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Nonlinear transport properties of the two-dimensional Wigner solid of surface electrons on superfluid

helium are studied for alternating current conditions. For time-averaged quantities like Fourier coefficients,

the field-velocity characteristics are shown to be qualitatively different as compared to that found in the DC

theory. For a spatially uniform current we found a general solution for the field-velocity relationship which

appears to be strongly dependent on the current frequency. If the current frequency is much lower than the

ripplon damping parameter, the Bragg–Cherenkov resonances which appear at high enough drift velocities

acquire a distinctive saw-tooth shape with long right-side tails independent of small damping. For current

frequencies which are close or higher than the ripplon damping coefficient, the interference of ripplons ex-

cited at different time intervals results in a new oscillatory (in drift velocity) regime of Bragg–Cherenkov

scattering.

PACS: 67.90.+z Other topics in quantum fluids and solids;
73.20.–r Electron states at surfaces and interfaces;
73.25.+i Surface conductivity and carrier phenomena.
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Introduction

Electrons trapped on the surface of liquid helium form

a clean two-dimensional electron system of which the av-

erage Coulomb interaction energy can greatly exceed

the average kinetic energy (for a review, see [1,2]).

For typical electron densities realized experimentally

( )ns � 10 9 2cm � , the Fermi-energy of surface electrons

(SEs) is much smaller than temperature. Therefore at a

low enough temperature, depending on the surface elec-

tron density (T nc s� ), this electron system undergoes a

transition to the Wigner solid (WS) state. This was first

observed by Grimes and Adams [3] from the onset of

resonances induced by electron interaction with capil-

lary-waves (ripplons) whose wave-vector q is close to

electron reciprocal lattice vectors g. Since the electron

lattice determines a specific set of frequencies � �n gn
�

(here n �1 2 3, , ,�, � � �q q� / /3 2 is the ripplon spec-

trum, � is the surface tension, and � is the mass density of

liquid helium), experimental evidence for a triangular

electron lattice on a liquid-He surface was given. Electron

interaction with such ripplons appeared to be very strong,

leading to a huge reconstruction of the WS phonon spec-

trum in the low frequency range [4].

The resonances of Grimes and Adams occur when the

frequency of the input signal � is close to �n . Transport

properties of the WS of SEs are usually studied under

much lower frequencies (� ��� 1). Nevertheless, even

under low frequency conditions the resonant interaction

with ripplons of frequencies which are close to �n ap-

pears to be possible as a nonlinear conductivity effect [5].

The physics of this phenomenon can be explained as fol-

lows. The pressure at the interface induced by the WS

moving with a constant drift velocity v can be represented

as a series of terms proportional to exp [ ( )]i tg r – v� , where

r is the in-plane coordinate vector. As a function of t, it

can be considered as a series of harmonic perturbations

with frequencies gv, and one can expect a resonance res-

ponse of the system when gv is close to �n . It should be

noted that the corresponding velocity v1 1 1�� / g is ra-

ther low (typically about 1–10 m/s) while the thermal ve-
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locity of electrons in the liquid state is usually much

higher (about 3 10 3� m/s). Therefore the single-electron

Cherenkov emission of ripplons is a quite usual phenome-

non contributing into resistivity of SEs on liquid helium.

The important point is that for a moving WS with

gv 	 �n , the response of the system can be considered as

a coherent Bragg–Cherenkov (BC) scattering. This effect

was first described by the usual perturbation treatment [6]

which leads to symmetrical peaks of the electron collision

rate with non-Lorentzian tails.

Besides direct BC scattering effects limiting the WS

velocity [5], there are other interesting nonlinear conduc-

tivity (
) phenomena observed for SE transport over

superfluid helium. In the presence of the magnetic field

oriented normally to the surface, 
 xx
�1 as a function of the

input voltageV has a remarkable N-type anomaly [7]. The

decreasing part of 
 xx V�1( ) was attributed to the BC scat-

tering. When studying WS confined in the channel geom-

etry, periodic conductance oscillations with varying the

drift velocity were observed [8]. These oscillations were

attributed to anisotropic spatial order with lines of elec-

trons along the channel edges. Complicated nonlinear

conductivity of the WS was observed for current fre-

quencies which are close to typical frequencies of plas-

mon–ripplon coupled modes [9]. Interesting WS velocity

jumps caused by the decoupling of electrons from the sur-

face deformation were recently observed for the WS in a

channel [10].

Unfortunately, for q g	 1 the electron–ripplon cou-

pling is strong which leads to a huge increase of the elec-

tron effective mass at low frequencies due to surface dim-

ples [4]. Under such conditions the perturbation treatment

is doubtful and coupled WS phonon–ripplon modes are

usually treated in a self-consistent way [11,12]. In this

treatment the most of the interaction Hamiltonian of the

WS with ripplons of q g	 1 is included in the description

of the coupled modes. Therefore, a simple classical model

of coherent BC scattering of capillary waves for the WS

moving with a constant velocity [13] seems to be more ap-

propriate than a perturbation treatment. This model was

introduced in order to analyze a complicated nonlinear

magnetoconductivity observed previously [7]. An exten-

sion of this model applied to liquid 3 He allows to explain

the nonlinear field-velocity characteristics of the WS

under strong ripplon damping conditions [14,15].

