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Two basic physical models, a two-level system and a harmonic oscillator, are realized on the mesoscopic 
scale as coupled qubit and resonator. The realistic system includes moreover the electronics for controlling the 
distance between the qubit energy levels and their populations and to read out the resonator's state, as well as the 
unavoidable dissipative environment. Such rich system is interesting both for the study of fundamental quantum 
phenomena on the mesoscopic scale and as a promising system for future electronic devices. We present recent 
results for the driven superconducting qubit–resonator system, where the resonator can be realized as an LC  
circuit or a nanomechanical resonator. Most of the results can be described by the semiclassical theory, where a 
qubit is treated as a quantum two-level system coupled to the classical driving field and the classical resonator. 
Application of this theory allows to describe many phenomena for the single and two coupled superconducting 
qubits, among which are the following: the equilibrium-state and weak-driving spectroscopy, Sisyphus damping 
and amplification, Landau–Zener–Stückelberg interferometry, the multiphoton transitions of both direct and lad-
der-type character, and creation of the inverse population for lasing. 

PACS: 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dy-
namic Stark shift; 
85.25.Am Superconducting device characterization, design, and modeling; 
85.25.Hv Superconducting logic elements and memory devices; microelectronic circuits. 
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1. Introduction 

A quantum system, subjected to external driving, can 
experience resonant transitions between its energy levels. 
Conservation of total energy assumes absorption or emis-
sion of several photons of the driving field. Such multi-
photon processes play an important role in atomic and mo-
lecular systems interacting with electromagnetic field [1]. 
For example, the multiphoton resonant spectroscopy is one 
of the methods to probe the structure of atoms and mole-
cules [2]. This technique has the advantage of observing 
highly excited states by using relatively low frequencies. 
The concept of another application, the multiphoton excita-
tion microscopy, is based on the multiphoton excitation of 
the fluorescent dyes molecules [3–5]. This technique al-
lows imaging biochemical objects with high spatial resolu-
tion. 

Recent development of fabrication and measurement 
techniques enabled a study of the wide spectrum of quan-
tum phenomena in superconducting structures. During the 
past years it has been clearly shown that specially designed 
macroscopic superconducting circuits, which include Jo-
sephson junctions, behave quantum mechanically similar 
to a quantum particle in a potential well. Under certain 
conditions, these objects demonstrate the coherent super-
position between their macroscopically distinct quantum 
states. It is important to note that this is a pure quantum 
effect which has no classical analogue and can be used for 
a number of intrigued applications. If the circuit's dynam-
ics can be described in the frame of the two-level approxi-
mation, such two-level quantum system is called a qubit. 
The advance in the study of different phenomena in super-
conducting qubits can be found in the reviews [6–10]. 

In general, superconducting Josephson circuits can be 
described as multilevel quantum systems. By analogy, such 
systems are called artificial atoms, while coupled qubits 
systems behave as artificial molecules. An interesting pro-
blem is how phenomena, known from atomic physics, will 
appear for these artificial atoms and molecules. Note that 
the following features differ these mesoscopic-size quan-
tum systems from their microscopic counterparts: a high 
level of controllability by electronic means, coupling to the 
macroscopic-size read-out devices, and unavoidable dissi-
pative environment. 

For characterization and controlling the states of super-
conducting qubits the one-photon spectroscopy was done 
by using relatively weak driving [11–18]. Matching of the 
ground and higher states with the one-photon energy was 
exploited to probe the upper levels of the Josephson-
junction circuits [19–26]. With increasing driving power, 
the multiphoton excitations were used to study the features 
of the artificial atoms both for the two-level dynamics [27–
31] and when the upper levels were involved [32–36]. For 
strong driving, the width of the resonance lines periodical-
ly tends to zero, which can be described as the destructive 

Landau–Zener–Stückelberg interference [37]. Respective 
interferograms displayed double-periodical dependence of 
the upper-level occupation probability on the energy bias 
and the driving amplitude [38–43]. 

Two and more coupled qubits can be treated as artificial 
molecules. Being excited by a resonant microwave field, 
they display one-photon transitions [44–51]. Alternatively, 
at smaller frequencies, the two-qubit systems can experi-
ence multiphoton transitions [52–55]. 

In this article we review the observations of the multi-
photon transitions in single and coupled superconducting 
qubits probed by a classical resonator, and also we present 
the respective theory. Having the purpose of presenting 
and describing specific results for the multiphoton transi-
tions, our consideration is limited to the Josephson-
junction qubits. We note however that similar phenomena 
can be studied in different quantum objects, which can be 
described as two- or multi-level systems, such as quantum 
wires and dots [56–60], nitrogen vacancy centers in dia-
mond [61,62], ultracold atoms [63–65], nanomechanical 
and optomechanical setups [66–68], electronic spin sys-
tems, two-dimensional electron gas, and graphene [69–71]. 

The paper is organized as follows. In Sec. 2 we use the 
method of an asymptotic expansion for the qubit–resonator 
system in order to obtain the resonator characteristics. This 
formalism allows us to separate the dynamics of the rela-
tively slow resonator and fast qubit. Then, in Sec. 3, we 
consider the multiphoton dynamics of an isolated two-level 
system. Later the formulas of those two sections will be 
applied for the description of the experimentally observed 
multiphoton excitations in single qubits (Sec. 4) and in 
coupled qubits systems (Sec. 5). 

2. Semiclassical theory of the qubit–resonator system 

For characterization of a quantum system different tech-
niques can be applied. One of the possible solutions is to 
use the so-called parametric transducer [72]. A key ele-
ment in any parametric transducer is an optical or a radio-
frequency auto oscillator. A transducer, coupled to the 
quantum system of interest, is constructed so, that quantum 
system dynamics causes a change of the phase or/and the 
amplitude of its oscillations. A phase (amplitude) shift pro-
vides information about the dynamics of a quantum sys-
tem. In particular, for probing the qubit's state, several 
types of oscillators have been already used: an LC  tank 
circuit [73,74], a nanomechanical one [43,75], and a trans-
mission line resonator [76,77]. If the resonator quantization 
energy pω  is smaller than the thermal excitation energy 

Bk T , the resonator can be considered as a classical oscil-
lator. Then the qubit–resonator system can be treated semi-
classically: here a qubits quantum system is driven by a 
classical field and probed by a classical oscillator. It is im-
portant to note that the similar approach is well known in 
quantum optics — many phenomena in the atom-light sys-
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tem can be described by making use of this semiclassical 
model [2]. 

In this work we present the semiclassical description of 
some observed effects for the resonator–qubits systems. 
We will not consider here the situation of coupling the 
qubits systems to a high-fequency resonator, which can be 
realized as a transmission line resonator. The quantum pro-
perties of this qubit–resonator system are not described by 
the semiclassical model. For recent works in this field see, 
e.g., [78–82] and references therein and also Refs. 83–85, 
where the multiphoton excitations were used to drive tran-
sitions between the multiple energy levels of the qubit–
resonator system in the strong coupling regime. 

Another note here should be made about the term “mul-
tiphoton processes”. In the context of the semiclassical 
approach, it relates to the energy of several photons which 
is absorbed or emitted by the quantum system. In the 
broader sense the term “multiphoton” can relate to other 
processes employing the quantum nature of the electro-
magnetic field, see Ref. 86 for a review of the non-
classical phenomena in entangled multiphoton systems. 

This section is devoted to the properties of the qubit–
resonator system. It will be shown that in the frame of the 
semiclassical approach the influence of the qubit on the 
resonator can be described by the “renormalization” of the 
oscillator constants. For instance for a mechanical resona-
tor it can be quantified by introducing the equivalent 
qubit's-state-dependent elasticity coefficient and damping 
factor. In the case of inductive/capacitive coupling, the 
qubit's impact on the resonator can be described by intro-
ducing the qubit's-state-dependent effective inductance/ca-
pacitance, while the losses can be described by the effec-
tive resistance. For concreteness, we will consider two 
realistic systems: the flux qubit inductively coupled to the 
tank circuit [87] and the charge qubit capacitively coupled 
to the nanomechanical resonator [88]. 

2.1. Krylov–Bogolyubov formalism for qubit–resonator 
system 

First let us consider the mechanical resonator as a 
spring with the elasticity 0k , the damping factor 0λ  
(which is assumed to be small), and loaded with mass m , 
as shown in Fig. 1,a. The oscillator has eigenfrequency 

0 0= /k mω  and the quality factor 0 0 0= /Q mω λ . Its 
state is influenced by the qubit through the force qєF  and 
is driven by the probe periodical force sinp pєF tω . Here 
the small parameter є  is introduced explicitly to empha-
size the small qubit–resonator coupling as well as the am-
plitude of the external harmonic force pєF , which enables 
us to make use of the asymptotic expansion method. The 
external nonlinear force is assumed to depend on the varia-
ble x  and its derivative only, = ( , / )q qF F x dx dt . 

