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We study the superconducting properties of a doped one-layer graphene by using a model in which the

interparticle attraction is caused by a boson (phonon-like) excitations. We study the dependencies of the

superconducting gap � and the mean-field critical temperature Tc
MF on the carrier density, attraction

strength and the characteristic (Debye) bosonic frequency. In addition, we study the temperature-carrier

density phase diagram of the model by taking into account the thermal fluctuations of the order parameter.

We show that the fluctuations result in a significant suppression of Tc
MF , such that the real (Berezin-

skii–Kosterlitz–Thouless) critical temperature Tc is much lower than Tc
MF . The region T T Tc c

MF� � is char-

acterized by a finite density of states at the Fermi level (the pseudogap phase). We show that the width of the

temperature interval of the pseudogap phase strongly depends on the model parameters — carrier concentra-

tion, attraction amplitude, and boson frequency.

PACS: 74.20.–z Theories and models of superconducting state;
74.78.–w Superconducting films and low-dimensional structures;
74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.);
73.63.–b Electronic transport in nanoscale materials and structures.
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1. Introduction

Possibility of superconductivity in graphene is one of

the most interesting and important problems of modern

theory of superconductivity. This problem is a part of

more general problem of understanding the physical,

especially the electronic, properties of graphene, which is

one of the most important basic units of the carbon-based

structures. These structures have a great potential to be

used in modern nanotechnologies, especially due to

strong and flexible carbon bonds. The single layer of

graphene can be considered as the basis for two-dimen-

sional (one- to several layer-graphene), one-dimensional

(carbon nanotubes and nanoribbons) and zero-dimen-

sional (fullerene molecules, graphene flakes etc.) struc-

tures. Naturally, one needs to understand the low-temper-

ature properties of such systems, when it is possible that

the superconducting state is the ground state of the sys-

tem. Moreover, the superconducting properties of

graphene demostrate many interesting applications. Dur-

ing the last years, there has been made a great progress

in understanding some of the electronic properties of

graphene (for overview and references, see Ref. 1). Evi-

dences of superconductivity in graphite and graphite-sul-

fur structures were found experimentally [2–5]. Theore-

tical studies of superconductivity in graphene were

performed in Refs. 6–14. Since the Fermi surface of un-

doped graphene consists of Dirac points, the quantum

critical point scenario of superconductivity in this case

was analyzed in Refs. 6, 8. It was found that in the un-

doped case, superconductivity takes place when the cou-

pling is bigger than a critical value. Superconductivity

in graphene within different scenarios, like the phonon,

plasmon [9], resonant-valence-bond and the densi-

ty-wave scenario, was considered in Refs. 6,10,11. In the

doped case, when the Fermi surface is finite, the super-

conductivity can take place at any value of coupling. The
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doped case within the framework of different models was

analyzed in Refs. 6, 7, 9, 10,12,13. In particular, a simple

model with an electron-electron attraction which is de-

fined by the amplitude and the range (or the Debye-like

cut-off energy �0 in the boson-exchange model) was con-

sidered in Ref. 12. The authors solved the coupled system

of the BCS gap equation and the particle number equa-

tion, in order to analize the coupling and doping depen-

dencies of superconductivity. Possibility of strong enhan-

cement of superconductivity with the critical temperature

up to Tc ~ 10 K due to the van Hove singularities in the

electron-density of states in graphene at energies of order

3 eV with respect to the band bottom was discussed in

Ref. 13. One needs to realize in practice such highly

doped samples of graphene in order to check the possibi-

lity of the strong enhancement of superconductivity. Pos-

sibility of superconductivity in the papers mentioned

above was analized within the mean-field approximation,

when the fluctuations were neglected. Such fluctuations

cannot be neglected in 2D systems, since they can signifi-

cantly modify the properties of the system. In particular,

the thermal fluctuations in a two-dimensional system lead

to a significant reduction of the mean-field superconduct-

ing critical temperature Tc
MF [15,17]. In this case, the real

critical temperature is the Berezinskii–Kosterlitz–Thou-

less (BKT) temperature T T Tc BKT c
MF� � , below which

the order parameter is algebraically ordered. Recently, we

have studied the superconducting properties of the model

considered in Ref. 12 in the case of single- and dou-

ble-layer graphene by taking into account the thermal

fluctuations [14]. We have shown that the fluctuations

lead to a drastic reduction of the superconducting critical

temperature in both cases. We have also shown that at

temperatures T T Tc c
MF� � both systems the fluctuations

of the order parameter produce so-called pseudogap

phase with a reduced DOS. In that paper, we have consid-

ered the limit �0 ��, which corresponds to the case of

local attraction. Here we consider the case of super-

conductivity for boson-exchange electron-electron at-

traction, and show that the behavior of the system

strongly depends on the bosonic energy (Debye fre-

quency in the phonon case). The results obtained in this

paper can lead to a further clarification of the mechanism

of possible superconductivity in graphene.