Application of the models of coherent BC scattering to

the nonlinear WS transport on liquid 4 He is difficult for

several reasons. First, experimental geometries usually

imply that the driving electric field and electron current

density are not spatially uniform. Secondly, measure-

ments are done under AC conditions when the electron

velocity and driving electric field are periodic functions

of time with the period 2� �/ which is much longer than

the typical ripplon oscillation period 2 1� �/ . Moreover,

the damping of ripplons � q in superfluid 4 He is anoma-

lously small [16], which means that BC peaks of the

classical model are extremely narrow and some other ef-

fects not included in the model can significantly affect its

main results.

In this work we study the surface-displacement profile

and field-velocity relationship for spatially uniform alter-

nating motion of the WS over superfluid 3 He and 4 He un-

der small ripplon damping conditions: � �g1 1�� . For ar-

bitrary frequency of the current �, the exact expression

for the field-velocity relationship can be found. This solu-

tion appears to be strongly dependent on the ratio � �/ g .

Therefore, we separate two frequency regions: � ��� g

and � �� g . In both regions, the nonlinear field-velocity

characteristics obtained here for time averaged quantities

differ significantly from those obtained in the DC model.

In the high frequency region � � �g g� �� , we expect the

appearance of a new BC scattering regime of the WS

transport caused by interference of ripplons excited at dif-

ferent time intervals. This frequency region is usually re-

alized in experiments on nonlinear WS transport over

superfluid 4 He, and, therefore, we expect that our new

results will help to understand the nonlinear electronic

response observed.

Dimple profile evolution induced by the drift velocity

The analysis of the classical BC scattering given in

Ref. 13 was restricted to a simplified one-dimensional DC

model. The damping effects were considered in a

phenomenological way. Here we consider more realistic

2D model of alternating motion of the WS with a particu-

lar ripplon damping defined for both 3 He and 4 He. We

investigate shape variations induced by the WS velocity

and ripplon damping which are very important for under-

standing the nonlinear WS transport.

We assume spatially uniform motion of the WS, which

means that all electron lattice sites have the same dis-

placement vector s( )t in external fields. In this case the

electron pressure at the interface induced by the WS mov-

ing with an arbitrary velocity can be presented in the

following form:

P t n V i ts g
( )( , )

~
exp [ ( ( ))],el

r g r s

g

� � �
 (1)

where
~

exp ( / )V V q uq q f� � � �2 2 4 , the electron–ripplon

coupling Vq depends on the holding electric field E� di-

rected normally to the surface and on the wavenumber q

[2], and � �u f
2 is the mean-square displacement of elect-

rons from lattice sites due to fast coupled phonon–ripplon

modes whose frequencies are limited by � �f �� 1. Actu-

ally, � f is the frequency of electron oscillations in the po-

tential of a steady dimple. A simple self-consistent treat-

ment [12] gives
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me is the free electron mass, and ct
2 is the transverse

sound velocity of the electron solid.

Considering ripplons as an ensemble of surface oscil-

lators with a certain damping parameter � q surface dis-

placements �( )r induced by pressure perturbations of

Eq. (1) can be found in a quite general form:

�
� �

�g

g s

( )

~

�
sin [ � ( )]

exp [ (

t
n gV

t t

i t

s g

g

t

g� �
�

� � �

� � � �
��
�

) ( )] ,� �� �� g t t dt (4)

where �� � �g g g� �2 2 . Here we extend the treatment

given in Ref. 2 into the range of a finite but small ripplon

damping. For AC conditions s s( ) sin ( )t t� 0 � . Introduc-

ing the new variable � � � �t t and assuming �� �� 1 we

represent s s v( ) ( ) ( )t t t� � � �. In this approximation sur-

face displacements can be found as

�
� � �

g
g s

gv gv
( )

~

[ ( ) ]
,( )t

n gV

i

s g

g g

i t� �
� �

� �
2 2 2

e (5)

where v = s 0� �cos ( )t is the WS velocity. This equation

represents dimple sublattice moving in-phase with the

WS. In the limit gv 	 0, Eq. (5) surely gives the well

known shape of steady dimples which is independent of

damping. If gv ��g , the shape of dimples is affected by

the WS velocity and damping. Thus, under the condition

�� �� 1, which according to Eq. (4) requires � ��� g , the

dimple shape changes with time continuously in such a

way that it is always adjusted to a given velocity v( )t . In

other words, for any fixed value of v( )t the dimple shape

is the same as that defined by the DC theory with the cor-

responding WS velocity.

