
© D.J. Lockwood and M.G. Cottam, 2012 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2012, v. 38, No. 7, pp. 703–714 

Magnetooptic coupling coefficients for one- and 
two-magnon Raman scattering in the rutile-structure 

antiferromagnets FeF2, MnF2, CoF2 and NiF2 

D.J. Lockwood 
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6 

E-mail: David.Lockwood@nrc-cnrc.gc.ca 

M.G. Cottam 
Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 3K7 

E-mail: cottam@uwo.ca 

Received March 28, 2012 

Inelastic light scattering intensities of magnetic excitations are governed by the magnetooptic coupling coef-
ficients, which have been evaluated, for example, for the ferrimagnet Y3Fe5O12 (YIG) and the metamagnets 
FeCl2 and FeBr2. However, by far the most detailed studies to date have been performed on the classic rutile-
structure antiferromagnets, and we summarize here the results obtained from the many experimental and theoret-
ical investigations in these compounds for both one-magnon and two-magnon excitations. A comparison of the 
magnitudes of the various coupling coefficients for MnF2, FeF2, CoF2, and NiF2 reveals a surprising similarity 
in many coefficients. In one-magnon Raman scattering, the in-phase linear magnetooptic coefficient dominates 
and the main differences between MnF2, FeF2, and NiF2 lie in the relative significance of the in-phase quadratic 
magnetooptic coefficient. Thus the quadratic coefficients are now seen to be of particular importance in deter-
mining the strength of the one-magnon scattering in a variety of magnetic insulators. In two-magnon Raman 
scattering, one magnetooptic coefficient dominates for all of these antiferromagnets. However, each of the other 
six coefficients are remarkably similar in magnitude, in general, and not negligible in most cases, indicating 
some universality in the way light interacts with the pairs of magnons of opposite and equal wave vector in rutile 
structure antiferromagnets. 

PACS: 75.50.Ee Antiferromagnetics; 
78.30.–j Infrared and Raman spectra; 
75.30.Ds Spin waves. 
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1. Introduction 

For many years now inelastic light (Raman) scattering 
[1] has been usefully employed to characterize low lying 
excitations in magnetic systems [2]. The Raman spectrum 
provides information on the frequency, line width, and 
intensity of the excitation, which is usually studied in 
Stokes scattering only, and measurements of its polariza-
tion dependence provide details on the symmetry of the 
scattering. Investigations of the temperature and applied 
magnetic field dependence of the scattering from such ex-
citations, which include magnons and excitons, have now 
become routine [2]. The results of these studies have been 

extensively analyzed theoretically with regard to the exci-
tation frequency, line shape, and line width, as well as their 
temperature and field dependences. One piece of informa-
tion that so far has seldom been investigated is the intensi-
ty of the excitation, using information from both Stokes 
and anti-Stokes Raman scattering measurements. Light 
scattering intensities of magnetic excitations are governed 
by the so-called magnetooptic coupling coefficients [2–4], 
which have so far been explored for the ferrimagnet 
Y3Fe5O12 (YIG) [5], in this case by Brillouin scattering, 
and the metamagnets FeCl2 and FeBr2 [6–8]. However, 
the most detailed studies to date have been performed on 
the classic rutile-structure antiferromagnets [2], and it is 
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the results from these Raman scattering investigations for 
both one-magnon and two-magnon excitations that are 
reviewed below. 

Light scattering from magnons in rutile-structure (space 
group P42/mnm or D4h

14) antiferromagnets has been ex-
tensively studied because of their fairly simple magnetic 
ordering [2]. The examples we consider here are FeF2, 
MnF2, CoF2 and NiF2 and their physical properties rele-
vant to antiferromagnetism are summarized in Table 1. The 
antiferromagnetically ordered crystal structure of the first 
three compounds is shown schematically in Fig. 1. Below 
the ordering temperature, TN, the transition-metal-ion spins 
align along the crystal c axis in opposing fashion (see 
Fig. 1) to produce the overall antiferromagnetic arrange-
ment of spins. The magnetic properties of these three com-
pounds differ because of the following factors: MnF2 has a 
very small anisotropy and is essentially a pure spin antifer-
romagnet; FeF2 exhibits optic magnons and possesses a 
large anisotropy; and CoF2 has strong spin-orbit coupling 
along with a number of higher lying electronic states with-
in the ground multiplet. FeF2 and MnF2, in particular, have 
been extensively studied because of the relative simplicity 
of their magnetic interactions and the theoretical results for 

the acoustic and optic magnons are in good agreement with 
experimental data over a broad range of temperatures [2]. 
On the other hand, the one-magnon light scattering in CoF2 
has other distinctive properties due to effects arising from a 
strong orbital angular momentum and a large single-ion 
anisotropy. Although the two-magnon scattering can be 
analyzed within a simple effective spin S = 1/2 model [9], 
the one-magnon scattering case is much more complicated 
and has only recently been fully examined theoretically 
[10]. By contrast, NiF2 presents a case of special interest 
[11] because of the role of the single-ion anisotropy in 
NiF2, which causes the sublattice magnetization to lie per-
pendicular (rather than parallel, as in the above-mentioned 
cases) to the crystal c axis and to be canted slightly in the 
ab plane away from the antiparallel alignment. This more 
unusual spin ordering is shown schematically in Fig. 2. As 
a consequence, the twofold degeneracy in the one-magnon 
dispersion is removed since the resulting small net ferro-
magnetic moment gives rise to an additional low-frequency 
magnon excitation, which depends sensitively on the cant-
ing angle, in addition to the usual higher frequency excita-
tion observed in the other three antiferromagnets, where 
there is no spin canting. 