We dedicate this paper to an outstanding person, orga-

nizer and the first Director of the Institute for Low Tem-

perature Physics and Engineering Prof. B.I. Verkin, for

whom the physics of superconductivity was one of the

main research interests.

2. The model

The effective superconducting Hamiltonian of doped

single-layer graphene has the following form:

H i( ) ( , )[ ( ) ] ( , )†� � � 	 
 � ��
�

�� �  � �� r r

� �� � � � � �
1

2
1 2 2 1 1 2 1d d Vr r r r r r r� � � � � � � �† †

( , ) ( , ) ( ) ( , ) ( ,r2 ),

(1)

where � ��
† ( , )r and � �� ( , )r are the fermionic operators of

creation and annihilation of the quasiparticle on the site r

at time � with spin � �� �, ; 	( )� i and 
 are the free-fer-

mion dispersion relation and the chemical potential, and

V ( )r r1 2� is the interparticle attraction, respectively. The

energy spectrum 	( )k around the Dirac points can be ap-

proximated as 	� � �( ) | |k kvF , where vF �3ta/2 ~ 106 m/s

is the Fermi velocity, t � 2.8 eV is the nearest neighbor

hopping and a � 1.42 � is the distance between the near-

est carbon atoms. In the undoped case, the band 	�( )k is

filled. For definiteness, we consider the electron-doped

case with the conduction band 	 	� �( ) ( )k k .

We approximate the superconducting attraction by the

following interparticle potential:

V Vp p� � �0 0� � 	 
( | ( ) | ), (2)

where V0 is the amplitude of the attraction and �0 is the

bosonic (Debye-like) cut-off frequency, which corre-

sponds to a half of the BCS attraction shell around the

Fermi energy surface, which, in most cases, is propor-

tional to 
 (see a discussion below). We shall study the de-

pendencies of the superconducting properties of the

model on V0 and �0 at different values of the doping,

since the knowledge of such dependencies can help to es-

tablish the source of possible superconducting attraction

in graphene (the coupling energy and boson frequency in

the case of bosonic mechanism of superconductivity). We

shall consider the isotropic s-wave pairing, when the gap

�( )k is momentum-independent, however the results ob-

tained below will remain qualitatively the same for more

complicated interactions and different symmetries of the

order parameter (see, e.g., Ref. 17).

3. The mean-field approximation

In order to study the superconducting properties of the

system, we shall consider the partition function
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which can be obtained by performing the path integration

over the fermionic fields. To find Z, one can introduce the

Nambu spinor operators:
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We use the Hubbard–Stratonovich transformation in

order to decouple the four-fermion term in the

Hamiltonian (see Eq. (1)). In this case, the partition func-

tion is equivalent to
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, (5)

where

S d d d

T

( , , , ) ( ) ( , )[† †

/

†" " # # � � �� � � �
0

1

1 2 1 2 1� $ � ��
�

�r r r r r �  �
%
&
'

('
� 	 
 � ��z ( ( ) )] ( , )r r

2 2 +

�
�

� �
1

2

1

2

1 2
2

1 2
1 2 1

| ( , )|

( )
( , ) ( , ) ( , ,†#

" " #
r r

r r
r r r r

V
� � � � 2 1 2 1 2

1

2
) ( , , ) ( , ) ( , )† †�

)
*
'

+'
�# " "� � � �r r r r , (6)

is the effective action and � � �� � �1 2/ ix y( ) and � z

a r e t h e P a u l i m a t r i c e s . I n E q . ( 6 ) ,

#( , , ) ( ) ( , ) ( , )� � � � �r r r r r r1 2 1 2 1 2, � � �V is a complex

function, which has the physical meaning of the super-

conducting order parameter. After integration over the

Nambu spinors in Eq. (5) one can get the expression for

the thermodynamical potential - # #( , )† :

e e� �� �- # # " " # #" "( , )/ † ( , , , )† † †T SD D . (7)

In the case of mean-field approximation, we assume that

#( , , )� r r1 2 is momentum- and time-independent in the mo-

mentum representation, and is equal to � �( , )� k � � const.

