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Thermoelectric manipulation of the magnetization of a magnetic layered stack in which a low-Curie tempera-
ture magnet is sandwiched between two strong magnets (exchange spring device) is considered. Controllable 
Joule heating produced by a current flowing in the plane of the magnetic stack (CIP configuration) induces 
a spatial magnetic and thermal structure along the current flow — a magnetothermal-electric domain (soliton). 
We show that such a structure can experience oscillatory in time dynamics if the magnetic stack is incorporated 
into an electric circuit in series with an inductor. The excitation of these magnetothermionic oscillations follow 
the scenario either of “soft” of “hard” instability: in the latter case oscillations arise if the initial perturbation is 
large enough. The frequency of the temporal oscillations is of the order of 105–107 s–1 for current densities 
j ~ 106–107 A/cm2. 

PACS: 75.45.+j Macroscopic quantum phenomena in magnetic systems; 
75.70.–i Magnetic properties of thin films, surfaces, and interfaces. 

Keywords: magnetic superstructures, soliton, magnetothermionic oscillations. 
 

 
Low-temperature magnetism and low-temperature tran-

sport in solids are two scientific fields in which the B. Ver-
kin Institute for Low Temperature Physics and Engineering 
of the National Academy of Sciences of Ukraine (ILTPE) 
has gained worldwide recognition as a result of its many 
important contributions and groundbreaking discoveries. 

The former director of ILTPE, Academician Viktor Va-
lentinovich Eremenko — the founding father of low-tem-
perature magnetic research at ILTPE — is now 80 years 
old. This paper, which is devoted to extending both of the 
mentioned branches of physics towards nanometre-sized 
conductors, is our modest contribution to the celebration 
of V.V. Eremenko's eightieth jubilee — a celebration of 
a truly great person and great scientist. 

1. Introduction 

The electric control of magnetization on the nanometer 
length scale became a subject of intensive study after the 
seminal suggestion by Slonzewsky [1,2] to use the spin 
torque transfer (STT) technique, where a current of spin-
polarized electrons is injected into a magnetic material. 
Even though the magnetic tuning induced by the exchange 
interaction between the injected electrons and those that 
make the material magnetically ordered can only be achi-
eved in a very small region, large current densities are 
needed to get a significant STT effect. Such current densi-
ties can be reached in electric point contacts where values 
of the order of 8 910 –10  A/cm2 have been achieved and 
the STT effect was detected [3,4]. By a further increase of 
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the current thermal Joule heating of the material becomes 
unavoidable. However, the fact that such heating can be 
precisely controlled by the bias voltage allows thermoelec-
trical manipulation of the magnetization direction based on 
the orientational phase transition in layered magnetic struc-
tures predicted in Refs. 5–7. It was shown there that in 
such structures with different Curie temperatures of the 
layers there can exist a finite temperature interval inside 
which the angle of the relative orientation of the layer mag-
netization Θ  depends on temperature, = ( ),TΘ Θ  changing 
reversibly with a change of temperature in the whole inter-
val of angles from the parallel to the antiparallel orienta-
tion. As a result, by controlling the Joule heating by the 
bias voltage V  one may smoothly and reversibly control 
the relative magnetization angle in the whole angle interval 
0 [ ( )]T V≤ Θ ≤ π . There was also suggested a thermal-
electronic oscillator device based on this magnetothermal 
effect in magnetic exchange spring structures. 

In paper [8], for exchange-spring magnetic stacks [9] 
with an in-plane electric current flow (CIP) (see Fig. 1), it 
was predicted and investigated a possibility of generation 
of magnetic spatial superstructures (domains and solitons) 
the appearance of which and their parameters can be con-
trolled by the bias voltage. In the present paper we study 
temporal dynamics of such spatial structures in the case 
that the exchange-spring magnetic stack is incorporated 
in an external circuit in series with an inductor [10]. Such 
oscillations can be understood as a realization of the bi-
stability of an N-shaped current voltage (IV) curve of 
the device in the regime at which a large enough inductance 
of the circuit determines slow temporal variations of the 
current. 