For liquid 3 He, the weak ripplon-damping regime can

be realized only for superfluid phase at T � 0 3. mK. In

this case, � g is determined by ballistic bulk quasiparticle

scattering from an uneven interface [15]:

�
� �

q
Fk

f T q�
�( )

( / ) ,
4

28
2 � (6)

where k F is the Fermi momentum of quasiparticles in liq-

uid 3 He, � is the excitation gap, and f x x( ) ( )� � �e 1 1.

The ripplon damping of superfluid 3 He decreases with

cooling at an exponential rate. Still, in experiments on

WS it can be just reasonably small (� �g g/ .� 01or 0 01. ).

In contrast, the ripplon damping in superfluid 4 He is

anomalously small. In the ballistic regime it is given by

[16]

�
�

�q
T

q�
�

�
��

�

 
!!

2 4

60

�

�v 4He

, (7)

where v 4He is the first sound velocity. For ns � �10 9 2cm

and T � 0 5. K, a simple estimate gives � �g g1 1
10 4/ � � .

Thus, for WS transport on superfluid 4 He the damping

coefficient of ripplons is extremely small. It is remarkable

that this damping coefficient has the same dependence on

the wave-vector q as that found for the ballistic regime of

liquid 3 He [Eq. (6)].

In the reference frame moving along with the WS, the

dimple profile given by Eq. (5) can be evaluated as

�
�

�

�

( )

~

| ( )|
[( ( ) ) cos ( )

s

r
v

gv gr

gv

gg

� � � �

�



n gV

D

s g
g

g

2

2 2

2 in ( )] ,gr (8)

where D ig gg v gv gv( ) ( )� � �� �2 2 2 . At low temperatures,

especially for superfluid 3 He, the summation over a large

number of g is necessary to ensure the convergence of the

result. Consider r � ( , )x 0 and assume that the driving

force �eE is directed along to the x axis. Then, according

to Eq. (8), in the absence of damping, dimples have a sym-

metrical shape with regard to electron lattice sites. A fi-

nite damping introduces asymmetry in the dimple shape

due to the terms proportional to sin ( )g xx .

Shape variations of surface dimples induced by a finite

WS velocity are very sensitive to orientation of the vector

v with regard to symmetry axes of the WS. We shall con-

sider the following two typical directions. The direction

of the vector v which is parallel to the line connecting two

nearest neighbors of the electron lattice will be called NN

direction. The direction of v which is parallel to the line

connecting second neighbors will be called SN direction.

If the ripplon damping coefficient �1 is not too small

(about 0.1�1), the asymmetrical variations of the dimple

shape start already at substantial shifts from the BC reso-

nance as shown in Fig. 1,a,b for two typical directions

of the velocity vector. Here the dimple shape of a motion-

less WS is shown by the solid line. The first shape-line

(dashed) of moving dimples is calculated for dimension-

less velocity u � �v v/ 1 0.6 (here v1 11
��g g/ ). For each

next curve shown in this figure, the parameter u is in-

creased by steps equal 0.1 except for the curve calculated

at u � 2 / �. The last curve is calculated for the critical

velocity u c of the first BC resonance, which equals 1 for

the SN direction (Fig. 1,b), and 2 / � for the NN direction

(Fig. 1,a). For the symmetrical dimple shape, the average

force acting on electrons is obviously zero. The strong

shape asymmetry appears in order to transfer the kinetic
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friction acting on the dimple sublattice by the environ-

ment to the electron crystal.

For significantly smaller damping coefficient

� �1 10 01� . , which is expected for superfluid 3 He at

T � 0 2. mK, substantial shape changes appear only if the

WS velocity approaches the first BC resonance or ex-

ceeds it. Dimple shape variations which occur near the vi-

cinity of the first resonance are shown in Fig. 2. The im-

portant point is that the velocity-induced displacements

found for u u c� � 2 / � are much larger (about 15 times)

than surface displacements in the initial surface dimple.

This means that dynamic decoupling of the WS from sur-

face dimples which shall be discussed below for a fixed

field condition is accompanied by creation of huge dis-

placement waves moving in the same direction.

At u u c� , in spite of huge changes in the dimple pro-

file the average position of an electron remains the same

being fixed to the potential minimum formed by the dim-

ple potential and the driving electric field. For experimen-

tal conditions with a given current, we may consider the

evolution of surface dimple profile even at u u c� . For ex-

ample, at u �1 3. surface displacements induced by the

WS velocity are already substantially reduced, still their

amplitude is larger than the initial dimple depth.