Table 1. Physical parameters of rutile-structure antiferromagnets. This information is taken from Ref. 2 

Compound Neél temperature TN, K Spin S Spin alignment Other factors 
FeF2 78 2 Along c axis Optic modes 
MnF2 68 5/2 Along c axis Pure spin 
CoF2 38 Effective spin of 3/2 Along c axis Spin-orbit coupling 

Optic modes 
Single-ion anisotropy 

NiF2 73 1 In ab plane and canted Single-ion anisotropy 
 

Fig. 1. The crystallographic unit cell of CoF2 (a = b ≠ c) showing
the c axis spin alignment along with the principal exchange inte-
ractions J1, J2, and J3. Crystal axes (x, y, z) and laboratory axes
(X, Y, Z) are illustrated in relation to the unit cell. The X and Y
directions are orthogonal to the c (Z) axis but are rotated by ~ 45○

from the crystallographic a and b axes. 
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Fig. 2. The crystallographic unit cell of NiF2 showing the canted 
spin alignment in the crystal ab plane along with the dominant 
exchange interactions J1, J2, and J3. 
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2. Theory 

2.1. Spin Hamiltonians and magnon frequencies 

The rutile-structure antiferromagnets MnF2 (spin S = 
= 5/2) and FeF2 (S = 2) can be well represented in the case 
of zero applied magnetic field by the following Heisenberg 
Hamiltonian with anisotropy terms: 

 , ,
, ,

1
2i j i j i i i i

i j i i
H J J ′ ′

′
′= ⋅ + ⋅ +∑ ∑S S S S   

 ,
,

1 ( ) ( ).
2

z z
j j j j B A i j

j j i j
J g H T S S′ ′
′
′+ ⋅ − μ −∑ ∑ ∑S S  (1) 

This includes the effects of the dominant intersublattice 
exchange ijJ  and the weaker intrasublattice exchange 'iiJ ′  
and ' ,jjJ ′  where labels i and j denote spin sites on sublat-
tice 1 (spins predominantly “up”) and sublattice 2 (spins 
“down”), respectively. The interactions between different 
neighbors are seen in Fig. 1 where the rutile crystal struc-
ture is depicted. The quantity ( )AH T  represents a tem-
perature-dependent effective anisotropy field for the uni-
axial anisotropy. 

CoF2 and NiF2 exhibit a more complicated magnetic 
behavior. The exchange part of the Hamiltonian has the 
same form as above, but the anisotropy has to be 
represented explicitly with uniaxial D and nonuniaxial F 
coefficients in the form 

 { }2 2 2( ) [( ) ( ) ]yz x
i i i

i
D S F S S+ − − +∑   

 { }2 2 2( ) [( ) ( ) ] .yz x
j j j

j
D S F S S+ + −∑  (2) 

In CoF2 we have D < 0 leading to spin alignment along the 
crystal c axis as in Fig. 1, but an effective spin description 
is needed because of large spin-orbit effects. The simplest 
model is to take S = 1/2, which is satisfactory for applica-
tions to two-magnon Raman scattering, since this is strong-
ly weighted by large wavevectors near the Brillouin zone 
boundary. However, it leads to discrepancies with Raman 
experiments for one-magnon scattering, which is weighted 
by the zone-center wavevectors, and a S = 3/2 model is 
required instead [10]. In NiF2 (S = 1) we have D > |F| > 0, 
which results in the equilibrium spin orientations being in 
the ab plane with a small canting from antiparallel align-
ment, as shown in Fig. 2. 

In terms of Eq. (1) for MnF2 and FeF2 the simplest 
theory for the linearized magnon frequency that incorpo-
rates the temperature dependence employs the random-
phase approximation to decouple the exchange terms. The 
expression for the frequency ( )ω k  at wavevector k is [2] 

 ( )ω =k   
1/2

2 2
2

1 1 1( ) [8 cos( ) cos( ) cos( )] ,
2 2 2

z
x y zS J k a k a k c⎧ ⎫μ − 〈 〉⎨ ⎬

⎩ ⎭
k

  
  (3) 

where zS〈 〉  denotes a thermal average and 

 ( ) 2 z
B Ag H Sμ = μ + 〈 〉 ×k   

2 2 2
2 3 3 1

1 1 14 sin ( ) sin ( ) sin ( ) .
2 2 2x y zJ J k a J k a J k c⎧ ⎫× − − −⎨ ⎬

⎩ ⎭
  (4) 

At k = 0, as in one-magnon Raman scattering, the above 
result simplifies to 

 { }1/2(0) (2 ,A E Aω = ω ω +ω  (5) 

where A B Ag Hω = μ  and 28 z
E S Jω = 〈 〉  are the anisotro-

py and exchange frequencies, respectively. Often it is as-
sumed [12] that z n

A Sω ∝ 〈 〉  where index n lies between 1 
and 2. The above frequency, which is just the antiferro-
magnetic resonance (AFMR) frequency, can be split into 
two components by an applied magnetic field. 

Equations (3)–(5) are not applicable to CoF2 and NiF2, 
except in the context of two-magnon scattering where the 
effects of the single-ion anisotropy at large |k| become 
small compared with the exchange terms (and then with 

zS〈 〉  replaced by a thermal average in the ab plane in the 
case of NiF2) [9]. By contrast, at k = 0 as in one-magnon 
scattering, it is important to employ Eq. (2) for the single-ion 
anisotropy (with its uniaxial and nonuniaxial parts). Care 
must be taken in the Green’s function formalism for the 
magnons to avoid any decoupling of the products of spin 
operators that occur at the same site. The formalism, which 
is an extension of that due to Awang and Cottam [13], leads 
to additional magnon branches for both CoF2 (see Ref. 10) 
and NiF2 (Ref. 11) in accordance with experiment. 

2.2. Magnetooptical coupling and Raman intensities 

Here we follow an approach similar to that employed 
by Cottam [4] (see also Ref. 2) for two-sublattice antifer-
romagnets. The interaction Hamiltonian for the inelastic 
scattering of light depends on the electric-field vectors of 
the incident and scattered light and on the spin-dependent 
susceptibility tensor ( )χ r  where r denotes any sublattice 
spin site. Next the elements of this tensor may be expanded 
in powers of the spin operators, going up to and including 
quadratic terms, as 

 ( ) ( )K Sαβ μ
αβμ

μ
χ = +∑ rr r   

 
, , ,

( ) ( , )G S S B S Sμ ν μ ν
αβμν αβμν +

μ ν μ ν
+ +∑ ∑r r r rr r δ

δ
δ  (6) 
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Here α, β, μ, and ν denote Cartesian components. The 
first two terms above involve operators at a single site r, 
while the third term involves products of operators at dif-
ferent sites (connected by vector δ). The quantities K, G, 
and B are related to different magnetooptical effects. In a 
ferromagnetic material, for example, K is proportional to 
the magnetic circular birefringence (Faraday rotation) and 
G is proportional to the magnetic linear birefringence 
(Voigt or Cotton–Mouton effect) [5]. In second order of 
perturbation the light-scattering intensity is related to dy-
namic correlation functions between one component of χ 
and another component of χ at a different position and 
time [2]. Therefore, in view of Eq. (6), it is necessary to 
evaluate spin–spin correlation functions (or the corres-
ponding Green’s functions) to obtain the intensities [4]. 
The different roles of the terms in Eq. (6) as regards one- 
and two-magnon light scattering are now outlined below. 