The structure of the paper is as follows. In Sec. 2 we 
present in short some peculiar features of the dependence 

of the magnetization orientation angle in the stack on tem-
perature T  and some properties of the magnetic stack with 
a magnetic thermal-electric domain (MTED) inside it 
needed for further considerations. In Sec. 3 we show that 
MTED loses its stability if the stack is incorporated in an 
external circuit with a large enough inductance. We devel-
op there an adiabatic theory which allows an analytical 
description of the MTED dynamics. 

2. The magnetic-thermal-electric domain in the stack 
under Joule heating 

The system under consideration has three ferromagnetic 
layers in which two strongly ferromagnetic layers 0 and 2 
are exchange coupled through a weakly ferromagnetic 
spacer (layer 1) as is shown in Fig. 1. We assume that the 
Curie temperature (1)

CT  of layer 1 is lower than the Curie 
temperatures (0,2)

CT  of layers 0, 2; we also assume the 
magnetization direction of layer 0 to be fixed; this stack is 
under an external magnetic field H  directed opposite to 
the magnetization of layer 0. We require this magneto-
static field to be weak enough so that at low temperatures 
T  the magnetization of layer 2 is kept parallel to the mag-
netization of layer 0 due to the exchange interaction be-
tween them via layer 1. At = 0H  and (1)> CT T  this tri-
layer is similar to the spin-flip “free layer” widely used in 
memory device application [11]. The stack is incorporated 
into an external circuit along which the total current J  
flows through the cross-section of the layers: 

 
0

1 1=
( )

J V
R R
⎡ ⎤

+⎢ ⎥Θ⎣ ⎦
 (1) 

where ( )R θ  and 0R  are the magnetoresistance and the 
angle-independent resistance of the stack, Θ  is the angle 
between the magnetization directions of layers 0 and 2, 
V is the voltage drop across the stack. 

In paper [6], it was shown that parallel orientations of 
the magnetization in layers 0, 1 and 2 becomes unstable if 
the temperature exceeds some critical temperature 

(or) (1)<C CT T . The magnetization direction in layer 2 
smoothly tilts with an increase of the stack temperature T  
in the temperature interval (or) (1)

C CT T T≤ ≤ . The depen-
dence of the equilibrium tilt angle Θ  between the magne-
tization directions of layers 0 and 2 on T  and the magnetic 
filed H  is determined by the equation [6] 

 (1)= ( , ) sin , < CD H T T TΘ Θ   

 (1)= , CT TΘ ±π ≥  (2) 
where 

 
(1)

1 2 2
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1 1

( )
( , ) = ( ) .
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C

C
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M T T T
≈

α −
 (3) 

Fig. 1. Orientation of the magnetic moments in a stack of three
ferromagnetic layers (0, 1, 2); the magnetic moments in layers
0, 1, and 2 (shown with short arrows) are coupled by the ex-
change interaction thus building an exchange spring tri-layer;
H (shown with the arrow outside the stack) is an external magnet-
ic field directed antiparallel to the magnetization in layer 0. The
current J (shown with the long arrow) flows in the layer plane
(that is along the x axis). 

0 1 2

H

x
y

z

J



Dynamics of current induced magnetic superstructures in exchange-spring devices 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2012, v. 38, No. 7 795 

and 

 1 2
0 (1)( ) = B

B C

H L L
D H

a ak T

μ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (4) 

Here 1 1, ( )L M T  and 2 2, ( )L M T  are the widths and 
the magnetic moments of layers 1 and 2, respectively; 

2
1 1 1/ (0)I aMα ∼  is the exchange constant, 1I  is the ex-

change energy in layer 1, Bμ  is the Bohr magneton, Bk  is 
Boltzmann's constant, and a is the lattice spacing. 

( , )D H T  is a dimensionless parameter that determines the 
efficiency of the external magnetic in the misorientation 
effect under the consideration. It is a ratio between the 
energy of magnetic layer 2 in the external magnetic field 
and the energy of the indirect exchange between layers 0 
and 2 (see Fig. 1). 