In order to find the equations for the superconducting gap

� and the chemical potential, one needs to minimize - �( )

with respect to � together with the particle-number equa-

tion ( )1/V / n f� � � �- 
 (V is the volume of the system).

This gives:
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where E( ) ( ( ) )k k� � �	 
 2 2� is the quasi-particle spec-

trum in the superconducting state. The solution of the sys-

tem of equations (8) and (9) gives the doping- and the

temperature-dependence of �, and also the doping-de-

pendence of the mean-field critical temperature Tc
MF (at

� � 0).

At T � 0, the integration in Eqs. (8), (9) can be easily

performed, and one gets the following system of equation

for the superconducting gap and chemical potential as

functions of the Fermi energy 	 .F F fv n� 8 , coupling

/ .�V / vF0
24 and bosonic frequency �0:
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where �( )x is step function and we assumed that the band-

widthW is much bigger than 
, �0, and �. One can find an

approximate analytical solution of the equation for the

zero-temperature superconducting gap:

�� 2 20
1 2

0 0
1 2

0
0� 
 � � 
 � � 
 �/ � 
 
/e e

� � �� � �( / )/ /( ) ( ).

(12)

Deriving this result, we assumed �0 00 �. One can show

that at zero doping � � 0 when / �� 1 0/ . In other words,

in this case there is a critical value of the coupling below

which there is no pairing. At finite doping, superconduc-

tivity takes place at any finite value of the coupling (see

Ref. 12). One can compare the result of Eq. (12) with the

corresponding expression for the two-dimensional sys-

tem with the parabolic dispersion:

Superconducting properties of a boson-exchange model of doped graphene

Fizika Nizkikh Temperatur, 2009, v. 35, Nos. 8/9 807



��2 0 0 0 0
4 0� 	 � � 
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[ ( ) ( )]
/

F
mV� � � �

e .

(13)

(see, e.g., Ref. 17). There are several important differ-

ences between the results (12) and (13). Namely, i) in the

case of graphene, at low doping the gap is exponentially

suppressed when 
 is smaller then 1 2 1 0/ /(( )/1 �� (Figs. 1

and 2). This suppression is due to the 
 factor in the expo-

nent, which is proportional to the single-particle density

of states (DOS) on the Fermi level. In the case with para-

bolic dispersion, the DOS on the Fermi level is a constant.

ii) Another consequence of the difference of the density

of states is increasing of the gap with the carrier density

growth. In the case of Eq. (13), the gap is carrier density

independent at large doping when approximately 
 �0 0.

The doping dependence of the gap was analyzed by as-

suming that the doping is proportional to the chemical po-

tential. Strictly speaking, in the two-dimensional system

this is correct only for parabolic dispersion at large dop-

ing. As it follows from Eq. (11), in our case the particle

density is proportional to 
2 when 
 00 � �, lnW , which

is true when the doping is rather large and the coupling is

weak. In other cases, the relation between n f and 
 is

more complicated. Generally speaking, one can also ob-

tain the crossover from superconductivity to superfluidity

with doping decreasing or/and the coupling growth, when

the chemical potential becomes negative (for over view,

see Ref. 17). However, in actual paper we consider the su-

perconductivity scenario only, by assuming that 
 is posi-

tive (see Eq. (2), where the interaction is defined inside

the belt � � �� 	 �0 0 around the «Fermi energy» 
). The

depencies of Tc
MF on n f , V0, and �0 are the same as

those of �( )T � 0 (Figs. 3 and 4). Moreover, we have

found that the ratio 2 0�( )T /Tc
MF� is close to the BCS

value 3.52. In the next Section, we demonstrate that the

real Tc is much lower than Tc
MF due to the thermal fluctu-

ations in the two-dimensional system.

4. Fluctuations

In order to study the fluctuation effects in the system,

we represent the fermionic operators as the product of the

neutral fermions and the phases:

� � 2 � � �� �( , ) ( , ) exp( ( , ) ),r r r� i /2

� � � � 2 �� �
† †( , ) exp( ( , ) ) ( , )r r r� �i /2 , (14)

808 Fizika Nizkikh Temperatur, 2009, v. 35, Nos. 8/9

V.M. Loktev and V. Turkowski

1.5

1.0

0.5

0
0.25 0.50

nf

�
(T

=
0
)

v = 4.2, V = 6.8F 0

�0 = 1, 5, 10, 15, 20

Fig. 1. The doping dependence of the zero-temperature gap at

different values of the bosonic frequency �0. Here and in other

Figures all parameters are given in eV, and the carrier density

is divided by two.
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Fig. 2. The doping-dependence of the zero-temperature gap at

different values of coupling V0 = 3.2, 4, 5, 6, 6.8, 8 and 10.

