\varepsilon)$ или функций $\tilde{\Psi}_{ij}(\mathbf{p},\varepsilon)$, $\Lambda(\mathbf{p},\varepsilon)$ и $\tilde{V}(\mathbf{p},\varepsilon)$ на массовой поверхности при $\varepsilon = E(\mathbf{p})$, то естественно предположить, что все эти функции в изотропной бозе-жидкости являются четными по \mathbf{p} и ε и зависят только от модуля \mathbf{p} . Более того, проведенные в [22–25] самосогласованные компьютерные расчеты показали, что функции $\tilde{\Psi}_{ij}(p, E(p))$ являются аналитическими при $p \to 0$ и имеют экстремум (минимум или максимум) в точке p = 0, а в области малых импульсов зависят только от p^2 (см. рис. 6). При этом перенормированный потенциал $\tilde{V}(p)$ практически не зависит от p в области $p \le 1$ Å⁻¹ (рис. 2).

Таким образом, при малых p можно с хорошей точностью представить функции $\tilde{\Psi}_{ij}(p, E(p))$ в виде следующих разложений по p^2 :

$$\Phi(p) \equiv \tilde{\Psi}_{11}(p, E(p)) \cong$$
$$\cong - |\Phi(0)| + \frac{p^2}{2} \left(\frac{\partial^2 \Phi}{\partial p^2}\right)_{p=0} - \frac{p^4}{24} \left|\frac{\partial^4 \Phi}{\partial p^4}\right|_{p=0}; \quad (22)$$

$$\Psi(p) \equiv \tilde{\Psi}_{12}(p, E(p)) \cong \Psi(0) - \frac{p^2}{2} \left| \frac{\partial^2 \Psi}{\partial p^2} \right|_{p=0}.$$
 (23)

Здесь учтено, что функция $\Phi(p)$, будучи отрицательной при всех p, в области малых импульсов имеет

Рис. 6. Импульсные зависимости функций $\Phi(p)$ (*a*) и $\Psi(p)$ (*б*), полученные в [23–25] с помощью самосогласованных численных расчетов для модели «полупрозрачных сфер».

точку перегиба при $p = 0,5 \text{ Å}^{-1}$, таким образом, $\partial^2 \Phi / \partial p^2 > 0$, а $\partial^4 \Phi / \partial p^4 < 0$. В то же время, функция $\Psi(p)$ положительна и может быть с хорошей точностью аппроксимирована параболой в области $p \le 1 \text{ Å}^{-1}$ с $\partial^2 \Psi / \partial p^2 < 0$.

Подставляя (22) в соотношение (19), получим с заданной точностью:

$$A(p) \cong n_0 \tilde{W}(0) + \Psi(0) + \frac{p^2}{2m^*} - \frac{p^4}{24} \left| \frac{\partial^4 \Phi}{\partial p^4} \right|_{p=0}, \quad (24)$$

где $\tilde{W}(0) = \Lambda(0,0)\tilde{V}(0)$ — перенормированное взаимодействие во всей области импульсов $p \le 1 \text{ Å}^{-1}$ (см. рис. 2), а m^* — эффективная масса, определяемая в данном случае соотношением (ср. с формулой (7))

$$\frac{1}{m^*} = \frac{1}{m} + \left(\frac{\partial^2 \Phi}{\partial p^2}\right)_{p=0} - \left|\frac{\partial^2 \Psi}{\partial p^2}\right|_{p=0}.$$
 (25)

Подставляя разложения (22)–(24) в (18) и сохраняя все члены вплоть до кубических по p^2 , получим следующее приближенное выражение для спектра квазичастиц в длинноволновой области:

$$E(p) \cong p \sqrt{c_1^2(0) + \left(\frac{p}{2m_2^*}\right)^2 - \frac{p^4}{48m^*} \left|\frac{\partial^4 \Psi}{\partial p^4}\right|_{p=0}}, \quad (26)$$

где

$$c_1(0) = \sqrt{[n_0 \tilde{W}(0) + \Psi(0)]/m_1^*}; \ \frac{1}{m_1^*} = \frac{1}{m} + \left(\frac{\partial^2 \Phi}{\partial p^2}\right)_{p=0}; \ (27)$$

$$\frac{1}{(m_2^*)^2} = \frac{1}{(m^*)^2} - \left|\frac{\partial^2 \Psi}{\partial p^2}\right|_{p=0}^2 - \frac{1}{3}\left|\frac{\partial^4 \Phi}{\partial p^4}\right|_{p=0} [n_0 \tilde{W}(0) + \Psi(0)].$$
(28)