The critical temperature of the orientation transition 
[12] (or)

CT  is determined by the condition ( ) = 1D T  and is 
equal to 

 (or) (1)
0(1) (1)= 1 , = ( ).C C

C C

T TT T D H
T T

⎛ ⎞δ δ⎜ ⎟−
⎜ ⎟
⎝ ⎠

 (5) 

Taking experimental values (see Ref. 6) 1 = 30L  nm, 
2 =12 nm,L  (1) = 373 K,CT  and magnetic field =10–47 OeH  

one finds 0 = 0.1–0.36D  and the temperature interval 
(1) (or) (1)

0= = 37.3–134 K.C C CT T T D Tδ − ≈  
If the stack is Joule heated by current J its temperature 

( )T V  is determined by the heat-balance condition 

 eff= ( ), = / ( ),JV Q T J V R Θ  (6) 
where 

 0
eff

0

( )
( ) = ,

( )
R R

R
R R

Θ
Θ

Θ +
 (7) 

and Eq. (2) which determines the temperature dependence 
of ( )TΘ . Here V is the voltage drop across the stack, 

( )Q T  is the heat flux flowing from the stack and eff ( )R Θ  
is the total stack magnetoresistance. Here and below we 
neglect the explicit dependence of the magnetoresistance 
on T  considering the main mechanism of the stack resis-
tance to be the elastic scattering of electrons by impurities. 
Below we drop the subscript “eff” at the magnetoresistance 
symbol effR . On the other hand, we consider the tempera-
ture changes caused by the Joule heating only in a narrow 
vicinity of (1)

CT  which is sufficiently lower than both the 
critical temperatures (0,2)

CT  and the Debye temperature. 
Equations (6) and (2) define the current-voltage charac-

teristics (IVC) of the stack 

 0 ( ) = ,
[ ( )]

VJ V
R VΘ

 (8) 

where ( ) [ ( )]V T VΘ ≡ Θ . The differential conductance 
diff /G dJ dV≡  is negative [6] if 

 (1 sin / ) < 0
( )

d D
d R

− Θ Θ
Θ Θ

 (9) 

where 0 0= ( / )( / ) .D T Q dQ dT D D≈  In this case the IVC 
of the stack is N-shaped as is shown in Fig. 2. 

In paper [8] it was shown that a homogeneous in space 
distribution of the magnetization direction, temperature 
and electric field along the spring-type magnetic stack be-
comes unstable and a MTED spontaneous arise [14] if the 
electric current flows in the plane of the layers (CIP-con-
figuration) and the length of the stack exceeds the critical 
length 

 
(1)

2(0)
C

c
T

L
r j
κ

≈
ρ

 (10) 

where κ  is the thermal conductivity, ( )ρ Θ  is the magne-
toresistivity and = ( (0) ( )) / ( (0) ( ))r ρ −ρ π ρ +ρ π . Parame-
ters of the MTED which arises in the stack, depend on the 
stack length and the voltage drop across it that allows to 
create and control magnetic structures in magnetic devices. 
Using Eq. (10) and the Lorentz ration 2 2/ = / 3Bk T eκ σ π  

1( = −σ ρ  and e  is the electron charge) one finds that 

 
(1)

10 μm
(0)

B C
c

k T
L

e jr
π

ρ
∼ ∼  (11) 

for a realistic experimental situation [26] 0.1–0.3r ∼ , 
(1) 210CT ∼ K, 5(0) 10 ·cm,−ρ Ω∼  6 7 210 –10 A/cmj ∼ . 
The magnetic-thermal-electric domain which deter-

mines the space distributions of the temperature ( )dT x  and 

Fig. 2. Current-voltage characteristics of the magnetic stack of 
Fig. 1 in which the magnetization directions in the layers are 
homogeneously distributed along the x direction (that is along the 
stack). It was calculated for ( ) = cos ,R R R+ −Θ − Θ  / = 0.2,R R− +