2.2.1. One-magnon scattering. Magnons are related to 
the excitations of a transverse spin component, i.e., S+  or 
S−  (where ).x yS S iS± = ±  Terms that are linear in S±  
occur not only in the first term (involving the K coeffi-
cients), but also in the quadratic terms through products 
like zS S±  and zS S± . There are two quadratic terms in 
Eq. (6), but the one that is the more important for the one-
magnon scattering is the same-site term that involves the G 
coefficients [4]. The other quadratic spin term (with the B 
coefficients) is mainly of interest for two-magnon scatter-
ing and will be discussed later. 

The k = 0 one-magnon excitations in MnF2 and FeF2 
are doubly degenerate in zero applied magnetic field with 
the components having symmetries 3

+Γ and 4
+Γ  in a stan-

dard notation [3]. From a group-theoretical analysis [3], 
the corresponding Raman scattering matrices have the gen-
eral form  

1 1
* *
1 13 4

* *
2 2 2 2

0 0 0 0

( ) 0 0 , ( ) 0 0 .

0 0

i i

i i

+ +

γ −γ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

χ Γ = γ χ Γ = γ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟γ γ −γ γ⎝ ⎠ ⎝ ⎠

 

  (7) 

The complex quantities 1γ  and 2γ  can be related to the 
one-magnon terms in Eq. (6), giving the expressions [3] 

 1,2 ( )Tγ = −ϕ ×   

(0) (0)2 2 .z z

A A
K p S G i K p S G+ + − −

⎡ ⎤⎛ ⎞ ⎛ ⎞ω ω
× ± + 〈 〉 + ± + 〈 〉⎢ ⎥⎜ ⎟ ⎜ ⎟ω ω⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
  (8) 

Here ( )Tϕ  is an overall temperature-dependent factor, 
while K+  and G+  refer to the linear and quadratic magne-
tooptical coupling terms, respectively, when the two sub-
lattices of spins scatter in phase. They are related to specif-
ic combinations of the related coefficients in Eq. (6), as 
deduced by symmetry. There may also be contributions 

with K−  and G−  that describe the linear and quadratic 
coupling for out-of-phase scattering. The latter effects are 
allowed by symmetry because the two sublattices are not 
strictly equivalent (due to the coordination of the nonmag-
netic F −  ions as in Fig. 1). It can be seen that the relative 
weightings of the four magneto-optical coefficients in Eq. 
(8) depend on the ratio of (0)ω  to Aω and on other tem-
perature-dependent factors, including the parameter p 
which arises in the Green’s function theory [4] and can be 
approximated by 2(2 1) / 2 .zS S S− 〈 〉  

The integrated intensity SI  for one-magnon Stokes 
scattering can be deduced from the above results and takes 
the form [4,14] 

 0
in out

( 1)
( ),

(0)

z

S
S n

I F F
〈 〉 +

∝ +
ω

 (9) 

where n0 is the Bose-Einstein thermal factor for the k = 0 
magnons with frequency (0),ω  and the in-phase and out-
of-phase scattering terms are 

21/2 1/2
in 2 (2 ) ,z

A A S E AF e K p S e G− −
+ += ω − 〈 〉 ω +ω  (10) 

21/2 1/2
out (2 ) 2 .z

A E A S AF e K p S e G+ +
− −= ω +ω − 〈 〉 ω  (11) 

The electric-field polarization dependence comes through 
the symmetric (S) and antisymmetric (A) combinations 
defined by 

 1 2 1 2 1 22 1( ) ( ),y yz x x z z z
Se e e e e i e e e e± = + ± +  (12) 

 1 2 1 2 1 22 1( ) ( ),y yz x x z z z
Ae e e e e i e e e e± = − ± −  (13) 

where e1 and e2 are the unit polarization vectors for the 
incident and scattered light, respectively. We note that the 
linear and quadratic coupling terms are associated with 
Eqs. (13) and (12), respectively, so a polarization analysis 
of the experimental data can be used to distinguish be-
tween their contributions. 

Analogous results for the anti-Stokes scattering inten-
sity [4,14,15] can be written down in a similar fashion. 
An important conclusion is that the anti-Stokes to Stokes 
ratio of intensities, which is simply equal to n0/(n0 + 1) or 
exp[–ω(0)/kBT] in many cases, is modified when both li-
near and quadratic magnetooptical terms contribute. 

Finally, the above formalism has to be modified in the 
cases of CoF2 and NiF2. It is still the case for these mate-
rials that the linear and quadratic magnetooptical coupling 
effects may apply, but their effects are different due to the 
different behavior already mentioned for the k = 0 one-
magnon excitations [10,11]. 