It is instructive to consider dimple shape variations in-

duced by WS velocity which is away from the first BC

resonance condition. The corresponding calculations are

shown in Fig. 3. As expected, at u u c� �0 8. the WS ve-

locity just increases the dimple depth. Significantly faster

velocities u �10 cause the opposite effect: the surface dis-

placements are substantially reduced. For u � 9 we acci-

dentally reached one of higher BC resonances, causing

strong asymmetry in the dimple shape. A small detuning

up to u �10 makes the shape nearly symmetrical which

means that the force transferred to the WS by dimples is

close to zero. It is instructive that in the limit u 	 � sur-

face displacements still remains as shown in Fig. 3 by the

straight dotted line, but instead of individual dimples we

have a row of interface valleys oriented in the direction of

motion.

Shape variations induced by BC resonances lead to

strong changes in the associated mass of an electron dim-

ple M d which is given by

M
n g gV

d
s x g

g g

( )

~

( ( ) ) ( )
v

gv gvg

�
� �


� � �

2 2

2 2 2 22
, (9)

where v is directed along the x axis. For a finite thickness

of the liquid helium d, each term in the sum should be

multiplied by coth ( )gd . Obviously, the BC resonances in-

crease the associated mass of a surface dimple. In the lim-

iting case gv 	 �, the associated mass M d ( )v disappears
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Fig. 1. Variations of the dimple sublattice profile �( , )x 0 in-

duced by the WS velocity for two typical velocity orientations:

NN direction (a), and SN direction (b). Steady dimples are

shown by the solid line. The dimensionless velocity increases

from u � 0.6 to higher values by steps equal 0.1. Calculations

are performed for superfluid 3He, ns �108 cm–2,

E� �189 V / cm, and T � 0.277 mK (� �1 1/ � 0.1).
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Fig. 2. Variations of the dimple sublattice profile �( , )x 0 in-

duced by the WS velocity near the first BC resonance for ve-

ry small ripplon damping � �1 1/ � 0.01. The drift velocity

is oriented along the NN direction. Calculations are perfor-

med for superfluid 3He, ns �108 2cm– , E� �189 V / cm, and T �
0.2 mK.



because the dimple lattice is rearranged in a raw of val-

leys (terms with gv � 0 do not contribute in M d because of

the proportionality factor gx
2).

Field-velocity characteristics

The asymmetry of the dimple shape with regard to the

average electron position in a lattice site causes a force

F
( )D acting on the electron solid. In equilibrium this force

is balanced by an external driving field. By definition,

F
( )D is the sum of forces acting on each electron

� #
 #
e

eV int / r averaged over electron distribution within

the dimple [here V int ( )r is the electron–ripplon inter-

action Hamiltonian whose Fourier transform Vq was

used in Eq. (1)]. Electron distribution caused by long

wave-length fluctuations with � �� 1 occurs together with

surface dimples and therefore it should be excluded from

the averaging. Then, the average of the electron density

operator n i
e

e� � 
q qrexp ( ) can be found as

� � � � � � � ��n N q u i tf e fq q gq sexp [ / ( )] .,
2 2 4 $ (10)

Using this equation and Eq. (4) in the general expression

� � #
 # �
e

e fV int / r , the force acting on the WS can be writ-

ten as

F g

g

g

( ) eD
e

s g

g
gt N

n gV
g( )

~

�
sin ( � )

sin { [

� � �

�


 �
�

�
2

0
��

� �
� �

s s( ) ( )]} .t t d� � � � (11)

For any spatially uniform displacement s( )t given, this

equation defines the in-plane force induced by the dimple

sublattice.

If the time scale of the WS displacement vector s( )t is

much longer than � ��1/ g , then g s s[ ( ) ( )]t t� � � can be

approximated by gv( )t �. In this limit F
( )D has the same

form at that given by the DC treatment with the con-

stant velocity replaced by v( )t . In equilibrium, F
x
D

( )
( )

as well as the kinetic friction of the electron lattice

F N
x e e( )
( )fric � � % v caused by electron scattering of other

kinds are balanced by the external force N eEe (here we

assume that magnetic field is zero). The solution of the

balance equation can be represented as a field-velocity

characteristic E( )v :

E
n

e

g gV

g g

ms x g g

g x g x

e e( )

~

( )
v v

v v

�
� �

�
�

�

� �

%
2 2

2 2 2 2 2 2 2

2

4g
e

v . (12)

Using this equation, E( )v can be calculated numerically

for any given damping coefficient and the collision fre-

quency % e caused by electron scattering with thermal

ripplons, vapor atoms, or even walls if WS is formed in a

channel geometry.

For the DC case, Eq. (12) is a two-dimensional exten-

sion of the classical one-dimensional model of BC scat-

tering reported previously [13] with the real ripplon

damping parameter and with more accurate elec-

tron-ripplon coupling. The driving field found from the

balance equation has sharp maxima in the vicinity of BC

resonance conditions gx g
2 2 2
v 	 � . If the driving field is

given and the WS velocity is adjusted to the field, then re-

gions with dE d/ v � 0 are unstable. This means that for

driving fields exceeding the major maximum of E( )v the

balance of forces is not possible and the WS decouples

from surface dimples. According to Fig. 2, decoupling of

the WS is accompanied by creation of huge surface waves

moving with the group velocity u c .