0 = 0.2;D  = / ( ).c cJ V R π  The branches 0–a  and –b b′  of the 
IVC correspond to parallel and antiparallel orientations of the 
stack magnetization, respectively (the parts –a a′  and 0–b are 
unstable); the branch a–b corresponds to 0 [ ( )] .T V≤Θ ≤ π  
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the magnetization direction angle ( )xΘ  which sponta-
neously arise in the magnetic stack, satisfies the following 
equation [8]: 

 
2

2
st2 = [ ( )] ( ) /d

d d
d T

j T Q T
dx

κ ρ Θ − Ω  (12) 

in which current j is found from the equation 

 [ ( )] =d
Vj T
L

ρ Θ  (13) 

supplemented with the periodic boundary condition 
( ) = ( )d dT x L T x+  ( x  is the coordinate along the stack, 

L and stΩ  are the length and the volume of the stack, re-
spectively; the brackets ...〈 〉  indicate an average over x 
along the whole stack of the length L). 

The space distribution of the temperature ( )dT x  and 
the magnetization direction angle ( )xΘ  in a long stack 
( cL L� ) with a MTED inside it is shown in Fig. 3. 

In this limit ( cL L� ) the MTED is of a trapezoid form 
with two planar segments of the length IL  and IIL  

I II( =L L L+ ) with two transition regions of the width 
cL∼  (see Fig. 3). 

Neglecting the contribution of the transition region in 
the total voltage drop across the stack, the dependence of 
the lengths IL  and IIL  on the voltage drop V across the 
stack can be written as 

 I II
I II

/ /
,

2 2
V L V L

L L
r j r j+ +

− −
≈ ≈

ρ ρ
E E  (14) 

where I = (0) ,jρE  II = ( ) jρ πE  and = /r − +ρ ρ , =±ρ
= ( ( ) (0)) / 2ρ π ±ρ . In this approximation these formulas 
are valid in the range of V  where I,II 0L ≥ . The current 

=J Sj  and the voltage =V LE  are coupled via current-

voltage characteristics = ( / )dj j V L  for the stack with 
MTED inside it. This dynamic IVC has a form close to a 
plateau in which the current j  coincides with the stabiliza-
tion current [8] 0j  to an accuracy exponential in / cL L . 
The dynamic IVC can be presented in an implicit form as 

 0 I
0 0

(0)= exp
( )

j Lj j J
r j L+

⎧ ⎫−ρ
− − −⎨ ⎬

ρ⎩ ⎭

E   

 II
0 0

( )exp
( )

j LJ
r j L+

⎧ ⎫−ρ π
− ⎨ ⎬

ρ⎩ ⎭

E . (15) 

Here = /V LE , (1)
0 = ( )/T cCL f T L′ κ ∼  and the con-

stants I,IIJ  are of the order of 0j  while = / .Tf f T′ ∂ ∂  

3. Time evolution of magneto-electric-thermal domain 
in magnetic stack 

Here we assume that the magnetic stack is placed in se-
ries with an inductor. We also assume the bias-voltage 
regime that is the resistance of the external circuit in which 
the magnetic stack is incorporated can be neglected in 
comparison with that of the stack. In this case, taking into 
account that the temperature ( , )T x t  (here t  is the time) 
satisfies the equation of continuity of heat flow (see, e.g., 
Ref. 29), one obtains the following set of basic equations 
of the problem: 

 ( ) = ( , )T Tc T f T j
t x x

∂ ∂ ∂⎛ ⎞− κ −⎜ ⎟∂ ∂ ∂⎝ ⎠
V ,  

 [ ]( ) ( ) ( ) =S dj t VT j t
L dt L

+ ρ Θ
L  (16) 

where 
 2

st( , ) = ( ) / ( ) [ ( )].f T j Q T j t TΩ − ρ Θ  (17) 

Here the dependence ( )TΘ  is given by Eq. (2). In the 
above equation ( ) = ( ) /j t J t S  is the current density which 
is independent of x  due to the condition of local electrical 
neutrality, S  is the cross-section area of the stack, Vc  is 
the heat capacity per unit volume, [ ] = [ ] /R S Lρ Θ Θ  is the 
stack magneto-resistivity (see Eq. (7)), L  is the induc-
tance, the definition of the brackets ...〈 〉  is the same as 
in Eq. (13). 