 

The displacement x  is the solution of the motion equa-
tion 

 
2

0 02 = , sin .q p p
d x dx dxm k x єF x єF t

dt dtdt
λ ω⎛ ⎞+ + +⎜ ⎟⎝ ⎠

 (1) 

The oscillations in the nonlinear system described by 
Eq. (1) can be reduced to oscillations in an equivalent line-
ar system by making use of the Krylov–Bogolyubov tech-
nique of asymptotic expansion [89]. Specifically, in the 
first-order approximation with respect to a qubit–resonator 
coupling parameter and close to the principal resonance, 

0pω ω≈ , the equivalent linear system is characterized by 
the effective amplitude-dependent elasticity coefficient 

eff ( )k v  and the effective damping factor eff ( )vλ  (see 
Chapter 7 in Ref. 89): 

 
2

eff eff2 ( ) ( ) = sin ,p p
d x dxm v k v x єF t

dtdt
λ ω+ +  (2) 

 = cos ( ),px v tω δ+  (3) 

Fig. 1. (Color online) Qubit (quantum two-level system) coupled 
to a classical resonator. (a) Schematic diagram of the model 
qubit–resonator system. The qubit is represented by the two-level 
system with the two states, −  and + , and with the energy 
difference EΔ . The resonator is demonstrated as the spring os-
cillator with the elasticity coefficient 0k . As described in the 
main text, influence of the qubit on the resonator can be described 
by introducing the effective elasticity coefficient effk , which 
includes the qubit's-state-dependent (or, parametric, for brevity) 
elasticity coefficient qk . (b) The flux qubit coupled via the mu-
tual inductance M  to the LC  resonator. This can be described 
by introducing effective qubit's-state-dependent inductance effL , 
which includes the parametric inductance qL  in parallel to the 
tank's inductance 0L . (c) The impact of the charge qubit on the 
nanomechanical resonator's state can be described by introducing 
the effective qubit's-state-dependent capacitance effC , which 
includes the parametric capacitance qC  in parallel to the resona-
tor's capacitance 0C . 
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2

eff 0 0
0

( ) = ( , ) cos ,q q
єk v k F v d k k
v

π
ψ ψ ψ

π
− ≡ +∫  (4) 

2

eff 0 0
0 0

( ) = ( , ) sin ,q q
єv F v d

v

π
λ λ ψ ψ ψ λ λ

π ω
+ ≡ +∫  (5) 

where ( )( , ) , / = ( cos , sin )q q q pF v F x dx dt F v vψ ψ ω ψ≡ − . 
Note that in Eq. (2) both v  and δ  are time-dependent va-
lues. 

In Eqs. (4) and (5), we have introduced the parametric 
elasticity coefficient qk  and damping factor qλ . In this 
context the adjective quantum is sometimes used instead of 
“parametric” to emphasize that it is the qubit-state-
dependent, i.e., it is defined by the quantum properties of 
the coupled system. In what follows, by simply changing 
the notations we will see that the parametric elasticity coef-
ficient gives either parametric inductance or parametric 
capacitance, when coupling is inductive or capacitive, res-
pectively, while the parametric damping factor will give us 
the parametric resistance. Note that in Eqs. (4) and (5) the 
parametric terms qk  and qλ  are of the first order in the 
small parameter of the problem є. 

This linearization procedure allows to obtain important 
information even without solving equations of motion. In 
particular, the effective resonance frequency of the lineari-
zed system eff eff= /k mω  gives the expression for the 
frequency shift 

 eff 0
0

= = .
2

qk
m

Δω ω ω
ω

−  (6) 

For physical interpretations it is important to emphasize 
that the application of the linearization technique resulted 
in the substitution of the nonlinear force by the linear one: 

 , = .q q q q
dx dxєF x k x
dt dt

λ⎛ ⎞≡ → − −⎜ ⎟⎝ ⎠
� �  (7) 

This latter “parametric” force describes the work done by 
the quantum system over the resonator; the respective en-
ergy transfer during one period is the following: 

 
2 /

2

0
= = .

p

q p q
dxW dt v
dt

π ω

πω λ−∫ �  (8) 

This, in dependence on the sign of the parametric damping 
factor qλ , describes periodical extraction or pumping of 
the energy by the quantum system out of or into the reso-
nator. This is known as the Sisyphus damping and amplifi-
cation [90]. 

The solution of Eq. (2) in the first approximation in є  
is given by the expression (3) with the amplitude = ( )v v t  
and the phase shift = ( )tδ δ  slowly varying in time. For 
these values the asymptotic expansion method gives the 
following system of equations (see Chapter 15 in Ref. 89): 

 eff

0

( )
= cos ,

2 ( )
p

p

єFvdv v
dt m m

λ
δ

ω ω
− −

+
 (9) 

 eff
0

= ( ) sin .
( )

p
p

p

єFd v
dt mv
δ

ω ω δ
ω ω

− +
+

 (10) 

In the regime of stationary oscillations: / = /dv dt d dtδ =  
0= , and we obtain equations for the amplitude v  and the 

phase shift δ, which can be written in the form 

 
0 eff

( )
tan = ,

( )
qk v

v
δ

ω λ
 (11) 

 
0 eff

cos
= .

( )
pєF

v
v
δ

ω λ
−  (12) 

In what follows it will be demonstrated that the phase shift 
δ  and the amplitude v  can be directly observed experi-
mentally, which gives the information about the quantum 
system through the values of the parametric elasticity coef-
ficient qk  and damping factor qλ . 

2.2. Inductive coupling with LCR  resonator. Parametric 
inductance 

Now we consider as an illustrative case the system of a 
flux qubit (with geometrical inductance L  and average 
current qbI ) coupled inductively to the LCR  tank circuit, 
as shown in Fig. 2. The approach, presented here, is the 
development of the theory in Refs. 91–93. The quantum 
system is considered to be weakly coupled via a mutual 
inductance M  to the classical tank circuit. The circuit 
consists of the inductor 0L , capacitor 0C , and the resistor 

0R  connected, for the specification, in parallel. The tank 
circuit is biased by the current biasI , and the voltage on it 
V  can be measured. 

Fig. 2. (Color online) Flux qubit coupled inductively to an LCR
(tank) circuit. The flux qubit is pierced by the magnetic flux xΦ
induced by the current in the controlling coil and by the current in 
the tank's inductor. The qubit is coupled via the mutual induct-
ance M  to the tank circuit. The resonant tank circuit consists of 
the inductor 0L , capacitor 0C , and resistor 0R ; the circuit is 
biased with an RF current biasI . The tank voltage V  is the 
measurable value. 

M
L0 R0 C0

V

Ibias

Φx
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The flux qubit can be described by the pseudospin Ha-
miltonian [94] 

 ( )= ,
2 2x z

tH Δ εσ σ− −  (13) 

 0( ) = sin ,t A tε ε ω+  (14) 

where the diagonal term ε  is the energy bias, the off-dia-
gonal term Δ  is the tunneling amplitude between the wells 
(which corresponds to the definite directions of the current 
in the loop) and ,x zσ  are the Pauli matrices. 

To obtain the equation for the tank circuit voltage, we 
write down the system of equations for the current in the 
three branches, namely, through the inductor ( LI ), the 
capacitor ( CI ), and the resistor ( RI ) (in particular, for 
systems with superconducting elements see, e.g., Ref. 95): 

 bias = ,L C RI I I I+ +  (15) 

 0 0= , = / ,C RI C V I V R
⋅

 (16) 

 0= ,L eV L I Φ−  (17) 

where eΦ  is the flux through the inductor of the tank cir-
cuit. This flux is the response of the quantum system to the 
flux, induced in it by the current LI . It follows that the vol-
tage V  in the current-biased tank circuit ( bias = sinA pI I tω ) 
is described by the following nonlinear equation: 

2
1 1

0 0 02
0

( , )
= cos .e

A p p
V Vd V dV

C R L V I t
dt Ldt

Φ
ω ω− −+ + − +  (18) 

The external flux eΦ  is assumed to be proportional to the 
coupling parameter 2 2

0= / 1k M LL  and to depend on 
time via the voltage V  and its time derivative V . Equation 
(18) for the voltage V  coincides with the nonlinear equa-
tion (1) for the variable x  with obvious change of the no-
tations. 

Thus, the formalism presented in the previous subsec-
tion is directly applicable for the given problem. Specifi-
cally, in the first order approximation with respect to the 
coupling parameter 2k  and close to the principal resonance 
( 0 0 01/p L Cω ω≈ ≡ ), the equivalent linear system is 
characterized by the effective resistance effR  and induct-
ance effL  as following: 

 
2

1 1
0 eff eff2 = cos ,A p p

d V dVC R L V I t
dtdt

ω ω− −+ +  (19) 

 = cos ( ),pV v tω δ+  (20) 

 
eff 0

1 1 1= ,
( ) ( )qR v R R v

+  (21) 

 
eff 0

1 1 1= .
( ) ( )qL v L L v

+  (22) 

Here 0 0 0 0=Q C Rω  is the quality factor of the unloaded 
tank circuit (at = 0eΦ ) and the parametric (qubit's-state 
dependent) resistance qR  and inductance qL  are given by 
the formulas 

 
2

0

0 0

1 = ( , ) sin ,
( )

e
q

Q
v d

R v vR

π
Φ ψ ψ ψ

π
− ∫  (23) 

 
2

0 0

1 1= ( , ) cos ,
( )

e
q

v d
L v vL

π
Φ ψ ψ ψ

π ∫  (24) 

where ( , ) ( , ) = ( cos , sin )e e e pv V V v vΦ ψ Φ Φ ψ ω ψ≡ − . 
The resonant frequency effω  becomes amplitude-depen-
dent and is shifted by 

 0 0
eff 0= ( ) = .

