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Amorphous polymeric nitrogen – toward equation of state
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The thermodynamic properties of amorphous polymeric nytrogen are analyzed theoretically basing on

free energy expansion. An approach allowing estimating Helmholtz free energy of high-pressure disordered

condensed phases of nitrogen is proposed. The approach is based on expansion of the excess entropy on in-

teratomic correlations and tested on existing Monte Carlo simulation data. Some specific problems arising

on this way and their possible solutions are discussed.

PACS: 65.20.De General theory of thermodynamic properties of liquids, including computer simulation;
65.20.Jk Studies of thermodynamic properties of specific liquids;
64.30.Jk Equations of state of nonmetals.
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1. Introduction

The anomalous behavior of the shock-compressed ni-

trogen was discovered many years ago by Radouski,

Nellis and Ross [1]. It was interpreted as a dissociation of

N 2 molecules with formation of non-molecular phase.

First theoretical calculations of McMahan and LeSar [2]

of the solid nitrogen atomic phase predict a stable layered

arsenic-like A7 polymeric structure, where each atom is

bound to three neighbours by ordinary chemical bonds.

Later ab initio calculations of Martin and Needs [3] show

the three-fold coordinated cubic gauche (cg) structure

must be more stable. The first experimental evidence of

non-molecular solid nitrogen at megabar pressures and

low temperatures was found later by Goncharov, Gri-

gorianz, Mao, Liu, and Hemley [4]. Analysis of spectra of

this phase performed by Grigorianz, Goncharov, Hemley,

and Mao [5] reveals the possibility of existence of the

metastable amorphous nitrogen solid. The problem of

high-pressure phase diagram of nitrogen was discussed

by Grigorianz, Goncharov, Hemley, Mao, Somayazulu,

and Shen [6]. Eremets, Hemley, Mao, and Grigorianz [7]

confirmed that the crystalline phase very likely has the

cubic gauche structure.

Equation of state of disordered polymeric nitrogen at

high pressures and temperatures was first proposed on the

basis of the simplest potential model of sticky spheres [8].

In our earlier Monte Carlo calculations [9], we predicted

the thermodynamic functions of polymeric nitrogen at

non-zero temperatures in the A7 arsenic-like structure us-

ing simple atom-atom potential model. Later, a more

sophisticated potential model was proposed [10]. It repre-

sents the total energy of polymeric nitrogen as a function of

both interatomic distances and angles between single

chemical bonds attached to each atom. The calibration of

the model was based on the ab initio quantum mechanical

calculations of Mailhiot, Yang, and McMahan [11] at

T � 0. This model was used in prediction of thermody-

namic behavior of both crystalline [10] and amorphous

[12] polymeric solid nitrogen at high pressures and non-

zero temperatures. Equilibrium properties of polymerized

solid nitrogen have been computed using Metropolis’

Monte Carlo method [10]. These simulations revealed that

the polymeric cg-crystalline structure of nitrogen at high

densities and elevated temperatures has negative thermal

expansion coefficient. It was found that the negative ther-

mal expansion appears in both threefold-coordinated poly-

meric nitrogen structures studied: in cg-crystalline and

amorphous phase, but not in the layered A7structure. Poly-

meric phases exhibit not only negative thermal expansion,

like other covalent structures, but also essential deviations

from the Dulong–Petit law [12]. Prediction of the

high-pressure phase equilibrium between molecular and

non-molecular condensed nitrogen require adequate equa-

tions of state for all phases, including fluid, amorphous and

crystalline polymeric phases [13]. The proposed modifica-

tion of the Mie–Gr�neissen model was applied in explana-

tion of thermodynamic behavior of the polymeric

high-pressure cg-phase of the solid nitrogen. The problem
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of equation of state for amorphous phase is more compli-

cated. The amorphous nitrogen solid can be modelled [12]

using averaging over a number of simulations with cells

containing overheated and then quenched polymeric nitro-

gen. To achieve the accuracy comparable to that character-

istic for Monte Carlo simulation of cg crystalline structure

[10], one needs much more efforts. At the same time, due

to spatially uniform structure of the amorphous phase the

modified Mie–Gr�neissen model [13] can be applied here

only formally and its parameters would have little sense.

Here we propose an approach providing an alternative

possibility to determine equation of state of amorphous

polymeric nitrogen using results of Monte Carlo calcula-

tions [12].

2. Excess entropy of amorphous polymeric nitrogen

Fortunately, this type of structure allows applying an-

other approach, suitable for fluids and other disordered

condensed phases [14]. This approach uses expansion of

free energy in series on interatomic correlations:

F F F F� � � �( ) ( ) ( ) ...1 2 3� � , (1)

where F ( )1 is the single-particle (ideal-gas) contribution,

and �F ( )2 , �F ( )2 , ... are contributions of pair, triple etc.

interatomic correlations. In the context of the computer

simulation data, internal energy is usually easy available

and the problem reduces to the entropy contribution to

Helmholtz free energy in (1).