The boundary condition to Eq. (16) is the continuity of 
the heat flux at the both ends of the stack (which is coupled 
to an external circuit with a fixed voltage drop V over the 
stack). We shall not write down the expression for this 
condition, since the domain dynamics does not sufficiently 
depend on it. Instead, for the sake of simplicity we use the 
periodicity condition ( , ) = ( , ).T x L t T x t+  

The set of equation (16) always has a steady-state solu-
tion which represent a MTED ( )dT x  which satisfies 
Eq. (12). A study of the stability of this solution carried out 
using a linearized system Eq. (16) shows that the MTED 
loses its stability if the inductance L  exceeds some critical 
value 1 ( / ) exp /c T c cR L L L L+τ∼L  where 2/T VC T RJτ ∼  

Fig. 3. The coordinate dependence of the temperature, ( ),T x  and
the magnetization direction, ( )xΘ , in the magnetic stack with
a magneto-thermal-electric domain inside it, IIL  is the length of
the “hot” part of the MTED which is defined in such a way that
the length of the “cold” part is I II= .L L L−  Calculations are made
for ( ) = cos ,R R R+ −Θ − Θ  / = 0.2,R R− +  0 = 0.2;D  / =1.0265,cJ J

= / ( )c cJ V R π , (1)2
0 = ( ) /c cCL j T Lρ π κ ∼ . 
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is the characteristic evolution time of the temperature [30]. 
Therefore, for the case cL L�  this instability develops 
under conditions that the characteristic time of the current 
evolution /L Rτ ∼ L  is much longer than the temperature 
evolution time Tτ  (their ratio is / ( / ) exp / .T c cL L L Lτ τ ∼L  
Then any small fluctuation develops in such a way that 
after a time Tt τ�  the domain recovers its initial trape-
zoidal form and only its length IIL  varies slowly with 
time t. This fact makes it possible to obtain a reduced de-
scription of the nonlinear dynamics of a MTED as follows. 
We seek the solution of the first equation in Eq. (16) in the 
form 

 1( , ) = ( , ( )) ( , )d dT x t T x j t T x t+  (18) 

where ( , )d dT x j  is the solution of the equation which is 
obtained from Eq. (12) by the substitution ( )dj j t→ ; the 
parameter dj  governing the length of the domain II ( )dL j  
is a slow function of the time t  which has to be found; 

1( , )T x t  is a correction which is small with respect to .dT  
Inserting Eq. (18) into the first equation in Eq. (16) and 
linearizing it one gets the following equation for 1 :T  

 2 2
1

ˆ = ( ) ( )d d
V d d

d

T dj
HT c j j T

j dt
∂

− + − ρ
∂

 (19) 

where Ĥ  is a Hermitian operator with a periodic boundary 
condition: 

 ( )
2

2
st2

ˆ = ( ) ( ) /d T d T d
dH j T Q T
d x

′ ′−κ + − ρ + Ω  (20) 

(here ( ) [ ( )]T Tρ ≡ ρ Θ  and = / ).TF dF dT′  The requirement 
of the smallness of the ratio 1| / | 1dT T �  allows to find the 
needed equations describing the adiabatic MTED evolu-
tion. 

The solution of Eq. (19) is found in the form of expan-
sion 
 1( , ) = ( ) ( )T x t A t xΨ∑ v v

v
 (21) 

where Ψv  are the eigenfunctions of Ĥ  which satisfy the 
Sturm–Liouville equation 

 
2

2
st2 ( ) ( ) / =d T d T d

d j T Q T
d x

⎡ ⎤
′ ′−κ − ρ + Ω Ψ λ Ψ⎢ ⎥

⎢ ⎥⎣ ⎦
v v v . (22) 

Multiplying the both sides of Eq. (19) by Ψv  from the 
left and averaging over the period L  one finds 

 2 2= ( ) ( )d d
V d d

d

T dj
A c j j T

j dt
⎛ ⎞∂

λ − + − ρ Ψ⎜ ⎟∂⎝ ⎠
v v v  (23) 

where /d dT j∂ ∂  in terms of eigenfunctions Ψv  is pre-
sented in Appendix A Eq. (A.9). 