In experiments on WS transport, usually it is the cur-

rent which is given, while the driving field is adjusted to

the current by electron redistribution which screens the

external potential variations. This is supported by the fact

that regions with dE d/ v � 0 are experimentally observed

[8,14]. Therefore, field-velocity characteristics of elec-

trons moving ultra-fast with u u c� are very important for

understanding the nonlinear WS transport on superfluid

helium.

For liquid 4 He with � g / �g � �10 4 , Eq. (12) applied

to the DC case would give just a set of extremely sharp

peaks. At the same time, beyond these peaks E( )v is close

to zero. For liquid 3 He, the parameter � g / �g can be

much larger than it is for liquid 4 He (even larger than

unity) and BC peaks of E( )v can substantially overlap. It

is worth noting that E( )v depends strongly on the velocity

vector orientation with regard to the 2D electron lattice.

For example, in the NN direction of motion there is only

one major peak with | |g � g1 at u � 2 / � , while for the

SN direction there are two equivalent peaks with | |g � g1

at u �1and u � 2.

In contrast to models of BC scattering discussed previ-

ously, the real experimental situation has one unavoidable

Nonlinear wigner solid transport over superfluid helium under ac conditions
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complication: DC measurements are practically impossi-

ble and by now all data are obtained under AC conditions.

This means that WS velocity and the driving electric field

are periodic functions of time with the period 2� �/ . The

frequency of experimental signal usually varies from

10 4 1s� to about 6 10 5 1� �s which is much lower than the

typical ripplon frequency �1. Therefore, it is convention-

ally expected that the DC model of WS transport should

give qualitatively correct description of data obtained in

such experiments. We shall see that this is not true for two

major reasons.

First, we note that the condition � ��� 1 is not suffi-

cient for adiabatic adjustment of surface displacements to

WS velocity variations. For example at the BC resonance

condition (u u c� ) we have a huge wave which follows

the WS and for a change to much smaller displacements a

shape variation (without changing the amplitude) is not

sufficient. At the BC resonance the capillary wave accu-

mulates great energy which should be transferred to the

environment in order to make the transition from the sur-

face displacements calculated for u u c� � 1.155 (see

Fig. 2) to the surface displacements calculated for u � 1.3

or even for u � 1.1. This means that an adiabatic AC ex-

tension of the DC model requires an additional restric-

tion: the frequency of the current should be much lower

than the corresponding ripplon damping (� ��� 1). This

is actually the condition which allowed us to transform

Eq. (11) into Eq. (12). For WS transport over superfluid
3 He this condition is satisfied even at � g / �g � �10 2. Re-

garding liquid 4 He, the condition � ��� 1 requires to use

an AC frequency which is much lower than 10 4 1s� .

Secondly, even if the above noted condition is ful-

filled, Eq. (12) cannot be used directly for plotting field

velocity characteristics. Under AC conditions, it is impor-

tant which quantities are actually measured and presented

in the field-velocity characteristics. If time averaged

quantities are considered, in the nonlinear regime the out-

come can be qualitatively different for different kinds

of averaging. For example, even for harmonic velocity

u t0 cos � , the mean-square time averaging of the dri-

ving field � �E2 and averaging of the absolute value � �| |E

give qualitatively different results for the function

E u t( cos )0 � defined by Eq. (12). This could be easily

proven by considering the right-side tail of the BC reso-

nance in the limiting case � g 	 0. For averaging | |E , in

this limit a part of the corresponding integrand can be re-

arranged as the $-function [see Eq. (12)], and the final re-

sult will not depend on � g . In contrast, the integrand of

the quantity � �E 2 is squared, and, therefore, the resonance

tail of � �E2 increases with reducing � g .

As a measure of the alternating field one can choose

the main term of the Fourier series representing E t( ):

E E t t dt�

� �

� �
�
�

��

�
� ( ) cos ( )

/

/

. (13)

It is also a kind of time averaging, and similar to � �| |E it

has a finite resonance tail in the limiting case � g 	 0. In

the following we shall consider only quantities E� and

� �| |E which will be used for presenting the field-velocity

relationship.

Assume that the condition of given current is realized

and u t u t( ) cos� 0 � . Using the adiabatic treatment dis-

cussed above, we insert v v( ) ( )t u t= 1 into Eq. (12) and

evaluate the time integral of Eq. (13). It is convenient to

introduce two integer variables m and n to describe the re-

ciprocal lattice vectors g g gm n m n,
( ) ( )� �1 2 (here g

( )1

and g
( )2 are primitive vectors of this lattice). Then, after

some algebra, the Fourier transform E� can be repre-

sented as a function of the velocity amplitude

E u
n

e g

p V

g
Q ps

m n g

m nm n

m n
m n

�
�

�
( )

~

(
/

/

,

,
/

,

,
,

0 1

1 2

3 2
1

2

1 2
� 
v u

m

e
u

m n

e e

0

1 0

, )

.