2 ( )q

L
v

L v
ω

Δω ω ω−  (25) 

The phase shift δ  and the amplitude v  depend on the pro-
bing frequency detuning 0 0 0( ) /pξ ω ω ω≡ −  and the 
qubit state (via qL  and qR ). In the stationary regime they 
are given by the solution of the system of equations 

 
eff 0 eff

0 0
0 0

eff

tan = 2 ,
2

= cos ,A

R L L
Q

R L
v I R

δ ξ

δ

⎧ ⎛ ⎞−
+⎪ ⎜ ⎟⎝ ⎠⎨

⎪
⎩

 (26) 

which can also be rewritten alternatively in terms of the 
effective quality factor eff 0 0 eff= ( )Q C R vω  and effective 
frequency shift eff eff 0= [ ( ) ] /pvξ ω ω ω− . 

Thus, the observable values — the amplitude v  and the 
phase shift δ  — are defined by Eqs. (26), which depend 
on the response of the measurable system, ( , )e V VΦ . As 
we discussed above, strictly speaking, the dynamics of the 
tank circuit has to be considered jointly with the dynamics 
of the qubit (corresponding calculations see, e.g., in [96]). 
However, in what follows we consider two illustrative lim-
iting cases, when the dynamics of the qubit can be treated 
separately from the dynamics of the tank circuit. For sim-
plification we introduce phenomenologically the relaxation 
time 1T  which is caused by the coupling to the environ-
ment and to the tank as well. 

1. Low-quality qubit ( 1T T ): phase shift probes the 
parametric inductance of qubit. 

First case which allows to detach the equations for the 
qubit and resonator, is when all the qubit's characteristic 
times, and in particular the relaxation time 1T , are smaller 
than the tank's period 0= 2 /T π ω . Then the equations for 
the tank voltage can be averaged over the period of fast 
oscillations. Then the time derivative of the flux eΦ , in-
duced by the qubit in the tank circuit can be described as 

 qb
qb= = ,e

I
MI MΦ Φ

Φ
∂
∂

 (27) 

where dc= LMIΦ Φ +  is the flux in the qubit's loop, which 
consists of the time-independent part dcΦ  and of the flux, 
induced by the current LI  in the tank's inductor. This can 
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be rewritten by introducing the effective inductance of the 
qubit, 1

qb= ( ) /I Φ Φ− ∂ ∂L , and the characteristic induc-
tance value 2 1=L M −L . Then = ( )e L LL I IΦ  and for the 
tank voltage we have 0 0= = ( ( ))L e L LV L I L L I IΦ− − . In the 
first approximation in 2k  in the expression = ( )e L LL I IΦ  
we can insert LI  found from this equation 

 
0 0 0

1( ) sin ( ).L p
vI t Vdt t

L L
ω δ

ω
≈ ≈ +∫  (28) 

Then from Eqs. (23), (24) we have 1 = 0qR−  (hence effR =  
0R= ) and 

 
22

10 2

0
= ( , ) ,cos

q

L k L v d
L

π
ψ ψ ψ

π
−∫L  (29) 

where the qubit's effective inductance is defined by the 
total flux Φ, piercing the qubit's loop 

 qb1

= sindc
0 0

( )
( , ) .

M v
L

I
v

Φ Φ ψ
ω

Φ
ψ

Φ
−

+

∂
≡

∂
L  (30) 

Then for the phase shift δ  and the voltage amplitude v  we 
obtain [97] 

 0
0 0 0 0tan 2 , cos ,A

q

L
Q Q v I R

L
δ ξ δ≈ + ≈  (31) 

which is the generalization of the result of Ref. 98 for the 
case when the qubit can be in the superpositional state, 
which is taken into account here by the expectation value 
of the current qbI . If the bias current amplitude AI  is 
small enough to be ignored in Eq. (30), then 

 qb1 2 1 1

0 dc
= , ,q

ILL k
L Φ

− − − ∂
≈
∂

L L   

 2 1
0 0 0 0tan 2 , cos .AQ k Q L v I Rδ ξ δ−≈ + ≈L  (32) 

At the resonant frequency 0 = 0ξ , the phase shift δ  is 
proportional to the inverse inductance of the qubit 1−L . 
Here it is worthwhile to emphasize the expression for the 
parametric inductance, which is expressed via the deriva-
tive of the expectation value of the current in the qubit's 
loop qb = p zI I σ− , 

 1 1 2
0

0 dc
= .p z

q
LI

L L k
f
σ

Φ
− − ∂

−
∂

 (33) 

2. Higher-quality qubit ( 1T T ): parametric re-
sistance due to qubit's lagging. 

Another illustrative situation, where the qubit's dyna-
mics can be considered separately from the resonator's one, 
is the case when the qubit relaxation time 1T  is of the same 
order as the tank's period T, namely, 1T T . The qubit's 
response to the resonator probing signal can be phenome-
nologically described by introducing the lagging time 

1=t t T−′ , so that instead of Eq. (27) we have 

 ( ) = ( ( )) ( ).e L Lt L I t I tΦ ′ ′  (34) 

In this way, the qubit's response depends on the current in 
the tank = ( )L LI I t ′ , which is given by 

  
( )

0 0
( ) sin ( ) cos ( )L p p

vI t C t S t
L

ω δ ω δ
ω

≈ + − +′  (35) 

with 1= sin ( )pS Tω  and 1= cos ( )pC Tω . For the small 
bias current Eqs. (21), (22) and (34), (35) result in the fol-
lowing expressions for the parametric inductance and re-
sistance: 

 2 1
0 / ,qL L Ck L −≈ L  

 
 2 1

0 0/ .qR R S k Q L −≈ − L  (36) 

By analogy with Eq. (33), the latter phenomenological equ-
ation can be rewritten in the form explicitly demonstrating 
its quantum character: 

 
2

1 0

0 0 dc
= .p z

q
LIk Q

R S
R f

σ
Φ

− ∂
∂

 (37) 

By making use of Eq. (8), we obtain that the energy trans-
ferred from qubit into the resonator (or, out of the resona-
tor, for the opposite sign) during one period is 

 2 1= .p qW v Rπω −−  (38) 

We emphasize here that both the parametric inductance 
and resistance in Eq. (36) are proportional to the qubit's 
inductance L . Then, one obtains equations for δ  and v , 
which are simplified in the first approximation in 

2 1
0k Q L −L . In this case for the probing frequency equal to 

the resonant one, 0 = 0ξ , the resulting formulas are 

      2 1 2 1
0 0

0
tan , 1 .

A

vCk Q L Sk Q L
I R

δ − −≈ ≈ +L L  (39) 

Note that both the phase shift and amplitude are related to 
the qubit's effective inductance L , which explains their 
similar behavior in experiment. These equations are useful 
for the analysis of the experimental results, as it will be 
demonstrated in Sec. 4. 

2.3. Capacitive coupling with nanomechanical resonator. 
Parametric capacitance 

Consider now the charge qubit capacitively coupled to a 
resonator. In this case, like in the one considered above, 
the resonator can be the tank circuit. Alternatively, the res-
onator can be a nanomechanical resonator (NR), as in 
Ref. 43. For the illustrative purpose, we consider here this 
latter case. 

The split-junction charge qubit (shown in red in Fig. 3) 
consists of a small island between two Josephson junctions 
(also called Cooper-pair box), whose state is controlled by 
the magnetic flux Φ  and the gate voltage CPB MWV V+ . 
Here CPBV  is the dc voltage used to tune the energy levels 
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of the qubit and = sinMWV V tμ ω  is the microwave signal 
used to change the energy-level occupations. The driven 
Cooper-pair box is described in the two-level approxima-
tion by the Hamiltonian in the “charge” representation, 
Eqs. (13), (14), where the tunnel splitting Δ  is equal to 
the Josephson energy controlled by the magnetic flux Φ: 

0 0= | cos ( / ) |JEΔ πΦ Φ . The charging energy and the dri-
ving amplitude are the following 0 = 8 ( 1/ 2)C gE nε − −  
and = 8 CA E nμ− , where the Coulomb energy 2= / 2CE e CΣ  
is defined by the total capacitance = 2 J CPB NRC C C CΣ + +  
and the effective Josephson capacitance is introduced 

1 22 J J JC C C≡ + , the dimensionless driving amplitude 
= /2CPBn C V eμ μ . The dimensionless polarization charge 
=g NR CPBn n n+  is the fractional part of the respective po-

larization charges in two capacitances: { }= /2NR NR NRn C V e  
and { }= /2CPB CPB CPBn C V e . 