1.0

0.5

0
0.25 0.50

nf

vF 0= 4.2, V = 6.8

T

Fig. 3. The temperature-carrier density phase diagram at dif-

ferent values of frequency �0 � 1, 5, 20. The solid curves cor-

respond to Tc and the dashed curves — to Tc
MF .
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In this case, the order parameters become

# �( , , ) ( , , ) exp( ( )),� � �r r r r R1 2 1 2� i

# # �† *( , , ) ( , , ) ( , , ) exp( ( ))� � � �r r r r r r R1 2 1 2 1 2� � �i .

(16)

In the last equations, � #( , , ) | ( , , )|� �r r r r1 2 1 2� is the

modulus of the order parameter, and � �( ) [ ( )R r� 1 �
��( )]r2 2/ , where R r r� �( )1 2 2/ is the center-of-mass co-

ordinate of two electrons, is its phase. This approximation

corresponds to the limit of weak thermal fluctuations,

when the space dependence of the phase is not strong. Be-

low, we neglect the time-(quantum-) fluctuations, which

become important only at very low temperatures, and also

assume that the gap depends only on the relative electron

coordinate r r1 2� , i.e.

# �( , , ) ( ) ( )� �
r r r r

R
1 2 1 2� � e i . (17)

The approximation given by Eq. (17) means that the dy-

namics of Cooper pairs is described by the order-parame-

ter modulus, and its symmetry depends on the relative

pair coordinate, whereas the motion of the superconduct-

ing condensate is defined by the slowly varying function

�( )R , which depends on the center-of-mass coordinate of

electrons.

Substitution of Eqs. (15) and (17) into Eq. (7) and inte-

gration over the fermionic fields 3† and 3 yield the fol-

lowing equation for the thermodynamic potential as a

function of �:

- �
�

( , , )
| ( )|

(( )

/

�  �
�

�� � ��� � �T d d d
V

T

0

1

1 2
1 2

2

1 2

1

2
r r

r r

r r
� � �� �Tr Trln[ ] lnG G1 14 , (18)

where

G t t i T t tk k k
( , ' ) ( ( ) ( ' )

†� � 5 63 3 (19)

is the time-ordered mean-field matrix Nambu Green’s

function. It has the following form in the Matsubara fre-

quency-momentum representation:

G i
i

n
n z x

k
k k

( )
( ( ) ) ( )

.�
� � 	 
 �

�
� � �

1

�
(20)

In Eq. (18), 4 is the self-energy of the nonhomogeneous

Green’s function, which depends on the gradients of the

phase of the order parameter:

4( , ) ( )r r r r1 2 1 2� � 7$

7 �  � � �
[ ( ) ( )]

( )/ ( )/
e e

i
z

i
z

z zi i
� � � �� 	 � 	r

r
r

r
1

2
2

2

2 2
.

(21)

In Eq. (18), Tr means the space-time integration and

the matrix trace (for details, see, e.g., Ref. 18). In order to

find the thermodynamical potential, it is convenient to ex-

pand the loragithm in terms of the powers of 4:

Tr Tr Trln[ ] ln ( )G G
n

G

n

n� �� � � �1 1 1
4 4 . (22)

This allows to get the following expression for the sec-

ond order expansion of the thermodynamical potential in

the limit of small fluctuations of the phase of the order

parameter:

- �( , ) ( )� �� �
J

2

2 2d r , (23)

where
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J � �
v

T

d k

E / T

F
2 2

2 28 2

1

2( ) cosh [ ( ) ]. k
(24)

is the superconducting stiffness (see Appendix).

One can find the equation for the critical temperature

of the BKT transition Tc , below which the phases of order

parameter become algebraically ordered, by using the

analogy with the 2D spin XY -model, where the spin orien-

tation correspond to the vector � in our consideration.

This equation has the following form:

T T Tc c c�
.


 

2

J( ( , ), , )� , (25)

where the function J is defined by Eq. (24). The doping-, in-

teraction- and bosonic frequency-dependencies of Tc can

be found by solving the system of Eqs. (8), (9), and (25).