,&

%

�

� v
(14)

Here we use the following dimensionless notations

p
g

g

g
m n

m n x

m n

,
,

,

/
( )

,�
�

�

�
�

�

 

!
!

g
2

1

1
3

3

1 2

&
�

�m n

g

g

m n

m n

,
,

,

,� 2 (15)

Q w
w dy

y w w y
( , )

[( ) ( )]
&

&

� &
�

� � � �

�

�
4

1 12 2 2 2 2 2

0

. (16)

The integral Q w( , )& can be evaluated in an analytical

form:

Q w
wG w w iw G

( , )

/

,&
&

&
�

� � �

'

(

)
)

*

+

,
,

2 1

1 22 2 2 2
Re (17)

where G( ) /& & &� �1 42 . Remarkably, in the limit

� g 	 0 (& 	 0) for w � 1there is a finite asymptote

Q w
w

w w

( , )
( )

,&
-

	
�

�

2 1

12
(18)

where -( )x is the unit step-function.

For � �| |E as a function of the dimensionless velocity

amplitude u 0, an equation similar to Eq. (14) is found.

The only difference which appears for such averaging is

that instead of Q w( , )& we should use another function

I w( , )& defined by
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As expected in the limiting case � g 	 0 (& 	 0), it also

has a finite asymptote

I w
w

w

( , )
( )

,&
-

	
�

�

1

12
(20)

which means that the right-side tails of BC resonances are

independent of small damping.

Already from the analysis of the integrals Q w( , )& and

I w( , )& given above one can conclude that BC resonance

tails of the AC treatment differ (even qualitatively) from

that found for the DC models. The left-side tail be-

comes even steeper for both E u�( )0 and � �| |E , while the

right-side tails extend far beyond the resonance and are

independent of ripplon damping in the limit � g 	 0. This

behavior is illustrated in Fig. 4 where E u�( )0 is plotted

for two typical directions of the WS velocity [NN direc-

tion (solid line), and SN direction (dashed line)] assum-

ing � g 	 0. The other parameters are taken for the liquid
4 He case. Thus, instead of $-peaks of the classical BC

scattering model here we have saw-tooth shaped peaks

with long right-side tails. As noted above, field-velocity

characteristics depend strongly on the direction of the WS

velocity. It is interesting that for the SN direction there

are two major BC peaks and the second one (at u 0 2	 )

becomes even more prominent than the first one because

in the AC cause at u 0 2� the velocity sweeps through the

both resonances. Of course, considering the limiting case

� �g / 1 0	 we should keep in mind that � should be

much smaller than � g . Therefore, real ripplon damping

should be taken into account for consistent analysis of

field-velocity relationships induced by BC scattering.

For nonlinear WS transport over superfluid 4 He, the

ripplon damping parameter is extremely small and the

condition � � �g g� �� is realized in most of known ex-

periments. This case requires a special treatment because

large surface displacements excited at a first instance of

u t u c( ) � cannot be relaxed back within the period of cur-

rent oscillations. Therefore a new steady regime will be

developed for each AC frequency, which can be far away

from the solutions found above for the condition� ��� g .

We have to return back to the exact solution of Eq. (11).

In this equation now we insert s t / tx ( ) ( ) sin ( )� v 0 � � and

then perform the time averaging defined by Eq. (13). Here

we disregard the unimportant correction induced by % e .

Then quite generally, E�( )v 0 can be found as

E
g n gV

e

x s g

g
g

g
�

� �

��
� �

��
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~

�
sin ( � ) cosv 0

2

0

2
2

� �

�
�
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�
�
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e
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! �
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�
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�

 
!

'

(
)

*

+
,J g dx1

02
2

v

�
��

�sin , (21)

where J z1( ) is the Bessel function of the first kind. For E�
as a function of the dimensionless velocity amplitude u 0,

an equation similar to Eq. (14) can be found. In the gen-

eral case, the integral Q w( , )& of Eq. (14) should be re-

placed by Q w( , , )& �� defined as

Q w y y

J
w

y

y( , , ) sin ( ) cos ( )

sin ( )

& � �

�
�

&� � � �

�
�

�'

�
��4 2

2

0

1

e

()
*

+,
dy , (22)

where � � �� � / � g . The dimensionless function Q w( , , )& ��
describes the shape of a single BC resonance of E u�( )0

for arbitrary current frequency and ripplon damping (here

w u� 0 and & �� g ). It is easy to see that in the limiting

case ��	 0 and & 	 0 analyzed above, Eq. (22) provides

the correct asymptote shown in Eq. (18). For conditions

� � �g g� �� , and gxv 0 1� , the argument of the Bessel

function entering the integrand of Eq. (21) attains huge

numbers because sin ( / )�� 2 1� . This can lead to remark-

able field-velocity relationships with side-oscillations

which we shall discuss in the following.