The Cooper-pair box here is formed by four capacitors, 
1JC , 2JC , CPBC , and NRC . One of the plates of the latter 

capacitor is formed by the NR. The displacement of the 
NR x  is much smaller than the distance d  between the 
plates. Then the capacitance between the NR and the qubit 
reads 

 ( ) 1 .NR
NR NR NR

C xC x C x C
x ξ

∂ ⎛ ⎞
≈ + ≡ +⎜ ⎟∂ ⎝ ⎠

 (40) 

Here NRC  stands for the capacitance value at the zero dis-
placement. The displacement of the NR influences the 
qubit through the changes in the polarization charge; to 
make it significant, a large dc voltage NRV  is applied. On 
the other side, the NR is biased by dc and rf voltages 

GNRV  and RFV  through the capacitance GNRC . 
One of the approaches to describe the system qubit–

resonator is to introduce the parametric capacitance as follow-
ing (for more details see Ref. 88). Let us introduce the effec-
tive capacitance, as it is demonstrated in Fig. 1,c, by diffe-
rentiating the charge NRQ  of the capacitor NRC  [99–101]: 

eff = /NR NRC Q V∂ ∂ . Then, for the charge I= ( )NR NR NRQ V V C−  
with the island's voltage given by I = 2 ( )/gV e n n CΣ− , we 
obtain eff geom= qC C C+ , which consists of the parametric 
capacitance 

 
2

= NR
q

g

nC
C

C nΣ

∂
∂

 (41) 

and the geometric capacitance geomC  

 geom
( ) 2

= ,
2

NR NR J NR
NR

J NR

C C C C C
C C

C C C
Σ

Σ

−
≈ ≈

+
 (42) 

where the approximations are valid for ,CPB J NRC C C  
and NR JC C , respectively. Then one can consider the 
force NRF , which acts on the NR from the left electrode, 
as the electrostatic force from the effective capacitance 
(see Fig. 1,c): 21

eff2= ( )/NR NRF C V x∂ ∂ . Then the term with 
the parametric capacitance, in which ( )22 2 1 /NR NRC C x ξ≈ + , 
results in the following resonance frequency shift of the 
NR: 

 2
g

= = = ,
2

zNR
q

NR gNR

nC C
n nC

Σ σΔω β ββ
ω

∂∂
− − −

∂ ∂
 (43) 

 
2

2
1= .NR NR

NR

C V
m CΣ

β
ξω

⎛ ⎞
⎜ ⎟⎝ ⎠

  

We would like to note that the results obtained for the 
system qubit–NR can be definitely extended to other sys-
tems. For example, the charge qubit can be coupled to a 
tank circuit instead of a NR. In contrast to the inductive 
coupling, considered in the previous subsection, here we 
mean capacitive coupling. Then it is straightforward to 
obtain the expression for the measurable value, the tank 
circuit phase shift at resonance frequency, 0 = 0ξ , [88] 

 0
0

tan qC
Q

C
δ ≈  , (44) 

cf. Eq. (31), where the phase shift probes the parametric 
inductance. In Sec. 4 it will be demonstrated how these 
expressions can be used for the description of the realistic 
system. 

3. Dynamical behavior of a two-level system 

Application of the semiclassical theory, presented in the 
previous subsection, to the description of the qubits–
resonator system makes possible to separate the slow dy-
namics of the resonator from the fast dynamics of the 
qubits system. This allows to consider first the dynamics of 
a qubit or a system of qubits. Then, the resonator can 
monitor the state of the system of qubits. In this section we 
will outline the description of the multiphoton processes in 
a qubit, while the presentation of the specific results is the 
subject of the next two sections. 

Initialization and manipulation of the qubit's systems 
require certain external signals. The principal features of 
the driven system are captured for the harmonic driving, 

Fig. 3. (Color online) Charge qubit probed by a nanomechanical
resonator. The charge qubit is the Cooper-pair box, controlled by
the magnetic flux Φ  and the gate voltage CPB MWV V+ . The
resonator probing the qubit's state here is the NR, which is char-
acterized by the displacement at the midpoint x . The voltage-
biased NR is measured through its resonance frequency shift

NRΔω  [88]. 
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Eq. (14), to which we limit our consideration. Different 
theoretical approaches can be used for a driven two-level 
system, which is described in the books and reviews [102–
107]. The choice of the formalism depends on the formula-
tion of a problem and on the parameters of the system, 
such as the bias offset 0ε , driving amplitude A  and fre-
quency ω. The clear description can be given for the tem-
poral dynamics in the so-called adiabatic-impulse model, 
where the driven evolution is considered adiabatic far from 
the avoided-level crossings with the impulse-type Landau–
Zener transitions, when the energy distance is minimal 
[37,108,109]. As the result of this theory, the overall dy-
namics is described by the long-time Rabi-type oscillations 
of the level occupation probabilities with the step-like fea-
tures due to the Landau–Zener transitions. 

Another technique, which can be more convenient for 
the resonant driving, is the rotating wave approximation 
(RWA) [110–112]. It consists in neglecting the rapidly 
oscillating (non-resonant) terms. The common approach 
for making use of this approximation is taking small driv-
ing amplitudes, A EΔ . Then, the first-order considera-
tion gives usual Rabi oscillations of the level occupation 
probabilities close to the position of the one-photon reso-
nance, where /Eω Δ≈ . In the kth approximation, the 
resonant excitation appears close to the parameters, where 
the energy of k  photons matches the qubit's energy dis-
tance [1,2] 
 = .k Eω Δ  (45) 

The time evolution is described by the multiphoton Rabi 
oscillations [113], while the time-averaged upper-level 
occupation probability has the Lorentzian shape with the 
maximum equal to 1/ 2  at the exact resonance defined by 
Eq. (45). 

With increasing the driving amplitude the resonances 
shift [114] from their positions given by the perturbation 
theory and defined by the exact multiphoton relation (45). 
The first-order correction to the position of the resonances 
is the so-called Bloch–Siegert shift [1]; it was demonstra-
ted for the superconducting qubits in Ref. 115. Thus, in 
general, the position of the multiphoton resonances is am-
plitude-dependent. 

For the description of the strongly driven qubits, another 
formulation of the RWA can be used. There, the minimal 
energy level splitting Δ  is the small parameter, namely, it is 
assumed AΔ ω  [38,116,117]. Then the k-photon ex-
citation appears close to the resonant parameters, given by 
the relation 0 = kε ω . There, the upper-level occupation 
probability up ( )P t  oscillates with the frequency 

2 2 1/2
0[( ) ]R kkΩ ε ω Δ= − +  with the renormalized split-

ting ( )= /k kJ AΔ Δ ω ; kJ  is the Bessel function. The 
time-averaged probability in the vicinity of the kth reso-
nance is given by 

 
2

up 2 2
0

1= .
2 ( )

k

k
P

k
Δ

ε ω Δ− +
 (46) 

Being time averaged, the Rabi oscillations are described 
by the Lorentzian dependence of the upper-level occupa-
tion on the system's parameters (the bias or the driving 
frequency) [118]. Here arises an interesting and important 
problem of distinction of the respective quantum oscilla-
tions from their classical counterparts, which are the para-
metric resonances. This was the subject of Refs. 119–121. 

The most straightforward approach for the numerical 
description of the dynamics of a two-level system is the 
solution of the Schrödinger equation [122]. Then, the in-
fluence of the dissipation can be taken into account pheno-
menologically by introducing energy and phase relaxation 
times, 1T  and 2T , and solving the respective Bloch equa-
tion [102]. Instead, in the more general approach, the dis-
sipative environment can be described as an ensemble of 
oscillators, which would result in the Bloch–Redfield 
equation for the reduced density matrix [123,124]. This 
latter formalism will be demonstrated in Sec. 5 being ap-
plied to the specific case of the two-qubit system. 

Note that the multiphoton transitions can also be driven 
by the bichromatic field, when the energy level distance 

EΔ  is matched by the energy of several photons of one 
(say, microwave-) frequency plus several photons of an-
other (say, radio-) frequency. Such transitions were studied 
both in microscopic systems [2,125], and in the Josephson-
junction qubits [126–128]. Also for the case of a flux qubit 
it was demonstrated that the persistence of Rabi oscilla-
tions can be supported by either the low-frequency signal 
[129] or induced by noise [130]. 

4. Excitation of a superconducting qubit 
Let us get back to the qubit–resonator systems. In the 

previous section we have discussed a modification of the 
qubit states (and therefore its observables) under different 
types of excitations. A natural next step is to analyze the 
corresponding (via qubits) change of the resonator proper-
ties. In this section we demonstrate this by presenting re-
spective theoretical results for different realizations of the 
qubit–resonator systems, making use of the theory present-
ed in the previous two sections. The emphasis is made on 
demonstrating the consistency of the theoretical results 
with the experimental ones. 