2.2.2. Two-magnon scattering. The interaction Hamil-
tonian for the two magnon scattering of light from a rutile-
structure antiferromagnet can be deduced from the last 
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term in Eq. (6), specifically from the combinations that 
involve products like S S+ −  and z zS S  for spins at neigh-
boring sites. It may be written as [2,9,14] 

 int
,

1 ( )( ),
2

z zH S S S S S S+ − − +
+ + += φ + + γ∑ r r r r r r

r
δ δ δ

δ
δ  (14) 

where r is summed over all spin sites, vector δ now connects 
sites with their next-nearest neighbors (on the opposite sub-
lattice), and γ is a weighting factor. The symmetry term 

( ),φ δ  which contains the electric-field polarizations, is 

1 1 2 2 1 2 3 1 21 2 2 1( ) ( ) ( )y y y y yx x z z x x xB e e e e B e e B e e e e δ δφ δ = + + + + σ σ +

 
 4 1 2 1 2 2 11 2( ) ( )y y yx z z x x z z z zB e e e e e e e eδ δ δδ

⎡ ⎤+ + σ σ + + σ σ +⎣ ⎦
  

 5 1 2 1 2 2 11 2( ) ( )y y yx z z x x z z z zB e e e e e e e eδ δ δδ
⎡ ⎤+ − σ σ + − σ σ⎣ ⎦

 (15) 

where sign( )α α
δσ = δ  for α = x, y, z, and B1, B2, …, B5 are 

the two-magnon magnetooptical coupling coefficients. By 
varying the polarizations in an experiment, one may effec-
tively pick out various combinations of the B coefficients. 
Another symmetry-allowed contribution to Hint, which is 
often neglected, is of the form [9,14] 

 
,

1 ( )( ),
2

S S S S+ − − +
+δ +δ

δ

′φ δ −∑ r r r r
r

 (16) 

where 

6 1 2 7 1 21 2 2 1( ) ( ) ( ) .y y y y yx x x x xiB e e e e iB e e e e δ δ′φ δ = − + − σ σ  (17) 

This introduces two additional coefficients B6 and B7. 
Expressions for the two-magnon Raman scattering inten-

sities are given in Ref. 16, where a finite-temperature 
Green’s function analysis with magnon–magnon interactions 
was used. For the rutile-structure antiferromagnets there are 
three Raman-active modes, conventionally labeled [3] as 

1 ,+Γ  4 ,+Γ  and 5 .+Γ  These have different weighting factors, 
and so different critical points in the Brillouin zone are em-
phasized (specifically, the Γ, M, and R points, respectively). 
Consequently, there is a small splitting in the two-magnon 
peak frequencies, e.g., estimated to be of order 

3 18 ( )zS J J〈 〉 −  between the 4
+Γ  and 5

+Γ  modes [14,16]. 
Finally, although we emphasized earlier that CoF2 and 

NiF2 are both very different from the simpler compounds 
MnF2 and FeF2 in their one-magnon Raman spectra, it is 
nevertheless the case that they can all be treated within the 
same formalism described above as regards their two-
magnon Raman scattering. This is because the two-magnon 
scattering emphasizes the large wavevector regions (except 
in the case of the nonresonant 1

+Γ  mode), where the non-
uniaxial single-ion anisotropy effects are small. 

3. Comparison with experiment 

The two-magnon Raman peak parameters of frequency 
and line width as well as the line shape are analyzed sys-
tematically following the theory outlined in the previous 
section and given in detail in Ref. 2. Such an analysis 
yields improved values for the three exchange parameters 
and the anisotropy over those obtained from other tech-
niques (principally inelastic neutron scattering) as the two-
magnon peak position and line shape are very sensitive to 
these values. The parameter values thus obtained for the 
four antiferromagnets and used in our calculations are 
summarized in Table 2. 

The theoretical model for one-magnon scattering out-
lined above involves four magnetooptical coefficients that 
are independent of temperature and light scattering geome-
try. These coefficients are denoted by K+ and G+ for the 
linear and quadratic magnetooptical coupling for in-phase 
scattering, while K– and G– are the corresponding coef-
ficients for out-of-phase scattering. For two-magnon scat-
tering there are as many as seven coefficients (Bn with n = 
= 1, …, 7). We now outline the results obtained for these 
parameters in four quite different antiferromagnets pos-
sessing the rutile crystal structure. 

3.1. MnF2 

3.1.1. One-magnon scattering. A typical anti-Stokes–
Stokes Raman spectrum is shown in Fig. 3 [17]. This spec-
trum clearly shows that some factor other than the usual 
thermal population factor is operating and causing the anti-
Stokes Raman peak to be much stronger than the Stokes 
peak. The important information to be obtained from such 
spectra for the analysis that follows is the integrated intensi-
ties of the Stokes and anti-Stokes one-magnon peaks togeth-
er with their polarization and temperature dependences. 

In making a comparison of theory with experiment for 
the one-magnon Raman integrated intensities in MnF2 we 
have assumed for simplicity that in-phase scattering is do-
minant. This would be expected because the deviation 
from tetragonal symmetry at a Mn2+ site is relatively 
small. For the Stokes data in Fig. 4, the theory predicts that 
IS(XZ) = IS(YZ) at any given temperature, whatever the 

Table 2. Principal exchange interactions J1, J2, and J3 and 
anisotropy parameters deduced from theoretical analysis of the 
two-magnon Raman spectrum of rutile-structure antiferromagnets 
at temperature T << TN. In the cases of CoF2 and MnF2 the 
quoted HA are effective anisotropy terms as approximated for 
zone-boundary magnons 

Compound J1, cm–1 J2, cm–1 J3, cm–1 HA, cm–1 
FeF2 (Ref. 16) 0.01 3.73 0.21 20.0 
MnF2 (Ref. 14) −0.50 2.48 ~0 0.74 
CoF2 (Ref. 9) −1.2 12.9 ~0 12.0 
NiF2 (Ref. 9) 0.2 13.8 0.3 2.1 
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values are for K+ and G+, whereas IS(ZX) will be different 
(unless G+/K+ = 0). It is seen that the intensity data points 
(allowing for an experimental uncertainty of 10 to 20% typi-
cally) broadly confirm this prediction and allow us to make 
a rough estimate for the ratio G+/K+. First, we note that in 
the absence of any quadratic coupling (G+/K+ = 0), the in-
tensities for all three polarizations would be described by the 
broken curve in Fig. 4, which provides an inadequate fit to 
the data. A much better fit is provided if G+/K+ is small and 
positive, as illustrated by the solid lines for G+/K+ = 0.08 in 

Fig. 4, where the upper line refers to (XZ) and (YZ) polariza-
tions and the lower line to (ZX) polarization. 