The numerical analysis shows that Tc is significantly

lower than Tc
MF (Figs. 3, 4). The critical temperature de-

creases with the bosonic frequency decreasing (Fig. 3).

When the coupling is not too strong, Tc is exponentially

suppressed (Fig. 4), similar to Tc
MF and �( )T � 0 . Our

analysis shows that Tc starts to grow rapidly at densities

n f higher than the critical value n /Vf
cr ,1 0

2 at large �0. In

particular, is this case in order to get the critical tempera-

ture bigger than 1 K, one needs to have the effective cou-

pling n Vf 0 ~ 1 eV (see Ref. 14). It is possible that Tc can

be higher than the values obtained in this paper due to a

van Hove singularity, if rather high values of doping

(	F , 3eV) can be obtained. We have found also that the

ratio 2 0�( )T /Tc� is bigger than the BCS value 3.52, and

it increases with doping decreasing and acquires values

approximately two times bigger those of BCS.

Besides the reduction of the value of the critical tem-

perature, another important consequence of the thermo-

dynamic fluctuations is a finite DOS in the gap region at

temperatures T T Tc c
MF� � , or the pseudogap phase [14],

which can be observed experimentally in graphene sys-

tems. Similar phase was observed in high-temperature su-

perconductors, where the thermal fluctuations can be also

responsible for its formation (see, e.g., Ref. 19 and refer-

ences therein).

5. Conclusions

We have studied the doping-, coupling- and boson fre-

quency-dependencies of the superconducting properties

of a model of the doped single-layer graphene by taking

into account the thermodynamical fluctuations of the

superconducting order parameter. It is shown that due to

the form of the doping-dependence of the free-electron

density of states the superconductivity is suppressed at

low doping, and at high values of doping the supercon-

ducting gap and critical temperature increase with doping

growth, which is different from the two-dimensional sys-

tem with the parabolic dispersion. We have found that the

fluctuations lead to a significant reduction of the critical

temperature. Namely, for the realistic values of the model

parameters, the critical temperature Tc is exponentially

suppressed at doping n n /Vf f� ,cr eV1 0 at large values of

the bosonic frequency. The critical value n f
cr decreases

with �0 decreasing. The results obtained in the present pa-

per can help to establish the mechanism of possible super-

conductivity in graphene, since the effective electron-elec-

tron coupling and the bosonic frequency can be estimated

by comparing the theoretical results with the experimen-

tally measured temperature-carrier density phase diagram.
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Appendix A: The thermodynamical potential for the

phases of the order parameter

In this Appendix, we derive the expression for the

low-energy effective action for the phases of the super-

conducting order parameter, Eqs. (23) and (24).

In order to find the thermodynamical potential within

the ( )� 2-approximation, one needs to consider the first

two terms in the expansion of Eq. (22):

Tr Tr Tr [ ] + Tr [ ]ln [ ] lnG G G G G� �� �1 1 1

2
4 4 4 4� ,

(A.1)

where the �-dependent part of the self-energy given by

Eq. (21) is

4( , ) ( )r r r r1 2 1 2� � 7$
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z F

i
z F

z zv v
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r

r

r
1

2

2

2

2 2 2 2 .

(A.2)

Since the last equation contains the square roots of the

Laplace operators, it is more convenient to calculate the

trace of the operators in Eq. (A1) in the momentum space.

In this case, the action of the operator � r
2 has a simple

form:

� ��r

k

kr
kr k

2 f fi( ) | |e , (A.3)

where f k is the Fourier transform of f ( )r . In the momen-

tum representation, the effective action Eq. (23) has the

following form:
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- � � �
J

2

2
k

k

k k� � . (A.4)

Therefore, one needs to find the coefficient in front of

� �k k� , which is the half of the the superconducting stiff-

ness J in Eq. (23). Since the linear in4 term leads to the term

proportional to | k| k� in Eq. (A1), we neglect it. In fact, the

linear in � term can be absorbed into the bilinear term by de-

fining a new phase � shifted by the corresponding factor.

Therefore, we consider only the second-order term:

1

2 8

2
2 2T G G

v
GFr Tr[ ]4 4 � �

�

�

�
�

�

 

!
!� � �p

p k

k kk � � , (A.5)

which gives

J
v T

GF� � �
2

2

4
Tr [ ]

p

p . (A.6)

In the derivation of Eq. (A5), we only kept the term pro-

portional to k k k
2� �� . Equation (A5) gives the expres-

sion for the superconducting stiffness (24).
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