4.1. Inductance of superconducting qubits 

Consider a qubit biased with a dc flux dcΦ  and driven 
with an ac flux ac sin tΦ ω , introducing dc dc 0= / 1/2f Φ Φ −  
and ac ac 0= / .f Φ Φ  In order to get the effective induc-
tance L , as defined by Eq. (30), we have to calculate the 
average current in the qubit: ( )qb = = TrI I Iρ , where 

= p zI I σ  is the current operator defined with the ampli-
tude pI  and the Pauli matrix zσ . We calculate the reduced 
density matrix ρ  with the Bloch equations [102,122] 
which include phenomenological relaxation times, 1T  and 

2T . It is convenient to express the density matrix in 
the energy representation: 

 0(1/ 2)( )x y zX Y Zρ τ τ τ τ= + + + , 
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where iτ  are the Pauli matrices for this basis and 0τ  
stands for the unity matrix. The value ˆ= zZ τ  is equal to 
the difference between the populations of the ground and 
excited states. 

Let us find now the explicit expressions for the effec-
tive qubit's inductance for both the interferometer-type 
(split-junction) charge qubit [131,132] and flux qubit [94]. 
For the interferometer-type charge qubit, as considered in 
detail in Ref. 30, the circulating current 0I  is flux-depen-
dent and Eqs. (32) show that there are two terms contri-
buting in the tank circuit's phase shift, 

 
2

0
0

0 dc dc
tan .

Ik QL ZZ I
f f

δ
Φ

⎛ ⎞∂ ∂≈ +⎜ ⎟∂ ∂⎝ ⎠
 (47) 

In a classical system (where the current has a definite 
direction) or in the ground state, the difference between the 
energy level's populations is constant, = constZ , and the 
second term in Eq. (47) is zero. In contrast, for the quan-
tum system the interplay between these two terms is essen-
tial. At this point it is worthwhile to notice that the second 
term can dominate at resonant excitation, as it was the case 
in the work [30] (see also below). This means that the se-
cond (“quantum”) term can significantly increase the sensi-
tivity of the impedance measurement technique, as com-
pared to the classical situation described by the first term 
in Eq. (47). 

Consider now the case of a flux qubit. The current op-
erator is defined in the flux basis [94], = p zI I σ , where 

pI  stands for the amplitude value of the persistent current, 
and hence the value zσ  defines the difference between 
the probabilities of the clockwise and counter-clockwise 
current directions in the loop: = = 2 1z P P Pσ ↓ ↓↑− − . 
Then with Eqs. (32) we obtain 

 2

0 dc
tan 2 .pLI P

k Q
f

δ
Φ

↓∂
≈

∂
 (48) 

In the energy representation we rewrite Eq. (48) 

 0 dc2

0 dc
tan .p pLI I f

k Q X Z
f E E

ΦΔδ
Φ Δ Δ

⎛ ⎞∂≈ −⎜ ⎟∂ ⎝ ⎠
 (49) 

Here 2 2
0 dc= ( )pE I fΔ Δ Φ+  is the distance between the 

stationary energy levels. 
After the time-averaging over the driving period 2 /π ω, 

this expression is written as following: 

 
2 3

2
dc3

dc
tan .pLI

k Q f Z
E fE

Δ Δδ
Δ ΔΔ

⎛ ⎞∂≈ − +⎜ ⎟∂⎝ ⎠
 (50) 

If a qubit is resonantly excited with the driving frequency 
ω , then the partial energy levels occupation probability 
Z  has the Lorentzian-shape dependence on dcf . It fol-
lows that the derivative dc/Z f∂ ∂  takes the shape of a hy-
perbolic-like structure, i.e., it changes from a peak to a dip 
in the point of the resonance at dc( )E f kΔ ω≈ . 

4.2. Equilibrium-state measurement 

For the description of the measurement of a flux qubit 
in the thermal equilibrium one has to put = 0X  and 

( )= tanh / 2 BZ E k TΔ  in Eq. (49), 
2 3

2
dc3

dc
tan tanh .

2
p

B

LI Ek Q f
E f k TE

Δ Δ Δ
δ

Δ ΔΔ

⎛ ⎞ ⎛ ⎞∂
≈ − +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠

 (51) 

The ground-state measurement at Bk T EΔ  is described 
with = 0X  and = 1Z , which means replacing the hyper-
bolic tangent in Eq. (51) with the unity. The formula (51) 
for the ground state obtained by differentiating the proba-
bility P↓ , Eqs. (48), (49), coincides with the earlier obtained 
results (see Eqs. (3), (4) in Ref. 133). The resulting tank 
phase shift is shown in Fig. 4 for the following parameters 
taken from Ref. 134: / = 1.3hΔ  GHz, 0 / = 930pI hΦ  GHz, 

0 /2 = 32.675ω π  MHz, 0/ = 0.0055pLI Φ , / = 0.725M L , 
0 = 725Q , = 0.02k . 
The accurate account of Z  in Eq. (51) allows to de-

scribe both the suppression and widening of the zero-bias 
dip (that is at dc = 0f ) as it was experimentally demon-
strated in Ref. 134. Indeed, the suppression of the zero-bias 
dip (at dc = 0f ) is described by the first term in Eq. (51). 
The widening is due to the second term that comes from 
differentiating the hyperbolic tangent; this term becomes 
relevant for temperatures larger than Δ, and results in the 
exponential rise of the width for > = / BT T kΔ∗ , as 
demonstrated in the inset in Fig. 4. 

4.3. Resonant transitions in the charge qubit 

In Ref. 30 the resonant excitation of the interferometer-
type (split-junction) charge qubit was demonstrated exper-
imentally and described theoretically. In accordance with 
the formula (47) one expects the resonances to appear dif-
ferently when either first or the second term is dominated. 

Fig. 4. (Color online) The equilibrium-state measurement. The 
dependence of the tank phase shift on the flux detuning 

dc dc 0= / 1 / 2f Φ Φ − , when the qubit is thermally excited. The 
curves are plotted for / = 0.2Bk T h , 0.5, 0.7, 1, 2, 4, and 8 GHz. 
Left inset: corresponding experimental results [134]. Right inset: 
temperature dependence of the width dcfΔ  of the dip at half-
depth in the phase shift, shown in the main panel [87]. 
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To demonstrate this, in Fig. 5 we plot the dependence of 
the tank circuit phase shift δ  both as the function of the 
dimensionless bias voltage = / 2g g gn C V e  and of the di-
mensionless magnetic flux detuning dcf . For the former 
case the value dc = 0f  was taken, where 0 = 0I . This re-
sults in disappearance of the second term in Eq. (47), and 
the resonant excitation of the qubit is visualized with the 
Lorentzian peaks in Figs. 5,a,b. When the second term is 
dominant, the multiphoton transitions in the qubit result in 
the peak-and-dip structures in the dependence of the phase 
shift δ  on the flux, Figs. 5,c,d. 

Theoretical fitting of the experimental graphs, as for 
example shown in Fig. 5, allows for defining the qubit's 
parameters, which is the multiphoton spectroscopy. The 
parameters found were the following: the Josephson ener-
gies for the two junctions 1/ 40JE h  GHz and 2 /JE h  

34.5  GHz, the island's Coulomb energy / 5CE h  GHz; 
the relaxation and decoherence rates relax /( / ) = 0.03CE hΓ  
and /( / ) = 0.05CE hφΓ , which correspond to the following 
relaxation and decoherence times: 1

relax relax= 7T Γ−  ns 
and 1= 4Tφ φΓ−  ns. 

Figure 5 also demonstrates how the position of the reso-
nances depend on the driving frequency ω  and how the 
multiphoton resonances appear with increasing the driving 
power acn . Namely, first, in Figs. 5,a,b the varied parame-
ter is the frequency / 2ω π , which from the bottom to top 
curves is 6.5, 7.1, 8.1, and 9.1 GHz; the driving power is 
the same for all figures ac 0.3n  and the flux was fixed at 

=δ π . And, second, in Figs. 5,c,d the curves correspond to 
the varied parameter driving power: in experiment being 
power of excitation (from bottom to top: –80, –60, –57 dB) 

and in theory being amplitude acn  (from bottom to top: 0.1, 
0.2, 0.4); the frequency there was fixed, /2 = 7ω π  GHz. 

4.4. One- and multiphoton transitions in the flux qubit 

As we have seen in Sec. 3, both the tank voltage phase 
shift δ  and amplitude v  can be used to monitor the resonant 
excitation of a superconducting qubit. In Fig. 5 we demon-
strated this with the observation of the phase shift δ  of the 
tank circuit coupled to the charge qubit. Now we consider 
one- and multiphoton resonant excitations of a flux qubit, 
and the nonmonotonic dependence of the tank voltage am-
plitude v  will visualize the resonant transitions in the qubit. 

Consider first the spectroscopic measurement, where 
the flux qubit is driven with the low-amplitude ac flux. 
We expect resonant excitation of the qubit when the dri-
ving frequency matches the qubit's energy difference, 

dc= ( )E fω Δ . In the experimental case the positions of 
these resonances at a given driving frequency allow to de-
termine the energy structure of the measured qubit [41]. 