Results and discussions

Consider briefly the velocity-field relationship E u�( )

for WS transport over superfluid 3 He at T � 0.25 mK.

At such a temperature the damping coefficient � g1
�

� 1 54 10 6 1. � �s is much lower than the BC resonance
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Fig. 4. The first Fourier coefficient of the driving field E� vs

the drift velocity amplitude for two typical orientations of the

velocity: NN direction (solid line) and SN direction (dashed

line). Calculations where performed for superfluid 4He,

ns
–�109 2cm , T � 05. K, assuming the ripplon damping is set to

zero.



frequency �1 and is still much higher than the typical cur-

rent frequency �used in experiments. The later condition

makes the adiabatic AC extension of the BC scattering

model introduced here applicable. The results of numeri-

cal evaluations of Eq. (14) are shown in Fig. 5. The velo-

city-field characteristic given by the DC classical model

is shown by the dotted line. It consists of series of BC

peaks with nearly symmetric tails. For the first Fourier

coefficient as a function of the drift velocity amplitude,

the AC theory gives lower peaks which are asymmetric

with regard to the maximum positions. It is important that

time averaging used in evaluation of E u�( )0 do not

smooth out the BC resonances completely. Another im-

portant feature of the AC treatment discussed here is the

appearance of long right-side tails of the BC resonances.

The left-side tails (u u c0 � ) become even more steeper,

because under AC conditions electrons spend only a little

time near the BC resonance.

The most interesting experimental results on nonlinear

WS transport were obtained employing liquid 4 He [5,7].

In this case even for T � 0.5 K the ripplon damping pa-

rameter given by Eq. (7) is extremely small. First, we as-

sume that � is low enough to make Eq. (14) applicable.

The comparison of results obtained for the two kinds of

averaging of the electric field (E� and � �| |E ) is given in

Fig. 6, assuming that the velocity is along the NN direc-

tion and % e � 0. Here the sharp peaks of the DC model

(dotted line) are strongly smoothed by the time averaging

of the AC model (E� is shown by the solid line, and � �| |E

— by the dashed line). Additionally, the maximum values

of the BC peaks are greatly reduced as compared to the

results calculated for the DC case.

The influence of a finite electron collision frequency

% e due to scattering with thermal ripplons and walls is an-

alyzed for the SN direction and shown in Fig. 7. A reason-

able estimate for the electron collision frequency

% %e � 1
9 12 4 10� � �. s (for chosen ns , E� and T ) is found

considering electron scattering with thermal ripplons in

the usual way [2] and taking into account that at low tem-

peratures the average kinetic energy of an electron in the

WS state differs substantially from T . For experiments

with WS in the channel geometry, % e can be even higher

because of the WS friction at the channel walls. In order

to illustrate this effect is Fig. 7 we considered also a larger

value % %e � 2
9 175 10� � �. s . According to this figure, the
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Fig. 5. Field velocity relationship for the DC case (dashed

line), and the first Fourier coefficient of the driving field E� vs

the drift velocity amplitude for the AC case (solid line). Drift

velocity is oriented along the NN direction. Calculations where

performed for superfluid 3He, ns � �108 2cm , T � 0.25 mK.
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Fig. 6. Field velocity relationship for two kinds of averaging

of the alternative driving field: E� (solid line) and �� �| | /E 2

(dashed line). Drift velocity is oriented along the SN direc-

tion. Calculations where performed for superfluid 4He, ns �
� �109 2cm , and T � 05. K with the ripplon damping parameter

defined by Eq. (7).
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Fig. 7. The main Fourier coefficient of the driving field E� vs

the drift velocity amplitude for different values of the electron

collision frequency %e: 0 (solid line), 2 4 109 1. � �s (dashed line),

and 7 5 109 1. � �s (short dashed line). Drift velocity is oriented

along the NN direction. The DC case results are shown by the

dotted line. Calculations where performed for superfluid 4He,

ns � �109 cm 2, T � 0.5 K.



electron collision frequency % e affects the both tails of

the field velocity characteristic. At the left-side % e and

time averaging of Eq. (13) act in the opposite ways. The

left-side tail (u u c0 � ) becomes less steep for a finite % e .

At the right-side % e acts in the same way as the time aver-

aging, increasing the right-side tail and making E u�( )0

more flatter in the region u u c0 � . In general, due to the

both these effects the field-velocity characteristic of the

WS acquires a distinctive «nose» shape.