Similarly, for the anti-Stokes data, the role of quadratic 
coupling is to enhance the intensities in certain polariza-
tions (making it easier to study experimentally) and to 
modify the temperature dependence. In Fig. 5 it can be 
seen that the variation of IAS(ZX) is much better described 
by the solid theory curve for G+/K+ = 0.08 than by the bro-
ken curve for G+/K+ = 0. Further evidence that G+/K+ ≠ 0 
is provided by the intensity ratio IAS/IS in (ZX) polariza-
tion, where we have measurements at three different tem-
peratures. Overall, from the temperature dependences of IS 
and IAS and from the behavior of IAS/IS, we deduce that 
G+/K+ lies approximately in the range 0.05 to 0.1. 

The out-of-phase terms may also contribute to the scat-
tered intensity [14] and we illustrate their effect by some 
numerical examples in Fig. 6, taking the case of linear 
magneto-optic coupling (G+ = G– = 0) and (XZ) polariza-
tion. Curves for in-phase scattering only (K– = 0) and out-
of-phase scattering only (K+ = 0) are shown, together with 
an intermediate case. In fact, the predicted intensity IS is 
sensitive to even a relatively small amount of out-of-phase 
scattering, because the coefficient of K– in Eq. (11) is 
much larger than the coefficient of K+ in Eq. (10) (since 
ωE >> ωA for MnF2). The admixture of in-phase and out-
of-phase scattering corresponding to the case |K–/K+| = 
= 0.007 in Fig. 6 is seen to give a good overall fit to the 
data across the temperature range. 

The results indicate that while the linear magneto-
optical coupling coefficient K+ for in-phase scattering is 
dominant there is an important contribution due to the qua-

Fig. 3. One-magnon (M) Raman spectrum of MnF2 at 41 K rec-
orded in X(ZX)Y polarization at a spectral resolution of 0.53 cm–1.

Fig. 4. Experiment and theory for the temperature dependence
of the one-magnon integrated intensity in MnF2 for Stokes scat-
tering in several polarizations. The experimental points refer to,
(XZ) polarization (○); (YZ) polarization (□); (ZX) polarization
(Δ). The theory curves are for G+/K+ = 0 (broken line) and
G+/K+ = 0.08 (solid lines). 
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Fig. 5. Experiment and theory for the temperature dependence of 
the one-magnon integrated intensity in MnF2 for anti-Stokes scat-
tering. The experimental points (Δ) refer to (ZX) polarization. The 
theory curves are for G+/K+ = 0 (broken line) and G+/K+ = 0.08 
(solid line). 
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dratic in-phase coefficient G+ and a very slight contribu-
tion from the out-of-phase linear magnetooptical coupling 
coefficient K–. The G+/K+ and |K–/K+| values obtained for 
MnF2 are presented in Table 3 for easy comparison with 
the results obtained for the other antiferromagnets. 

3.1.2. Two-magnon scattering. By comparison be-
tween theory and experiment for the two-magnon Stokes 
intensities at low temperatures (< 10 K) in various pola-
rizations [14], we have been able to deduce the relative 
magnitudes of the magnetooptic coupling coefficients Bn 
(n = 1, ..., 5) appearing in Eq. (15). The results for MnF2 
are summarized in Table 4, where the values are quoted 
relative to the largest coefficient B3. We were not able to 
deduce coefficients B6 and B7 for MnF2 from the results 
of those measurements [16]. 

The two-magnon scattering in MnF2 is considerably 
stronger than the one-magnon scattering. For example, the 
ratio of the integrated intensities of the two-magnon scatter-
ing in Z(YX)Y polarization to the one-magnon scattering in 
Z(XZ)Y polarization is 310 ± 25 at 8 K. From this ratio we 
can estimate the relative magnitudes of the linear and qua-
dratic coupling coefficients K+ and B3, respectively. Using 
Eq. (4) for the one-magnon intensity and T = 0 expressions 
from Brya and Richards [18] for the two-magnon intensity, 
we deduce K+/B3 ≈ 0.5 for excitation at 476.5 nm. 

3.2. FeF2 

3.2.1. One-magnon scattering. The analysis of the one-
magnon Raman scattering in FeF2 is more complicated 
than was the case for MnF2 owing to the pronounced 
asymmetric line shape of the conventional (acoustic) mag-
non peak and the presence of optic magnon peaks at higher 
temperatures [12]. From an extensive theoretical analysis 
the absolute value of G+/K+ was obtained from one-
magnon Stokes and anti-Stokes scattering observed in 
X(YZ)Y and X(ZX)Y polarizations as a function of tempera-
ture for a number of different excitation wavelengths, as 
shown in Table 3. These results indicate a weak but signif-
icant dependence of G+/K+ on the wavelength; G+/K+ in-
creases with increasing wavelength for light in the visible 
region. The origin of the effect is unclear, but it does not 
appear to correlate with the wavelength-dependence of the 
optical absorption [12] of FeF2. 

3.2.2. Two-magnon scattering. In Fig. 7 we compare 
theoretical and experimental spectra in X(YX)Y polarization 
at low temperature [16]. Scattering in (YX) polarization is 
governed by magnetooptic coefficient B3 and dotted line 
shows the theoretical fit (using the parameters in Table 2) 
to the two-magnon Raman spectrum and including just this 
term. However, to improve further the fit between theory 
and experiment for the (YX) polarization we need to con-
sider the consequences of the sample X and Y axis orienta-
tion which are rotated about the c axis through an angle θ = 
= 27○. If the interaction Hamiltonian Hint takes the form 
given in Eqs. (14) and (15) it is easily verified that the ef-
fect of the rotation only introduces an overall factor of 

Fig. 6. Comparison of theory and experiment for the temperature
dependence of the relative one-magnon integrated intensity (in-
cluding the Bose population factor) in MnF2. The theory curves
are calculated taking the quadratic magnetooptic coefficients to
be zero. The plotted curves correspond to: K– = 0 (1); K+ = 0 (2);
|K–/K+| = 0.007 (3). The experimental data are from Z(XZ)Y
(crosses) and Z(YZ)Y (circles) polarizations. 
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Table 3. Absolute and relative linear (K) and quadratic (G) magnetooptic coupling coefficients for one-magnon Raman scattering in 
rutile-structure antiferromagnets. The subscripts (+) and (–) refer to in-phase and out-of-phase scattering, respectively 

Compound Excitation wavelength, nm |G+| |G–| |K+| |K–| |G+/K+| |G–/K+| |K–/K+| 
FeF2 (Ref. 12) 647.1 