In Figs. 6,b,c we demonstrate the dependence of the tank 
voltage amplitude v  on the bias flux dcf  at 0=pω ω  for 
different driving frequencies: / 2 = 3.5,ω π  5, and 18 GHz, 
which is explained by the energy diagram in Fig. 6,a. The 
results of the related experiment, Ref. 41, are presented in 
Fig. 6,c. The parameters for calculations were taken as 
following: the tunneling amplitude / = 3.5hΔ  GHz, the 
energy bias 0 / = 700pI hΦ  GHz, the temperature 

/ = 1.4Bk T h  GHz, the relaxation rate 1 / = 0.7hΓ  GHz, 
the dephasing rate 2 / = 0.7hΓ  GHz, and the value which 
describes the coupling between the qubit and the tank cir-
cuit 2 3

0 0( / ) = 2.6 10pk Q LI Φ −⋅ . The curves were plotted 
for the driving amplitudes 3

ac 10 = 1,f ⋅  1.5,  and 3 from 
bottom to top. The phenomenological lagging parameter 
was taken = 0.8S . Figures 6 demonstrate the effect de-
scribed in Sec. 3: for 0S ≠  both the phase shift δ  and the 
amplitude v  depend on the qubit's inductance 1−L , which 
results in the alternation of peak and dip around the loca-
tion of the resonances. 

In Figs. 7,a,b we present the calculated phase shift δ  
and the amplitude v  as functions of the probe current fre-
quency pω  and the flux detuning dcf  with the phenome-
nological lagging parameter S  for the strongly-driven flux 
qubit with the parameters being the same as for Fig. 6 and 
with the values for the driving amplitude and frequency: 

3
ac = 8 10f −⋅  and / 2 = 4.15ω π  GHz. The top panel pre-

sents theoretical calculations, which is in good agreement 
with the experimental observations, presented in the bot-
tom panel, Figs. 7,c,d. The dashed white line shows the 
tank resonance frequency 0/2 = /2 = 20.8pω π ω π  MHz. 
The positions of the multiphoton resonances is explained 
by the arrows to the right in the energy diagram, Fig. 6,a, 
at dc( ) =E f kΔ ω  with = 1k , 2, 3, and 4. 

Fig. 5. (Color online) Resonant excitation of the charge qubit
probed by the tank circuit. The phase shift δ  of the tank circuit
coupled to the charge qubit, calculated theoretically (left) and
measured (right). Panels a and b show the dependence on the gate
voltage, while in c and d the dependence on the flux is demon-
strated. Black and gray arrows in c demonstrate the positions of
1- and 2-photon resonant transitions, and the arrows in d mark 1-,
2-, and 3-photon excitations [30]. 
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Note that for the lagging parameter close to 1  (here 
= 0.8S ) the changes in the phase shift in Fig. 7,a are 

small at the resonance frequency (along the dotted line at 
0=pω ω ) while the voltage amplitude in Fig. 7,b changes 

substantially, see formulas (39). And this is actually 
demonstrated in Figs. 6,b,c. Such changes of the tank ef-
fective resistance or, equivalently, quality factor were stud-
ied in Ref. 90 for the fully quantum-mechanical model of 
the qubit–resonator system. We note that this can be alter-
natively described with the semiclassical model, presented 
here. This model gives results consistent with the experi-
mental ones, e.g., Figs. 6 and 7, which imply the energy 
transfer between the qubit and resonator according to 
Eq. (38). More details about this energy transfer, known as 
the Sisyphus damping and amplification, can be found in 
Refs. 90, 135. 

Then, in Fig. 8 we present the dependence of the tank 
voltage phase shift δ  on the microwave amplitude acf  
and the dc flux bias dcf . This double quasi-periodical de-
pendence (on both the energy bias and the driving ampli-
tude) is called the Landau–Zener–Stückelberg (LZS) inter-
ferogram [37]. The parameters were taken the same as for 
Fig. 6 and / 2 = 4.15ω π  GHz. The left panel in Fig. 8 pre-
sents the theoretical interferogram from Ref. 87 while the 
right panel is the experimental one, Ref. 41. In Fig. 8 the 
multiphoton resonances at discrete dc bias dcf  (which 
controls the distance between energy levels) are clearly 
visible. These resonances appear when the energy of k  
photons matches the qubit's energy levels, dc( ).k E fω Δ≈  
The quasi-periodical character of the dependence on the ac 
flux amplitude acf  is known as Stückelberg oscillations. 
The comparison of such graph to the experimental ana-
logue allows the relation of the microwave power to the ac 
flux amplitude acf  to be determined, which is the calibra-
tion of the power. For this, either the estimation of the pe-
riod of Stückelberg oscillations, shown by the black arrow, 

Fig. 6. (Color online) Low-amplitude one-photon resonant excita-
tion of a flux qubit. (a) Energy levels dc( )E f±  matched by the
driving at frequencies shown by the numbers and the arrows of
the respective length. (b) and (c) Theoretically calculated and
experimentally measured amplitude of the tank voltage v  versus
flux detuning dcf  for different driving frequencies. (The upper
curves are shifted vertically.) The one-photon excitations at

/ 2 =18ω π , 5, and 3.5 GHz, demonstrated in b and c, are ex-
plained by the arrows to the left in the energy diagram a, while
the arrows to the right of the length / 2 = 4.15ω π  GHz explain
the multiphoton resonances in Fig. 7 [41,87]. 
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and the amplitude v  [87]. 
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or adjusting the interference pattern slope, shown by the 
white line, can be used. 

4.5. Interferometry with nanoresonator 

The formalism developed in Sec. 3.3 allows to describe 
the system of the driven qubit coupled to the NR. As it was 
demonstrated in Ref. 88, two different approaches, called 
direct and inverse LZS interferometry, are of interest. In 
the direct interferometry the qubit state is probed via the 
NR's frequency shift, as in Ref. 43, while in the inverse 
interferometry the impact of the NR's state on the qubit's 
Hamiltonian is studied. 

The direct LZS interferometry was calculated in Ref. 88 
as the resonator's frequency shift NRΔω  versus the energy 
bias gn  and the driving amplitude nμ . The agreement 
with the experimental result of Ref. 43 demonstrated that 
the semiclassical formalism is valid for a description of the 
measurable quantities. In Ref. 88 it is also demonstrated 
how the analogous interferogram can be calculated for the 
qubit-tank circuit system in relation to the experiment of 
Ref. 39. Such a description allows to correctly find the 
position of the resonance peaks in the interferogram and to 
demonstrate the sign-changing behavior of the parametric 
capacitance, which relates to the measurable quantities. 

For the formulation of the inverse problem, let us con-
sider the qubit's bias 0ε  as a function of the NR's dis-
placement x . For small x ξ  we have the expansion 
(40), which results in the decomposition of the bias 

0 0 0( ) ( ) ( )gx n xε ε δε∗≈ + , where 0 ( ) 8 ( 1/2)g C gn E nε∗ = −  
and 0 ( ) = 8 /C NRx E n xδε ξ . The Hamiltonian of the qubit 
(13) with the parameter-dependent bias 0 ( )xε  allows to 
consider the following problem. Let us assume that the 
qubit's state (its wave function, upper level occupation 
probability, Rabi frequency, etc.) is known (i.e., this is 
measured by a device, which we do not consider here for 
simplicity). Given the known qubit's state, the aim is to 
find the Hamiltonian's parameters. Particularly interesting 
is the parameter-dependent bias 0 ( )xε , which can give the 

information about the position and amplitude of the oscil-
lations of the NR. 

And now, in the general context, the “reverse engineer-
ing” problem in the spirit of Refs. 133, 134 can be studied, 
where one is interested in finding the driving Hamiltonian 
for a given (desired) final state. On the other hand, in 
Ref. 88 the authors provide the basis for measuring the 
NR's position x  by means of probing the qubit's state, 
while = ( )x x t  is considered a slow time-dependent func-
tion. There, the emphasis was made on finding optimal 
driving and controlled offset ( 0ε∗ ) parameters for the reso-
lution of the small bias component 0δε . It was assumed 
that the dynamics of the parameter x  is slow enough not to 
be considered during either certain period of the qubit's 
evolution or even during the setting the stationary qubit's 
state. The aim was to find a sensitive probe for small 0δε . 
As the ultimate sensitivity, the essential changes of the 
qubit's state for small changes of 0δε  were required. The 
problem, formulated in this way, was solved in Ref. 88 for 
different illustrative driving regimes: one-, double-, and 
multiple-passage regimes. 

5. Multi-qubit systems 

5.1. Equations for a system of coupled qubits 

The effective Hamiltonian of the system of n  coupled 
flux qubits is 

  ( ) ( ) ( ) ( )

=1 ,

( )
= ,

2 2 2
iji i i ji i

x z z z
i i j

Jt
H

Δ ε
σ σ σ σ⎛ ⎞− − +⎜ ⎟⎝ ⎠∑ ∑  (52) 

where ijJ  is the coupling energy between qubits, and ( )i
xσ , 

( )i
zσ  are the Pauli matrices in the basis {| | }↓〉 ↑〉  of the 

current operator in the ith qubit. The current operator is 
given by: ( ) ( ) ,i i

i p zI I σ= −  with ( )i
pI  the absolute value of 

the persistent current in the ith qubit; then the eigenstates 
of zσ  correspond to the clockwise ( | = |zσ ↓〉 − ↓〉 ) and 
counterclockwise ( | = |zσ ↑〉 ↑〉 ) current in the ith qubit. 
The tunneling amplitudes iΔ  are assumed to be constants. 