As the eigenvalue 0λ  is exponentially small (see 
Eq. (A.5)), from Eq. (19) it follows that the requirement 

1| / | 1dT T �  is satisfied only when the right-hand side of 
the equation with = 0ν  is equal to zero: 

 2 2
0( ) ( ) = 0.d d

V d d
d

T dj
c j j T

j dt
⎛ ⎞∂
− + − ρ Ψ⎜ ⎟∂⎝ ⎠

 (24) 

Using Eq. (A.3) one sees that the right-hand side of the equa-
tion (22) with = 1ν  is equal to zero and hence the factor 

1 = 0λ  in the left-hand side of it does not violate the 
above-mentioned requirement. 

Taking into account the second equation in Eq. (16) and 
Eq. (24) together with Eqs. (A.8), (A.11) one finds a set 
of equations which describes the temporal dynamics of 
a MTED: 

 
2 2

0
0

= ( ) ,
2

d d
d

dj j j
j

dt j
−

ω   

 = / ( ( , ))d d
dj V L T x j j
dt

− ρL . (25) 

Here = /S LL L  and 0 0= / Vcω −λ  (here 0λ  is defined by 
Eq. (A.11)) may be written as 

 1
0 0

2( ) = ddrj
dj

−

+
ω −τ

ρ
E

 (26) 

where the constant 0τ  is 

 
2 2

0 2 max
min

( / )
= ,

8 ( )
V d

TT
T

c L dT dx

j T dT

〈 〉
τ τ

ρ∫
∼  (27) 

being of the order of the characteristic evolution time of 
the temperature Tτ , and dE  is defined in Eq. (A.6). 

Throughout the range of the existence of a trapezoidal 
MTED one has 0 0| |j j j− �  and the set of equations 
Eq. (25) can be reduced to an equation for the electric field 
which is coupled to the current dj  via the current voltage 
characteristic = ( )d djE E  (see Eqs. (13), (A.6)). Differen-
tiating the first equation in Eq. (25) multiplied by 0ω  with 
respect to t , and inserting in the resulting expression the 
above-mentioned electric field E  as a new variable togeth-
er with the second equation in Eq. (25) one obtains the 
following equation in the form of a linear oscillator with a 
nonlinear nonconservative term: 

 ( )
0 0 0

/ = 0.ddj
V L

j d
+ +⎛ ⎞ρ ρ

+ + + −⎜ ⎟τ τ⎝ ⎠

E
E E E

EL L
 (28) 

Here ( )dj E  is the IVC of the magnetic stack with a MTED. 
The static points of Eq. (28) and the second equation in 

Eq. (25) correspond to the domain solution = /V LE  and 
= ( / )dj j V L . As / < 0ddj dE , in the range of inductance 

1> cL L  the factor in front of E  is negative and a domain 
is absolutely unstable. Here the critical inductance is 

 
1

1 0 0
= inf

exp ( / )d
c c

dj
L L

d

−

+
⎛ ⎞≈ −τ τ ρ⎜ ⎟
⎝ ⎠

∼L
E EE

 (29) 

where infE  is the electric field at which /ddj d− E  has a 
maximum that is at which 2 2/ = 0ddj dE . In this region 
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the voltage drop across the magnetic stack ( ) = ( )V t t LE  
oscillates and hence the length of the domain II ( )L t  (see 
Eq. (14)) oscillates with an amplitude that increases in 
time. At the time when IIL  reaches either values 0, L  (de-
pending on the initial fluctuation) the domain disappears 
and the sample becomes homogeneous with temperatures 

minT  or max ,T  respectively. Further temporal evolution of 
the system is described by the set of equations Eq. (16) an 
analysis of which for the case / 1Tτ τ �L  shows that the 
system exhibits stable large-amplitude spontaneous oscilla-
tions of the temperature T, current current J, magnetization 
direction ( )TΘ , and the voltage drop across the stack 

= [ ( )]V JR TΘ , the oscillations being the same as those 
predicted in Ref. 6 for a magnetic stack in the absence of 
MTED. 