514.5 
488.0 
476.5 
457.9 

– 
– 
– 
– 
– 

– 
– 
– 
– 
– 

– 
– 
– 
– 
– 

– 
– 
– 
– 
– 

0.58 
0.49 
0.46 
0.44 
0.40 

– 
– 
– 
– 
– 

– 
– 
– 
– 
– 

MnF2 (Refs. 14 and 17) 476.5 – ~0 – – 0.05–0.1 – 0.007 
NiF2 (Ref. 11) 514.5 ~0 – – 0 ~1 0.25 – 
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(cos 2θ)2 in the (YX) polarization intensity without affect-
ing the line shape. However, there is an additional contri-
bution to Hint, which is allowed by symmetry but generally 
neglected, governed by coupling coefficients B6 and B7 
(see Sec. 2). When this additional term is rewritten in the 
laboratory X,Y,Z coordinate system we conclude that it 
allows a mixing in of various scattering contributions. 
Fleury and Loudon (Ref. 3) have shown that the yx and xy 
Raman tensor elements are equal for two-magnon scatter-
ing; thus B7 must be negligibly small. The effect of the 
remaining B6 term is to produce scattering of 1

+Γ  symme-
try proportional to (B6 sin 2θ)2 and a cross term propor-
tional to B3B6 sin 4θ. We have calculated this cross term 
and find that it peaks at about the same frequency as the 

4
+Γ  mode but has a larger tail to low frequency. The theo-

retical spectrum with such a cross term included is shown 
in Fig. 7 by the broken curve, taking B6/B3 = 0.05. Even 
though the admixture of this cross term is small, it has led 
to an improved fit especially in the tails of the peak. 

Likewise from the experimental spectra in (ZZ), (YX) 
and (ZX) polarizations at 12 K we have estimated the rela-
tive magnitudes of the optical coupling coefficients B2, B3, 
and B4 in Eq. (15). We find |B4/B3| = 0.8 and |B2/B3| = 0.3. 

Comparisons can also be made with the ratio of coef-
ficients K+/B3 for FeF2. From measurements of the one- 
and two-magnon scattering in FeF2 using excitation wa-
velengths of 514.5 and 647.1 nm [12,16], we estimate 

K+/B3 ≈ 0.5 in both cases. These estimates were obtained 
in the same manner as for MnF2, but in addition allowing 
for the significant effect of the G+ coefficient on the FeF2 
one-magnon intensity. The remarkable result is that the 
K+/B3 ratios are of the same order in MnF2 and FeF2. 

3.3. CoF2 

3.3.1. One-magnon scattering. No results have been ob-
tained to date on the one-magnon magnetooptic coeffi-
cients of CoF2[10]. 

3.3.2. Two-magnon scattering. In Fig. 8,a we compare 
theory and experiment for the low-temperature (T ~ 5 K) 
two-magnon Raman intensities in Y(XX)Z polarization [9]. 
By comparing theory with experiment for the integrated 
intensities in Y(XX)Z polarization we are able to estimate the 
relative magnitudes of the magnetooptical coefficients B1 
and B3. The theory curve is obtained using |B1/B3| = 0.2, 
which represents an upper limit for the magnitude of B1 rela-
tive to B3. The small contribution of the 1

+Γ  mode does not 
shift the peak frequency and its main effect is to increase the 
height of the tail of the peak at lower frequencies. The mix-
ing of the 1

+Γ  and 4
+Γ  modes also leads to cross terms pro-

portional to B1B3 sin 2θ. However, these terms cancel out on 
numerical integration over the Brillouin zone. 

In Fig. 8,b we compare theory with experiment for the 
off-diagonal polarizations X(ZX)Z, Y(ZX)Z, and Y(ZY)Z, all 
of which represent the 5

+Γ  mode only. The rotation to the 
laboratory coordinate system does not produce any mixing 
effects because the crystal c axis coincides with the labora-
tory Z axis. The main effect of the rotation of the laborato-
ry axes with respect to the crystal axes by 45○ is to produce 
symmetric and antisymmetric combinations of the B4 and 
B5 magnetooptic coupling coefficients. The two-magnon 
scattering intensity is proportional to |B4 + B5|2 for the 
(XZ) and (YZ) polarizations and to |B4 – B5|2 for the (ZX) 
and (ZY) polarizations. These terms represent overall mul-
tiplicative factors that do not affect the line shapes of the 
spectra. The experimental spectra are effectively identical 
in all of these polarizations and thus we are unable to de-
duce the relative values of B4 and B5 for CoF2 except to 
conclude that one of these must be far greater in magnitude 
than the other. By comparing the integrated intensities in 
Fig. 8,a and Fig. 8,b we are able to deduce that |(B4 ± 
± B5)/B3| ≈ 0.7. Also, making use of the data in X(ZZ)Y 
polarization, we are able to deduce that |B2/B3| ≈ 0.6. 

Table 4. Relative magnetooptic coupling coefficients, Bn (n = 1, …, 7), for two-magnon Raman scattering in rutile-structure antifer-
romagnets. 

Compound Excitation wavelength, nm |B1/B3| |B2/B3| |B4/B3| |B5/B3| |(B4±B5)/B3| |B6/B3| |B7/B3| |B6/B7| 
FeF2 (Ref. 16) 514.5 – 0.3 0.8 ~0 0.8 0.05 ~0 – 
MnF2 (Ref. 17) 476.5 0.14 0.32 0.66 0.007 0.65–0.67 – – – 
CoF2 (Ref. 9) 800.0 0.2 0.6 – – 0.7 – – 0.3 
NiF2 (Ref. 9) 514.5 ~0 0.2 – – 0.5 – – – 

 

Fig. 7. The two-magnon part of the experimental X(YX)Y spec-
trum for FeF2 at 12 K (full curve) compared with the theoretical
line shapes without (dotted curve) and with (broken curve) an
additional cross term involving B6. 
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The experimental spectrum in X(YX)Y polarization re-
veals a two-magnon peak frequency at (113 ± 1) cm−1 and 
an integrated intensity that is ~10% of the integrated inten-
sity in other off-diagonal polarizations. The terms involv-
ing the (YX) polarization in Eq. (16) vanish for a rotation 
through an angle of 45°, and thus the intensity for this po-
larization [as well as the (XY) polarization] is expected to 
be much weaker than in other off-diagonal polarizations. 
The origin of the two-magnon feature in the (YX) polariza-
tion may be attributed to a small misalignment of the axes 
and/or to the additional interaction term in Eq. (16), which 
involves different combinations of the incident and scat-
tered polarizations. When φ'(δ) is rewritten with respect to 
the laboratory coordinate system the scattering intensity 
will depend on the additional magnetooptical coefficients 
B6 and B7. By comparing theory with experiment we are 
able to estimate the relative values of the magnetooptical 
coefficients and we find |B6/B7| ≈ 0.3. 