Fig. 8. (Color online) LZS interferometry for the flux qubit probed by the tank circuit. The calculated (a) and measured (b) dependence
of the tank phase shift on the flux detuning dcf  and on the driving flux amplitude acf  [41,87]. 
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The biases ( ) ( )
02 ( )i i

i pI f tε Φ=  are controlled by the di-
mensionless magnetic fluxes ( )

0( ) = / 1/ 2i
if t Φ Φ −  

through ith qubit. These fluxes consist of three compo-
nents: 

 ( )
ac

0
( ) = sin .i i L

i
M I

f t f f tω
Φ

+ +  (53) 

Here if  is the adiabatically changing magnetic flux, exper-
imentally applied by the coil and additional dc lines. The 
second term describes the flux induced by the current LI  
in the tank coil, to which the ith qubit is coupled with the 
mutual inductance iM . And ac sinf tω  is the harmonic 
time-dependent component driving the qubit, typically 
applied by an on-chip microwave antenna. Equation (52) 
can be reduced to the two-qubit system. This system is 
shown in Fig. 9. 

To describe the two-qubit system, it is convenient to 
present the density matrix in the following form: 

 00
0 0= =

4 4
R Rαβ

α βρ σ σ σ σ⊗ ⊗ +  

 0 0
0 0 ,

4 4 4
a b ab

a b a b
R R R

σ σ σ σ σ σ+ ⊗ + ⊗ + ⊗  (54) 

which was shown to be suitable for both the definition and 
the calculation of the entanglement and other characteristics 
in multi-qubit system, e.g., [138,139]. Here , = 0, , ,x y zα β  
and , = , ,a b x y z ; the summation over twice repeating 
indices is assumed. The two vectors 0aR  and 0bR , so-
called coherence vectors or Bloch vectors, determine the 
properties of the individual qubits, while the tensor abR  
(the correlation tensor) accounts for the correlations. 

The important characteristic of the state of the coupled-
qubits system is its entanglement. There are different ap-
proaches to the quantification of the entanglement [140]. 
One of the often used possibilities is the so-called concur-

rence [141]. Another convenient for calculations approach 
is to introduce the measure of entanglement as following 
[138]: 

 ( ) 0 0
1= Tr , = .
3

T
ab ab a bM M M R R R−E  (55) 

This entanglement measure fulfills certain requirements, in 
particular, = 0E  for any product state and = 1E  for any 
pure state with vanishing Bloch vectors 0aR  and 0bR , 
corresponding to maximum entangled states. 

To describe dynamics of the density matrix we will first 
disregard the relaxation processes. This can be described 
by the Liouville equation, = [ , ]i Hρ ρ , which is generally 
speaking a complex equation. To deal with the Liouville 
equation, it is convenient to use the parametrization of the 
density matrix as described by Eq. (54). Due to the 
hermiticity and normalization of the density matrix, Rαβ  
are real numbers and 00 = 1R . Then the Liouville equation 
can be written in the form of the system of 15  equations 
for Rαβ  [54] 

 (1)
0 0 3 3= ,i mni m n ni nR є B R є JR+   

 (2)
0 0 3 3= ,j mnj m n nj nR є B R є JR+   

 (1) (2)=ij mni m nj mnj m inR є B R є B R+ +   
        3 3 0 3 3 0 ,j ni n i nj nє JR є JRδ δ+ +  (56) 

where ( )( ) = , 0,i
i iΔ ε− −B  and mniє  is the Levi–Civita 

symbol. 
Consider now the measurable value, which is the reso-

nator's phase shift. As we discussed in Sec. 2, it relates to 
the effective inductance of qubits system. The formula 
obtained for single qubits can be generalized for the two-
qubit system [97,142]. Then for the case of low-quality 
qubits, when their characteristic times are smaller than the 
tank's period, at the resonance frequency ( 0 = 0ξ ), expres-
sion for the phase shift δ  in terms of the parametric in-
ductances ( )i

qL  can be written as following: 

 0
0 ( )

1,2
tan ,i

i q

L
Q

L
δ

=
≈ ∑  (57) 

 ( )2 10
qb( ) , .ii

ii
i a bq

L L
k I

L Φ Φ
− ⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
L

L
 

 

In what follows this expression will be used to calculate 
the phase shift δ, which maps the qubits' state. 

5.2. Weak-driving spectroscopy 

In Sec. 4 we have considered how the measurements of 
the single qubits allow to determine their parameters: the 
tunneling amplitudes Δ and the persistent currents pI . It 
was demonstrated [41] that for defining the parameters of 
single and multiple-qubits systems both the ground-state 
measurements and excited-state spectroscopy can be used; 
the consistency of the results of the two approaches was 

Fig. 9. (Color online) Scheme of two coupled qubits. The two
flux qubits are coupled to each other, to the dc and μw lines, as
well as to an unavoidable dissipative environment. The conven-
ient model for description of the environment is the bath of har-
monic oscillators. The system of two coupled qubits is also as-
sumed to be coupled to the measuring resonant circuit (which is
not shown here), as in Fig. 2 [54]. 

dc 
bias
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biasqubit 1
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shown. Now we will demonstrate this for the case of the 
system of two coupled flux qubits described by the Hamil-
tonian (52). 

First, the one-qubit parameters are defined. For this, sup-
pose qubit a  is the one biased far from its degeneracy point 
in such a way that aε  is large in comparison with the other 
energy variables. Then, qubit a  has a well defined ground 
state with averaged spin variables ( ) = 1a

zσ〈 〉  and ( ) = 0a
xσ〈 〉  

which can be averaged out of the two-qubit Hamiltonian 
(52) reducing it to: ( ) ( )

2qbs,red = /2 ( ) /2b b
b x b zH JΔ σ ε σ− − − . 

Apart from the offset in the bias term due to the coupling, 
this is identical to the single-qubit Hamiltonian. This offset 
can be easily compensated and measured allowing the de-
termination of the coupling energy J  [142]. The qubit pa-
rameters, bΔ  and ( )b

pI , are determined from either the 
ground-state measurement or the excited-state spectroscopy, 
as it is described in Sec. 4. Analogously, biasing qubit b  far 
from the degeneracy point the parameters for qubit a , aΔ  
and ( )a

pI , can be determined.  
Next, the coupling energy J  was determined from the 

offset of the qubit dips from the / = 0a bΦ  lines, visible in 
the pure ground-state measurements presented in Fig. 10,a. 

Then the qubits were driven by magnetic fluxes 
ac sin tΦ ω  with weak driving amplitudes and various 

driving frequencies. There, we expect the position of the 
resonant transitions from energy level jE  to an overlying 
level iE  determined by the one-photon relation: 

( , )ij a bEΔ Φ Φ ω≈ , which appears when the distance 
between the energy levels =ij i jE E EΔ −  is matched by 
the photon energy ω . In Fig. 10,b a frequency in-
between both qubit gaps ( < <b aΔ ω Δ ) was used and 
therefore only the transitions to the first excited state are 
visible. For higher frequencies, also the second and third 
excited states become visible as can be seen in subfigures 
(c) and (d). The theoretically calculated contour lines are 
superposed in Figs. 10,b–d for three different frequencies 
for which the condition, ( , ) =ij a bEΔ Φ Φ ω , is fulfilled; 
the energy levels = ( , )i i a bE E Φ Φ  were found by diagoni-
lizing the Hamiltonian. From the fitting procedure the fol-
lowing parameters were found: the tunneling amplitudes 

( ) / = 15.8(3.5)a b hΔ  GHz, the energy biases ( )
0 /a b

pI hΦ =
 375(700)=  GHz [ ( ) 120(225)a b

pI =  nA], the inter-qubit 
coupling / = 3.8J h  GHz, and the value which describes 
the coupling between the qubits and the tank circuit 

3
( ) = 1.4(2.6) 10a bΞ −⋅ , where 2 ( )

0 p 0= ( / )i
i i ik Q L IΞ Φ . 

5.3. Direct and ladder-type multiphoton transitions 

We now consider the multiphoton excitations of a sys-
tem of two strongly driven coupled flux qubits. We will 
describe the effects of resonant excitation in the system in 
terms of its energy structure, entanglement measure, and 
the observable tank circuit phase shift. Then we will pre-
sent results for the multiphoton excitation of two types: 
direct (when multiple-photon energy k ω  matches the 
energy level difference ijEΔ ) and ladder-type (when the 

transition happens via an intermediate level). We will 
demonstrate how this can be used for creating the inverse 
population in the dissipative two-qubit system. 