S S S S� � � �( ) ( ) ( ) ...1 2 3� � , (2)

where S ( )1 is entropy of an ideal-gas, and the following

terms provide pair-, triple-, etc. correlation contributions

to entropy of a spatially uniform system.

Many attempts have been made to develop effective

expansion of excess entropy on density fluctuations and

particle correlation [14–17].

The most successful expansion [18] provides the

pair-correlation contribution �S ( )2 expressed via atom–

atom radial distribution function:

�S /k g R g R g R R dR( ) { ( ) ln ( ) [ ( ) ]}2 22 1� � � ���� . (3)

This contribution appears to be the most important one

both at low densities (where (3) is exact) and at high den-

sities, where the pair correlation contribution, according

to Ref. 18, captures 85–90% of the excess entropy, with

the largest discrepancy occurring at intermediate densi-

ties. It was successfully applied in estimating entropy of

various liquids (silica, beryllium fluoride and water) from

their atom–atom radial distribution functions, computed

using conventional molecular dynamics or Monte Carlo

simulations [17].

Amorphous polymerized nitrogen is extremely dense

and spatially uniform, its pair correlation functions are

known from Monte Carlo simulations [12], and hence this

approach seems a promising alternative to construction

of a semi-empirical Mie–Gr�neissen-like equation of

state.

At the same time, an immediate application of (3) en-

counters a difficulty related to the presence of strong,

short-range and saturative valence forces, acting between

nitrogen atoms. These forces are responsible for forma-

tion of three ordinary chemical bonds per each atom both

in crystalline and amorphous polymeric nitrogen. In

atom-atom distribution function these forces produce ex-

tremely narrow and high peaks like that shown in Fig. 1.

The contribution of such a peak to the excess binary en-

tropy (3) is essential and evaluation of �S ( )2 by direct nu-

merical integration of g R( ) may be related to a serious error.

To overcome this difficulty we adopt the separation of

atom–atom radial distribution functions into bonded

g RB ( ) and non-bonded parts g R g R g RB Bnon� � �( ) ( ) ( )

[19]. The last one is shown in Fig. 2. Except of a few

small peaks reflecting the indirect chemical bonding with

atoms in the second coordination sphere, it behaves

smooth enough to be used in numerical integration proce-

dure immediately.

The bonded contribution g RB ( ) differs from zero only

in a rather narrow range of distances near equilibrium

chemical bond length L. It satisfies the normalization con-

dition [19]:

4 2�� g R R dR vB ( )� � . (4)

Here v � 3 is atomic valence (the number of chemical

bonds per atom).

Another important point is: both contributions to g R( )

almost do not overlap. This peculiarity provides the pos-

sibility to represent the pair-correlation contribution

�S ( )2 as an approximate sum of «bonded» and «non-bon-

ded» parts: � � �S S S
B B

( ) ( ) ( )2 2 2� � �non
, where
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Fig. 1. Atom–atom radial distribution function of amorphous

nitrogen at room temperature (MC simulation [12]).
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2
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Numerical calculation of �S
Bnon�

( )2
is straightforward. To

calculate �S
B
( )2

, we propose the following procedure. To a

first approximation, the bonded contribution g RB ( ) may

be represented by a Gauss function:

g R A R LB ( ) exp[ ( ) ]� � �	 2 . (7)

Equation (7) contains three constants: A,	 and L. The nor-

malization condition (4) gives the possibility to exclude

one of them. Substituting (7) into (4) one gets:

A
v

L
�

�

	

�� 	

3 2

3 2 22 1 2

/

/ ( )
. (8)

Table 1. «Bonded» and «non-bonded» contributions to excess en-

tropy calculated using Monte Carlo atom–atom distribution func-

tion at room temperature and V � 804. cm
3
/mol [12] shown in

Figs. 1 and 2

L 	 A �S B /knon�
( )2

�S
B

/k
( )2 �S /k( )2

1.37 1650 19.33 –3.08 –2.19 �527.

Two other constants one may easily adjust to represent

the pronounced first g R( ) peak height and position. Sub-

stituting (7) into (6) and taking into consideration (8) one

gets:
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This expression for the bonded contribution �S
B
( )2

is the

more accurate the higher and narrower is the g RB ( ) peak,

i.e. for large 	. In the case 	 ��� 2 4L , Eq. (9) simplifies:

�S

k

v L

v

B
( )

ln

2 3 2 4

24
3

16
� �




�
�
�




�
�
�

�

�

�
�

�

�

�
�

� �

	
. (10)

The above approach allows estimating the excess en-

tropy of amorphous nitrogen using immediately only

atom–atom radial distribution functions, easily comput-

able in Monte Carlo simulation [12]. Results of �S
B
( )2

cal-

culations at room temperature and V � 8 04. cm3/mol are

presented in Table 1.