Investigation of stability of the domain solution of 
Eq. (28) with the Poincare method (see, e.g., Ref. 32) 
shows that at 1= cδ − �L L L L  there is an unstable limit-
ing cycle in the phase plane ( , )E E  the radius of which 

1/ cK ∝ δL L  and hence it increases with a decrease of 
the inductance. From here and from the fact that at = 0L  
the domain is absolutely stable follows an existence of 
a second critical value of the inductance 2cL  which limits 
the interval of the hard excitation of oscillations. There-

fore, the range of values of the inductance 1 2> >c cL L L  is 
the region in which a stable MTED, an unstable limiting 
cycle, and a stable limiting cycle coexist. For this case, 
temporal developments of the MTED length IIL , current J 
and voltage drop V  across the magnetic stack are shown 
in Fig. 4 and Fig. 5. 

4. Conclusion 

We have considered the temporal evolution of magneto-
thermo-electric domains which spontaneously arise in an 
exchange-spring magnetic stack with the electrical current 
flowing along the layers (CIP configuration). For the case 
that such a stack is incorporated in an electric circuit in 
series with an inductor we have found critical values of the 
inductance at which the magneto-thermal domain loses its 
stability. We have developed a perturbation theory in an 
adiabatic parameter (which is the ratio between the tem-
perature and current characteristic evolution times) theory 
which allows to investigate the evolution of this instability 
into an oscillatory in time regime. The excitation of such 
magneto-thermionic oscillations follow the scenario of 
either “soft” of a “hard” instability; in the former case any 

Fig. 4. Temporal evolution of the length of MTED II( )L t  for the
case 1 2> > .c cL L L  The unstable limiting cycle (shown with a
thick line) separate the phase plane into two regions: any initial
state inside the limiting cycle develops into the length of the
steady stationary MTED (shown with a dot) while an initial state
outside it results in oscillations of the MTED length with an in-
creasing in time amplitude until the MTED disappears, that is

IIL  reaches either II 0L ≈  or IIL L≈ . Calculations are made for
/ = 0.2,R R− +  0 = 0.2D  and / = 0.1Tτ τL  where Tτ  and τL  are

the characteristic times of the temperature and current develop-
ments, respectively; 0J  is the stabilization current. 
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0.6

0.05 0.10
J J/ 0

Fig. 5. Temporal evolution of the current ( )J t  and voltage drop 
( )V t  in a MTED inside it for the case 1 2> > .c cL L L  The steady 

IVC of a homogeneous stack IVC with a MTED are shown with a 
dashed and dashed-dotted lines, respectively. The stack is in a 
bistable state: depending on the initial conditions the system goes 
either to a stable steady MTED (which is shown with a dot) or 
goes to a stable limiting cycle (the largest closed curve) corres-
ponding to spontaneous oscillations of the current ( ),J t  voltage 
drop ( )V t , temperature ( )T t , and the magnetization direction 

( )tΘ , the stack being in a homogeneous state (in which the 
MTED has disappeared). There is an unstable limiting cycle that 
separates the initial states which develop either to the MTED or 
the the oscillations as is shown by two black arrows. Calculations 
are made for the same parameters, as on the Fig. 4. 
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perturbation results in a spontaneous transition to the oscil-
latory regime while in the latter case oscillations only ap-
pear if the initial perturbation is large enough. The fre-
quency of the temporal oscillations of the magnetization 
direction in the stack is of the order of 5 710 –10  Hz. 
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Appendix A 

According to Ref. 8 ( )dT x  can be written as 

 max( ) = ( ) ( )dT x x x x x T+ +ϑ + +ϑ − −  (A.1) 

where the function ( )xϑ  is a domain-wall type solution of 
Eq. (12) at 0=j j  and L →∞  which has the following 
asymptotic 

 min( ) =lim
x

x T
→−∞

ϑ  
(A.2)

 

 max( ) =lim
x

x T
→∞

ϑ .  