The numerical calculations presented in Figs. 6 and 7

were done assuming � ��� g1
. In experiments on WS

transport over superfluid 4 He this condition was not

realized. The influence of the condition � �� g1
on the

field-velocity characteristics can be understood using

the general expressions for E�( )v 0 and Q w( , , )& �� given

in Eqs. (21) and (22). The main features of BC scat-

tering under AC conditions can be revealed from the

dimensionless function Q w( , , )& �� which describes the

shape of a single BC resonance [see Eq. (14)]. Consider

the main BC resonance when we can set w u� 0, & �
� 2 1 1� �/ and � � �� � / 1, and for simplicity assume & � 01. .

In the limiting case � &� �� , the function Q u( , , )0 0& coin-

cides with Q u( , )0 & obtained in Eq. (17). For example, it is

practically impossible to distinguish Q u( , , . )0 0 001& shown

in Fig. 8 by the solid line from Q u( , )0 & given by Eq. (17).

As a function of the dimensionless velocity, Q u( , , . )0 0 001&
has a typical saw-tooth shape discussed above.

Remarkable shape transformations of Q u( , , )0 & �� as a

function of u 0 occur when �� approaches and exceeds the

value of the parameter & which is proportional to ripplon

damping. A sharp (from the left-side) saw-tooth peak of a

single BC resonance is developed into distinctive smooth

oscillations which [according to Eq. (14)] result in similar

oscillations of E u�( )0 . The amplitude and the period of

oscillations are gradually increase with �� in the range

considered. These oscillations represent a new regime of

BC scattering of the WS which occur under the AC condi-

tion, when the current frequency becomes comparable or

larger than the ripplon damping.

The period of new conductivity oscillations depends

on the relation between the frequency of the current �and

the frequency of ripplons excited �g . According to Fig. 8,

it increases with the ratio � �/ g . The ripplon damping

just decreases the amplitude of oscillations. The later is il-

lustrated in Fig. 9 where Q u( , , )0 & �� is plotted vs u 0 for a

fixed value of the ratio � �/ .1 0 05� and different values of

the damping parameter.

There are other important points which follow from

Figs. 8 and 9. For low damping the first maximum of the

field-velocity characteristic can be substantially larger

than the BC peak value found in the limiting case � ��� 1.

Secondly, due to the finite frequency �, even for a very

small ripplon damping the left-side tail is not steep as it

was for � ��� 1. Additionally, the maximum position is

substantially shifted to higher drift velocities.

The physics of side-oscillations in the field-velocity

relationship can be explained as follows. If u u c0 � , then

even during a period of current oscillations the WS passes

through the BC scattering point four times. The phase dif-

ference between surface waves of the same q g� excited

at different times increases with the velocity amplitude.

Thus, depending on the velocity amplitude u 0 the excited

waves can interfere constructively or destructively, which

is the reason for the side-oscillations. The higher fre-

quency of the current, the larger amplitude is necessary to

produce the same phase-difference.
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Most of experiments on the nonlinear WS transport are

performed using a Corbino geometry of which the alter-

nating current is spatially nonuniform, and only a limited

area of the WS can satisfy the BC scattering conditions.

This area changes with time because of the AC condi-

tions. This experimental situation is very difficult to ana-

lyze. One may conclude that spatial variations of the cur-

rent would additionally smooth out the BC resonances. It

should be noted that the field-velocity characteristics of

the WS with a «nose» shape without the BC peaks where

observed in the experiment on WS transport in a channel

geometry [8]. It is interesting that conductance oscilla-

tions similar to the BC oscillations shown in Fig. 8 were

also reported in this experiment. Therefore, our theoreti-

cal results give an alternative explanation for oscillations

in electronic response observed for SEs on superfluid

helium 4 He.

Conclusions

In summary, we have analyzed the nonlinear WS trans-

port over superfluid 3 He and 4 He under AC conditions.

The theory developed for a spatially uniform alternating

current indicates that the field-velocity relationship ob-

tained previously in the classical DC model of BC scatter-

ing is not applicable for time averaged quantities such as

the first Fourier coefficient. The detailed analysis is given

for two important limiting cases of low and high fre-

quency of the electron current. For frequencies which are

much lower than the ripplon damping coefficient, calcu-

lations based on the new theory lead to asymmetric BC

peaks of a saw-tooth shape which are strongly broadened

at the right side. The broadening of the right-side tails do

not depend on small ripplon damping. The left-side tails

of the BC resonances become even steeper which

preserves the main BC anomaly in the field-velocity

characteristic.

For current frequencies which are comparable with the

ripplon damping or even higher, the new nonlinear re-

gime of BC scattering of the WS is reported. In this re-

gime each BC peak is transformed into an oscillatory

field-velocity relationship due to interference of ripplons

multiply excited at different times. The evolution of sur-

face displacements of the dimple sublattice with increas-

ing the current amplitude calculated in this work, as well

as the new field-velocity relationships obtained for alter-

nating current, help to understand the nonlinear conduc-

tivity of the WS on superfluid helium observed in

different experiments.
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