3.4. NiF2 

3.4.1. One-magnon scattering. In Fig. 9 we compare 
theory and experiment for the one-magnon scattering from 
the upper branch in (YZ) polarization for different values 
of  the ratio |G+/K+| [11]. Here we show results for in-
phase scattering, i.e., with K− = G− = 0 as for equivalent 
sublattices. It is noteworthy that theory curve 1, for which 
G+ = 0, does not decrease even as the temperature increas-
es to 0.9 TN. This can be understood from Eq. (38) of 
Ref. 11, because the decrease in the sublattice spin average 
is compensated by the increase in the thermal population 
factor. In the case of out-of-phase scattering the calculated 
line shapes are not very sensitive to the ratio |G–/K–|.The 
experimental data in Fig. 9 show that the integrated inten-
sity has a relatively weak dependence on temperature 
throughout the experimental range, which is indicative of a 
value for |G+/K+| of the order of 1. The theory curves for 
the Stokes intensity of the upper branch in NiF2 are qualita-
tively similar to those obtained in Ref. 14 for the one-
magnon scattering in MnF2. In Fig. 10 we show results in 
(YZ) polarization for the temperature dependence of the anti-
Stokes to Stokes intensity ratio for the lower energy branch. 
The theoretical results here are in qualitative agreement with 
experimental data if we include effects of the magneto-
optical coefficient G–. The theory curves are obtained taking 
G+ = K– = 0 and indicate that |G–/K+| = 0.25. 

We now consider the off-diagonal (YX) polarization. 
For this polarization two new magnetooptic coupling coef-
ficients need to be introduced; K3 and G3 [11]. Setting G3 
= 0 results in the contribution to the integrated intensity 
due to the upper branch vanishing. When the quadratic 

Fig. 8. Comparison of theory curve and experimental points for
the low-temperature (~5 K) two-magnon Raman spectrum of 
CoF2 in diagonal (a) and off-diagonal (b) polarizations, as indi-
cated. The dotted lines show the theoretical results without the 
inclusion of magnon–magnon interactions. 
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Fig. 9. Comparison of theory and experiment for the temperature 
dependence of the Stokes integrated intensity in NiF2 for the upper 
branch in (YZ) polarization. The theory curves are obtained for the 
following values of |G+/K+|: 0.0 (1), 0.1 (2), 1 (3), and 100 (4). 
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magnetooptic coefficient G3 is included, it is found that the 
intensity contribution due to the upper branch is quadratic 
in the spin canting angle and thus may be neglected be-
cause of the small canting angle in NiF2. This theoretical 
prediction is consistent with the fact that the upper branch 
one-magnon scattering was not observed experimentally in 
the Raman spectra recorded in (YX) polarization [11]. 

In Fig. 11 we plot the calculated anti-Stokes to Stokes 
integrated intensity ratio in (YX) polarization for the lower 
branch and we compare theoretical results with the expe-
rimental data. We show theory curves for different values 
of the relative magnetooptic coupling coefficients |G3/K3|. 
We find qualitative agreement between theory and experi-
ment when |G3| is small compared to |K3|, as expected. 
Qualitatively similar results are obtained in the case of 
(XY) polarization. 

3.4.2. Two-magnon scattering. In Fig. 12,a we compare 
theory with experiment for the Z(XX)Y diagonal polarization 
[9]. The solid line represents the 4

+Γ  mode only and is ob-
tained using our optimal set of parameters for NiF2 given in 
Table 2. The dotted line represents the theory curve without 
the inclusion of magnon–magnon interactions. The theoreti-
cal two-magnon peak frequencies for the 4

+Γ  and 5
+Γ  mod-

es are 203.3 cm−1 and 203.7 cm−1, respectively. For com-
parison, the dashed line shows the predicted two-magnon 
intensity using the set of parameters of Ref. 19. Here the 
height of the spectrum is scaled to coincide with the experi-
mental maximum intensity. Although the theory predicts 
some mixing of the 1

+Γ  and 4
+Γ  modes in this polarization 

we obtain a very good fit to the experimental data without 
any admixture of the 1

+Γ  mode, implying that the magnitude 
of the magnetooptical coefficient |B1| << |B3|. 

In Fig. 12,b we compare theory with experiment for the 
off-diagonal polarizations X(YZ)Y, X(ZX)Y, and Z(YZ)Y. 
All of these experimental polarizations investigate the 5

+Γ  
mode only. As in CoF2, the experimental spectra in these 
polarizations have similar line shapes and integrated inten-

Fig. 10. Comparison of the NiF2 lower energy branch anti-Stokes
to Stokes integrated intensity ratio in (YZ) polarization for differ-
ent values of |G–/K+|: 0.30 (1), 0.25 (2), and 0 (3). 
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points for the low-temperature (~10 K) two-magnon Raman spec-
trum of NiF2 in diagonal (a) and off-diagonal polarizations (b), as 
indicated. 
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sities and thus we are unable to deduce relative values of 
the magneto-optical coefficients B4 and B5 except to con-
clude that one is far greater in magnitude than the other. 
By comparing the integrated intensities in the different off-
diagonal polarizations we find that |(B4 ± B5)/B3| ≈ 0.5. 