Заметим, что выражение (27) для $c_1(0)$ с учетом (11) в точности соответствует соотношению (6) при $\tilde{\Sigma}_{12}(0,0) = n_0 \tilde{W}(0) + \Psi(0) \neq 0$ и $m_1^* \neq 0$. С другой стороны, вблизи точки перегиба функции $\Phi(p)$, где $\partial^4 \Phi / \partial p^4 = 0$, спектр (26) принимает вид

$$E(p) \cong p_{\sqrt{c_1^2(0) + \left(\frac{p}{2m_2^*}\right)^2}},$$
 (29)

аналогичный боголюбовскому спектру (1), но с перенормированными значениями c_B и m.

Из (26) следует выражение для зависящей от *p* фазовой скорости первого звука:

$$c_1(p) \cong c_1(0)\sqrt{1+\alpha p^2 - \beta p^4},$$
 (30)

где

$$\alpha = \frac{1}{\left[2m_2^*c_1(0)\right]^2}; \quad \beta = \frac{1}{48m^*c_1^2(0)} \left|\frac{\partial^4\Psi}{\partial p^4}\right|_{p=0}.$$
 (31)

При малых импульсах из формулы (30) следует квадратичная зависимость:

$$c_1(p) = c_1(0)(1 + \gamma p^2),$$
 (32)

где $\gamma = \alpha/2$, тогда как с ростом *p* скорость $c_1(p)$ достигает своего максимального значения в точке $p_{\max} = \sqrt{\alpha/2\beta}$, равного

$$c_{\rm l}^{\rm max} \equiv c_{\rm l}(p_{\rm max}) \simeq c_{\rm l}(0) \sqrt{1 + \frac{\alpha^2}{4\beta}}$$
 (33)

Параметры α и β могут быть определены из эмпирических данных по нейтронному рассеянию [10–13] в фононной области спектра Не II.

5. Выводы

Таким образом, распадный характер фононного спектра Не II связан с аналитичностью собственно энергетических частей бозонов на массовой поверхности, которые в изотропной бозе-жидкости зависят только от p^2 . В области малых импульсов разложение $\tilde{\Sigma}_{ij}$ по p^2 (вплоть до членов $\sim p^4$ включительно) позволяет описать экспериментально наблюдаемую немонотонную импульсную зависимость скорости первого гидродинамического звука в Не II вплоть до максонной области спектра квазичастиц и подтвердить распадный характер фононного спектра.

Авторы выражают благодарность И.Н. Адаменко за предоставление полной информации по экспериментальным и теоретическим исследованиям особенностей распадного фононного спектра в Не II. Один из авторов (Э.А.П.) благодарит фонд УНТЦ за частичную финансовую поддержку данной работы (проект № 3718).