It is to be noted that the analogous calculation for

V � 6 0. cm3/mol gives higher value of entropy. This is an

indication of the negative thermal expansion, characteris-

tic for both crystalline and amorphous polymeric nitrogen

[10,12]. From thermodynamic relation � � � � �S V P T/ / ,

it is possible to estimate the average thermal pressure

P T P TT � � �( / ) in the volume interval 6–8 cm3/mol as:

PT � �65 MPa.

This value is just in between values determined in

Monte Carlo simulation [12]: �160 MPa (6 cm3/mol) and

� 45 MPa (8 cm3/mol).

3. Conclusions

Computer simulation of the metastable amorphous

high-pressure polymeric phase of condensed nitrogen is a

more complicated task than the simulation of the molecu-

lar or cg-crystalline phases [10] and requires much more

efforts and computation time. In this work, an approxi-

mate way of calculating excess entropy of amorphous

phase is tested, which uses only atom–atom radial distri-

bution functions determined in Monte Carlo simulations

[12]. This approach was developed for estimation of ex-

cess entropy of fluids and has never been tested on amor-

phous solids yet. If successful, it provides an easy solu-

tion of the problem of equation of state for this phase. Our

estimations prove the effectiveness of the above ap-

proach, despite of difficulties on account of interatomic

chemical bonding and related to a specific shape of radial

distribution function.

More efforts are required to estimate theoretically the

location of the P T� equilibrium line between the molecu-

lar and non-molecular phases of nitrogen. One of prob-

lems unsolved yet is the absence of the common origin of

a scale for interatomic potentials used in simulations of

both phases. Hopefully, this problem may be solved in the
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Fig. 2. Non-bonded part of atom–atom radial distribution func-

tion (amorphous nitrogen at room temperature [12]).



short run invoking precise ab initio calculations, avail-

able now [20].

Another point is determination of the relative stability

and abundance ratio of the high-pressure amorphous

phase of nitrogen in samples recovered from diamond-an-

vil experiments [4–7], because it may be a mixture of

crystalline and amorphous solid nitrogen. Ab initio calcu-

lations predict that the metastable low-pressure phase is

amorphous, i.e. has predominantly 3-folded bonded at-

oms in a disordered configuration [20]. This result con-

firms the initial suggestion [5] that the high-pressure and

high-temperature non-molecular phase is amorphous as

well, and the P T� phase transition line must be deter-

mined taking this circumstance into consideration. In this

case the excess entropy estimation provided in this work

may help in solution of the general phase equilibrium

problem.

1. H.B. Radouski, W.J. Nellis, and M. Ross, Phys. Rev. Lett.

57, 2419 (1986).

2. A.K. McMahan and R. LeSar, Phys. Rev. Lett. 54, 1929

(1985).

3. R.M. Martin and R.J. Needs, Phys. Rev. B34, 5082 (1986).

4. A.F. Goncharov, E. Grigorianz, H.-K. Mao, Z. Liu, and R.

Hemley, Phys. Rev. Lett. 85, 1262 (2000).

5. E. Grigorianz, A.F. Goncharov, R. Hemley, and H.-K. Mao,

Phys. Rev. B64, 052103 (2001).

6. E. Grigorianz, A.F. Goncharov, R. Hemley, H.-K. Mao, M.

Somayazulu, and G. Shen, Phys. Rev. B66, 224108 (2002).

7. M.I. Eremets, R. Hemley, H.-K. Mao, and E. Grigorianz,

Nature 411, 173 (2001).

8. E.S. Yakub, Zh. Fiz. Khim. 67, 305 (1993).

9. L.N. Yakub, Fiz. Nizk. Temp. 21, 1174 (1995) [Low Temp.

Phys. 21, 905 (1995)]; Fiz. Nizk. Temp. 22, 222 (1996) [Low

Temp. Phys. 22, 174 (1996)].

10. L.N. Yakub, J. Low Temp. Phys. 122, 501 (2001).

11. C. Mailhiot, L.H. Yang, and A.K. McMahan, Phys. Rev.

B46, 14419 (1992).

12. L.N. Yakub, Fiz. Nizk. Temp. 29, 1032 (2003) [Low Temp.

Phys. 29, 780 (2003)].

13. L.N. Yakub, J. Low Temp. Phys. 139, 783 (2005).

14. H.S. Green, The Molecular Theory of Fluids, North-Hol-

land, Amsterdam (1952).

15. I.Z. Fisher, Statistical Theory of Liquids, Engl. Edition, Uni-

versity of Chicago Press (1964).

16. J.A. Hernando and L. Blum, Phys. Rev. E62, 6577 (2000).

17. R. Sharma, M. Agarwal, and C. Chakravarty,

arXiv:0805.3595v1 [acond-mat.soft] 23 May 2008.

18. I. Borzsak and A. Baranyai, Chem. Phys. 165, 227 (1992).

19. E.S. Yakub, Molec. Phys. 77, 845 (1992).

20. K. Nordlund, A. Krasheninnikov, N. Juslin, J. Nord, and K.

Albe, Europhys. Lett. 65, 400 (2004).

426 Fizika Nizkikh Temperatur, 2009, v. 35, No. 4

L. Yakub