The weaker scattering observed in X(YX)Y polarization 
may be attributed to the 45° rotation of the experimental 
axes with respect to the crystal axes. Allowing for the pos-
sibility of a small misalignment of the axes we expect a 
weak scattering signal with the spectral features of the Γ4

+ 
mode. The similarly weak scattering spectrum observed in 
the diagonal polarization X(ZZ)Y gives an asymmetric line 
shape with a peak frequency that is ~10 cm–1 greater than 
the peak frequencies observed in other polarizations. A 
similar feature was observed for the two-magnon spectrum 
in the (ZZ) polarization in FeF2 [16]. The calculated spec-
trum for the (ZZ) polarization appears as a flat non-
resonant band because of weighting of the zone-center 
point and does not account well for the peak feature ob-
served in the experimental measurement. Nevertheless, 
from the integrated intensity we deduce that |B2/B3| ≈ 0.2. 

4. Discussion of magnetooptic coupling parameters 

4.1. One-magnon coefficients 

From a theoretical analysis of the integrated intensity as 
a function of temperature of the very weak one-magnon 
scattering in MnF2 we have shown that in-phase linear 
magnetooptic coupling (involving the coefficient K+) pro-
vides the dominant effect, although small admixtures due 
to quadratic magnetooptic coupling and out-of-phase scat-
tering may also be present (see Table 3). This contrasts 
with the one-magnon scattering from another rutile-
structure antiferromagnet, FeF2, which has also been stu-
died in detail. In FeF2 the one-magnon scattering is much 
stronger and in-phase quadratic magnetooptic coupling 
plays an important role. The relative weakness of the one-
magnon scattering in MnF2 can be partly attributed to the 
small value of ωA, which weights K+ in Eq. (10), and part-
ly due to differences in the magnetooptic coefficients for 
MnF2 and FeF2. For example, from Raman data on MnF2 
(Ref. 14) and FeF2 (Ref. 12) recorded under similar condi-
tions, we find for the ratio of one-magnon integrated inten-
sities at approximately 10 K that 

 IS (MnF2)/IS(FeF2) ~ 10–2. (18) 

On the basis of linear magnetooptic coupling only it 
can then be estimated that K+(MnF2)/K+(FeF2) = 0.2. 
However, if the quadratic magnetooptic coupling in FeF2 
is properly taken into account [using Eqs. (9), (10), and 
(11)], we find that K+(MnF2) and K+(FeF2) become more 
comparable in magnitude. We conclude that the quadratic 
coupling term has the effect of enhancing the intensity in 
FeF2 relative to MnF2. Because of the weak magnetoop-
tic coupling and the low frequency of the magnon in 

MnF2, it would be extremely difficult to observe any crit-
ical effect in the one-magnon scattering near TN using the 
Raman technique. However, such critical scattering may 
be observable with the Brillouin technique, as applied for 
example to KNiF3 [20]. 

As can be seen from Table 3, the in-phase and out-of-
phase quadratic magnetooptic coefficients for NiF2 play an 
even more significant role in determining the strength of 
the one-magnon scattering intensity compared with MnF2 
and FeF2. This may, in part, be attributable to the canting 
and its weak associated ferromagnetic moment in NiF2, 
which do not occur in the other materials.  

However, the out-of-phase linear and quadratic magne-
tooptic coefficients are generally negligible for antiferro-
magnets with the rutile structure and in-phase linear coupl-
ing is the major contribution to the scattering intensity. 

Interestingly, in the one wavelength dependent study 
performed so far, |G+/K+| for FeF2 was found to increase 
with increasing wavelength (see Table 3). The origins of 
this behavior could be found from comparisons with re-
sults from further measurements of the magnetic birefrin-
gence and field-dependent Faraday rotation in FeF2. Simi-
lar studies would be worth carrying out for the other 
antiferromagnets. Additional details of the coupling me-
chanisms could also be obtained from inelastic light scat-
tering studies of these transition-metal fluorides in an ex-
ternal magnetic field. 

4.2. Two-magnon coefficients 

As can be seen from Table 4, the relative B coefficients 
for MnF2 are quite similar to those of FeF2, and the same 
is true for the absolute scattering intensities. The ratio of 
the integrated intensities of the 5

+Γ  two-magnon scattering 
in MnF2 (476.5 nm excitation) and FeF2 (514.5 nm excita-
tion) is 0.82 ± 0.05. The corresponding ratio is 0.52 ± 0.03 
with excitation at 647.1 nm for FeF2. In deriving these 
ratios, corrections have been made for the frequency-to-
the-fourth-power scattering law, but the spectrometer and 
photomultiplier responses have not been included. As the 
combined spectrometer and detector response is almost flat 
around 500 nm and then slowly falls with increasing wave-
length, it is not possible to attribute the difference between 
the above ratios to mainly instrumental effects. There must 
also be a major contribution from the wavelength depen-
dence of the scattering in FeF2, which has already been 
noted for the one-magnon scattering. Another point of note 
is that the coefficient ratio K+/B3 is about the same for both 
MnF2 and FeF2. 

The magnetooptic coupling coefficients obtained for 
CoF2 and NiF2 are broadly similar to those found for MnF2 
and FeF2 (see Table 4). 
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5. Conclusion 

In conclusion, this first detailed comparison of the mag-
nitudes of the various coupling coefficients for four rutile-
structure compounds has revealed surprising similarities in 
many coefficients. In one-magnon Raman scattering, the in-
phase linear magnetooptic coefficient dominates and the 
main differences between MnF2, FeF2, and NiF2 lie in the 
relative significance of the in-phase quadratic magnetooptic 
coefficient. Thus the quadratic coefficients are now seen to 
be of particular importance in determining the strength of 
the one-magnon scattering in a variety of insulators. The 
role of quadratic magnetooptic coupling has been demon-
strated also for other iron compounds, in particular, includ-
ing Y3Fe5O12, FeCl2, and FeBr2. It would be informative to 
make similar detailed comparisons with antiferromagnets 
possessing these and other crystal structures, but containing 
a variety other metal ions, to quantify further the relative 
significance of the linear and quadratic terms. 

In two-magnon Raman scattering, magnetooptic coeffi-
cient B3 dominates for all of these antiferromagnets. How-
ever, each of the other coefficients are remarkably similar 
in magnitude, in general, and not negligible in most cases, 
indicating some universality in the way light interacts with 
the pairs of magnons of opposite and equal wave vector 
created in antiferromagnets having the rutile-structure 
crystal symmetry. 
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