- 1. Н.Н. Боголюбов, Physica 9, 23 (1947).
- 2. Л.Д. Ландау, J. Phys. 11, 91, 1947.
- 3. P.G. Henshaw and A.D.B. Woods, *Phys. Rev.* **121**, 1266 (1961).
- 4. H.R. Glyde and W.G. Stirling, Phys. Rev. B42, 4224 (1990).
- K.H. Andersen, W.G. Stirling, R. Sherm, A. Stanault, B. Faak, H. Godfrin, and A.J. Dianox, *J. Phys.: Condens. Matter* 6, 821 (1994).
- 6. K.A. Brucner and K. Sawada, Phys. Rev. 106, 1117 (1957).
- 7. К. Бракнер, Теория ядерной материи, Мир, Москва (1964).
- 8. Э.А. Пашицкий, УФЖ 18, 1439, 1973.
- 9. Л.П. Питаевский, ЖЭТФ 36, 1168 (1959).
- E.C. Svenson, A.D.B. Woods, and P. Marter, *Phys. Rev. Lett.* 29, 1148 (1972).
- 11. R.C. Dynes and V. Narayamuri, Phys. Rev. B12, 172 (1975).
- 12. R. Sridhar, Phys. Rep. 146, 259 (1987).
- И.В. Богоявленский, Л.В. Карнацевич, Ю.А. Козлов, В.Г. Колобродов, В.Б. Приезжев, А.В. Пучков, А.Н. Скоморохов, ФНТ 20, 626 (1994) [Low Temp. Phys. 20, 489 (1994)].
- И.Н. Адаменко, К.Э. Немченко, А.F.G. Wyatt, *ΦHT* 28, 123 (2002) [Low Temp. Phys. 28, 85 (2002)].
- I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko, and A.F.G. Wyatt, *Fiz. Nizk. Temp.* **31**, 607 (2005) [*Low Temp. Phys.* **31**, 459 (2005)].
- I.N. Adamenko, K.E. Nemchenko, and I.V. Tanatarov, *Fiz. Nizk. Temp.* **32**, 255 (2006) [*Low Temp. Phys.* **32**, 187 (2006)].
- I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko, and A.F.G. Wyatt, *Fiz. Nizk. Temp.* **33**, 523 (2007) [*Low Temp. Phys.* **33**, 387 (2007)].
- Ю.А. Непомнящий, А.А. Непомнящий, ЖЭТФ 75, 976 (1978).
- Ю.А. Непомнящий, ЖЭТФ 85, 1244 (1983); там же 89, 511 (1985).
- Ю.А. Непомнящий, Е.А. Пашицкий, ЖЭТФ 98, 178 (1990).
- Э.А. Пашицкий, ФНТ 25, 115 (1999) [Low Temp. Phys. 25, 81 (1999)].
- Э.А. Пашицкий, С.И. Вильчинский, ФНТ 27, 253 (2001) [Low Temp. Phys. 27, 185 (2001)].

- Э.А. Пашицкий, С.И. Вильчинский, С.В. Машкевич, ФНТ 28, 115 (2002) [Low Temp. Phys. 28, 79 (2002)].
- 24. E.A. Pashitskij, S.V. Mashkevich, and S.I. Vilchynskyy, *Phys. Rev. Lett.* **89**, 075301 (2002).
- E.A. Pashitskij, S.V. Mashkevich, and S.I. Vilchynskyy, J. Low Temp. Phys. 134, 851 (2004).
- 26. С.Т. Беляев, ЖЭТФ 34, 417 (1958).
- А.А. Абрикосов, Л.П. Горьков, И.Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматгиз, Москва (1962).
- В.Н. Попов, Континуальные интегралы в квантовой теории поля и статистической физике, Изд-во МГУ, Москва (1976).
- V.N. Popov and A.V. Serednyakov, Sov. Phys. JETP 50, 193 (1979).
- H.R. Glyde and E.C. Swensson, *Newtron Scattering in* Methods of Experimental Physics 23, Academ. Press., N.Y. (1987).
- 31. A.F.G. Wyatt, Nature 391, 56 (1998).
- 32. N.M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).
- 33. J. Gavoret and P. Nozières, Ann. of Phys. (N.Y.) 28, 349 (1964).
- S. Putterman, P.H. Roberts, C.A. Jones, and A. Larraza, *Excitations Two-Dimensional and Three-Dimensional Quantum Fluids*, A.F.G. Wyatt and H.J. Lanter (eds.), Plenum Press, New York (1991).
- J.V. Pearce, R.T. Azuah. B. Fak, A.R. Sakhel, H.R. Glyde, and W.G. Stirling, J. Phys. Condens. Matter 13, 4421 (2001).

On the decay nature of phonon spectrum in superfluid helium

E.A. Pashitskij, S.I. Vilchynskyy, and A.V. Chumachenko

It is shown that the decay character of the phonon spectrum in superfluid helium is a consequence of the analyticity and parity of boson selfenergy as a function of energy and momentum. According to the previous selfconsistent numerical calculations of normal and anomalous selfenergy parts in a homogeneous superfluid Bose-liquid with the Bose-Einstein condensate suppressed («exhausted») due to strong interparticle interaction, these functions are analytical functions of energy and momentum and on the mass shell in a long-wave limit depends only on the square of momentum. On this basis it is shown that the phonon spectrum of the Bose-liquid has the property of decay in full agreement with the experimental data on neutron scattering and interaction of high- and lowfrequency phonons in superfluid helium.

PACS: 67.25.D– Superfluid phase; 67.25.dt Sound and excitations.

Keywords: phonon spectrum, Bose-liquid, superfluid helium.