Here x+±  are the points of deflections of the curve 
( ) /ddT x x  so that II = ( ) = 2L x x x+ + +− −  is approximate-

ly the length of the “hot” section of a trapezoidal MTED 
having the maximal temperature maxT  and I II=L L L−  is 
the length of its “cold” section having the minimal temper-
ature minT  (see Fig. 3). 

As one sees from Eq. (A.1) the function 

 2
st( ) = ( ) ( ) /d T d T dU x j T Q T′ ′− ρ + Ω   

in equation (22) consists of two symmetrical “potential” 
wells of the width cL∼ , separated by a barrier of the 
width of order of II .L  In this case (see, e.g., Ref. 31) 
tunneling between the wells results in a splitting of each of 
the eigenvalues of a completely separated well into two 
neighboring ones, the splitting being proportional to 

IIexp ( / ),cL L−  while the corresponding eigenfunctions 
are symmetric and antisymmetric combinations of the cor-
responding eigenfunctions of the separated left and right 
wells. 

From the translation symmetry of the time independent 
equation Eq. (12) it follows that the eigenfunctions of the 
Hermitian operator Ĥ  include the function 1 = /xdT dxΨ  
corresponding to the eigenvalue 1 = 0λ  (it is easy to check 
inserting this function in the Eq. (22)). As it follows from 
Eq. (A.1) the eigenfunction 1( )xΨ  is 

 1
( ) ( )

( ) = =ddT d x x d x x
x

dx dx dx
+ +ϑ + ϑ −

Ψ +  (A.3) 

where two functions in the right-hand side are eigenfunc-
tions of the left and right wells when the tunneling is ignored. 
This is an antisymmetric eigenfunction ( ( ) = ( ))x xΨ − −Ψ  
corresponding to the eigenvalue 1 = 0λ  and hence the 

nearest eigenvalue 0λ  is negative and the corresponding 
eigenfunction is symmetric: 

 0
( ) ( )

( ) =
d x x d x x

x
dx dx

+ +ϑ + ϑ −
Ψ −  (A.4) 

while 

 
2

0 =02
( ) ( )

| exp ( / ).x c
d x x d x x

L L
dx dx

+ +⎛ ⎞ϑ + ϑ +
λ ∝ −κ ∝ −⎜ ⎟⎜ ⎟

⎝ ⎠
  

  (A.5) 

To express the eigenvalue 0λ  in terms of the differen-
tial resistivity we use the following reasoning. 

According to Eq. (13) the current voltage characteristic 
of the stack with a MTED in it is 

 ( ) = [ ( ( ))]d dj j T jρ ΘE . (A.6) 

Differentiating the both sides of Eq. (35) and Eq. (12) with 
respect to j one finds the differential resistivity of the mag-
netic stack with a MTED as 

 = ( ) ( ) .d d
d T d

d T
T T

dj j
∂

′〈ρ 〉 + ρ
∂

E
 (A.7) 

and an equation for /dT j∂ ∂  

 ˆ = 2 ( )d
d

T
H j T

j
∂

〈ρ 〉
∂

 (A.8) 

where the operator Ĥ  is given by Eq. (20). 
Expanding /dT j∂ ∂  in the form of the eigenfunctions 

Ψv  (see Eq. (22)) one finds 

 
( )

= 2d dT T
j

j
∂ 〈ρ Ψ 〉

Ψ
∂ λ∑ v

v
vv

. (A.9) 

Inserting it in Eq. (A.7) one finds 

 = ( )d
d

d
T

dj
〈ρ 〉 +

E
  

 2 ( ) ( )
2 .T d d

d
T T

j
′〈ρ Ψ 〉〈ρ Ψ 〉

+
λ∑ v v

vv
 (A.10) 

Remembering that 0λ  is exponentially small and hence it 
gives the main contribution to the sum with respect to v  
one finds 

 

2 max
min

0 2 2

16 ( ) [ ( )]
=

( / ) /

T
d T

d d

r j T dT

L dT dx d dj

+ρ ρ Θ
λ

∫
E

. (A.11) 
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