To describe the system of two qubits subjected to the 
strong driving, the following values were calculated: the 
energy levels (by diagonalizing the stationary Hamiltoni-
an), the density matrix ρ  (by solving the Liouville equa-
tion), the observable tank circuit phase shift δ  (which is de-
fined with the effective inductance of the qubits), and the 
entanglement measure E  by making use of Eqs. (55)–(57). 
In this way graphs in Fig. 11 were calculated for the set of 
parameters of the two-qubit system realized in Ref. 143: 

/ = 1.2a hΔ  GHz, / = 0.9b hΔ  GHz, ( , )
0 / = 990a b

pI hΦ  GHz, 
/ = 0.84J h  GHz, 3

, = 1.8 10a bΞ −⋅ , and the driving fre-
quency was taken / 2 = 4ω π  GHz; also the change of the 
dc flux here was assumed symmetrical: dc=a bf f f≡ . 
For simplicity here the relaxation processes were ignored 

Fig. 10. (Color online) Spectroscopy of the two-qubit system. 
The measured dependence of the phase shift δ  on the flux biases 

af  and bf : ground-state measurement (without microwave 
excitation) (a); with weak microwave excitation at the driving 
frequencies / 2 =ω π  14.1 (b), 17.6 (c), and 20.7 (d) GHz [41]. 
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(and we will pay special attention to this below) and we 
consider the case when the characteristic measurement 
time 2 /p pT π ω=  is larger than the characteristic times of 
the dynamics of the qubit. Then the tank circuit actually 
probes the incoherent mixture of qubit's states and the 
time-averaged values of phase shift and entanglement 
should be considered. 

When the energy of k  photons ( k ω ) matches the en-
ergy difference between any two levels jE  and iE , the 
resonant excitation to the upper level is expected. Respec-
tively, the arrows of the length 4, 8, and 12 GHz show the 
places of possible one-, two-, and three-photon excitations. 
The time-averaged total probability of the currents in two qu-
bits to flow clockwise, 03 30=Z R R+ , is shown in Fig. 11,b 
to experience resonant excitation. The resonances appear 
as peak-and-dip structures in the phase shift dependence in 
Fig. 11,c. The time-averaged entanglement measure E  in a 
resonance increases due to the formation of the superposi-
tion of states, Fig. 11,d; this provides a method to control 
and probe the entanglement. 

The experimental study of the strongly driven system of 
two coupled flux qubits is presented in Fig. 12. The left 
panel is the measured voltage amplitude of the tank as a 
function of qubit biases af  and bf . The driving frequencies 
from top to bottom were / 2 = 17.6ω π , 7.0, and 4.1 GHz. 
The multiphoton resonances at ( , )ij a bE f f kΔ ω≈  are 
visualized with the ridge-trough lines. We note that the 
resonance ridge-trough lines are disturbed with increasing 
or decreasing the signal; some of these changes are shown 
with white circles. This means changing the effective Jo-
sephson inductance in these points. The experimental re-
sults can be clearly understood by comparing them with 
the energy contour lines, calculated by diagonalizing Hamil-
tonian (52) and presented in the right panel of the figure. 
There, numbers k j−  next to the lines mean that the line 
relates to the energy difference j kE E− . 

Consider now these multiphoton features in more de-
tails. In Fig. 12,b the black and red lines show the positions 
of the expected resonant excitations from the ground state 
to the first and to the second excited states, respectively; the 
blue and orange lines are the contour lines for the possible 
excitations from the first and from the second excited state 
to the third excited state. In Fig. 13,a the energy levels are 
plotted at the fixed value of the bias flux through qubit a , 

af , as a function of the bias flux through qubit b , bf . The 
arrows are introduced to match the energy levels with the 
driving frequencies / 2 = 17.6ω π  GHz and 7.0 GHz . The 
black and red arrows in both Figs. 13,a and 12,b show the 
position of one-photon transitions to the first and the se-
cond excited levels. The double green and blue arrows in 
Fig. 12 show the position of the two-photon processes, 
where the excitation by the first photon creates the popula-
tion of the first and the second levels and the second pho-
ton excites the system to the upper level. These two-photon 
excitations happen via intermediate levels; compare the 

position of these expected resonances in Fig. 12,b shown 
with the blue circle and green square. The orange triangle 
in Fig. 12,b points the ladder-type three-photon excitation, 
with one photon to the first excited level and then with two 
photons to the upper level. 

Analogous considerations allow to see in Figs. 12,c,d 
one- and two-photon resonant excitations to the first excit-
ed level for the driving frequency / 2 = 7ω π  GHz. The 
two-photon resonant excitation is direct and happen with-
out any intermediate level. The higher level excitations via 
the first excited state appear due to three- and four-photon 
excitations, as shown with orange triangles and pink aster-
isk. In Fig. 12,e the response of the two-qubit system at 

/ 2 = 4.1ω π  GHz exhibits 1- to 4-photon excitations to the 
first excited state, which can be recognized by comparing 
with the black lines in Fig. 12,f. Numerous upper level 
excitations via the first excited level appear as the changes 
of the signal along these lines. 

The transition rates can be quantified by the absolute 
value of the matrix element of the perturbation between the 
states mE  and nE  

( )2 ( ) ( ) ( ) ( )
( )
1 ˆ ˆˆ ˆ, ,a a b b

nm n m p z p zb
p

T E v E v I I
I

σ σ= = +  (58) 

divided by the factor ( )
0 ac

b
pI fΦ . The transition matrix 

elements in Fig. 13,b explain the ladder-type excitations in 
Fig. 12,b. Two points, marked by the vertical dashed green 
and blue lines in Fig. 13 describe, respectively, two inter-
esting situations. To the right (see along the blue line) the 
transition element between the higher two levels ( 2E  and 

Fig. 12. (Color online) Imaging the multiphoton transitions in the 
two-qubit system. The resonant excitation of the qubits system is 
visualized by the tank voltage amplitude (a, c, e). The position of 
the resonant transitions can be understood by comparing with the 
respective energy contour lines (b, d, f) [53]. 
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3E ) is smaller than between the lower two levels ( 0E  and 
2E ), 02 23 03T T T . In contrast, to the left (see along 

the green line) the transition element between the higher 
two levels ( 1E  and 3E ) is larger than between the lower 
two levels ( 0E  and 1E ), 13 01 03T T T . In both cases 
the probability of the direct excitation to the highest level 
is very small, which means that the transitions are induced 
due to the ladder-type mechanism. 

The ladder-type transitions and the population inversion 
can be also illustrated by calculating the energy level occu-
pation probabilities by solving the Bloch–Redfield equation 
(see the next subsection for more details); Fig. 13,c was cal-
culated with the driving frequency / 2 = 17.6ω π  GHz and 
amplitude 3·ac

–= 4 10f . First, the ladder-type resonant 

excitation takes place to the left, where the upper level 
occupation probability 3P  is of the same order as the in-
termediate level occupation probability 1P . Second, the 
inverse population appears to the right, where the upper 
level occupation probability 1P  is larger than the ground-
state probability 0P , see also Refs. 20, 42, 144, 145 for the 
study of the population inversion in the systems with single 
Josephson-junction qubits. These two phenomena are simi-
lar to those which exhibit atoms in the laser field [146]. 
Furthermore, the expectation value of the current in ith 
qubit is calculated with the reduced density matrix: 

( ) ( ) ( )
qb = Sp ( )i i i

p zI I ρσ− . The results of the calculations are 
also presented as the color insets in Fig. 12,f for the follow-
ing parameters: the strength of dissipation = 0.1α  and the 
driving amplitude 3·ac = 8 10f − . 

5.4. Lasing in the two-qubit system 

Consider now the influence of the dissipation on the 
dynamics of a two-qubit system. For this the Bloch–
Redfield formalism will be used. The strong dependence of 
the inter-level relaxation rates on the controlling magnetic 
fluxes will be demonstrated for the realistic system. This 
allows to propose several mechanisms for lasing in this 
four-level system [54]. 

For identification of the level structure and understand-
ing different transition rates it is instructive to start from 
considering the case of two noninteracting qubits, that is 

= 0J . In this simplified situation, the energy levels of the 
system of two qubits consist of the pair-wise summation of 
single-qubit levels, 

 (0)2 21= = .
2 2

i
i ii

E
E

Δ
ε Δ± ± ± +  (59) 

In Fig. 14,a the energy levels are plotted as a function of 
the partial bias in the second qubit bf , fixing the bias in 
the first qubit af . Then the single-qubit energy levels ap-
pear as the horizontal lines for the qubit a and as the pa-
rabolas for the qubit b. For the lasing the hierarchy of the 
relaxation times is required. For this it is natural to assume 
that the relaxation in the first qubit is much faster than in 
the second qubit. This allows to consider three- and four-
level lasing schemes in Figs. 14,b,c. 

As a next step, the interaction of the qubits, 0J ≠ , 
should be considered. To describe the relaxation in this 
system, the operators are converted to the basis of 
eigenstates of the unperturbed Hamiltonian. In this repre-
sentation 1

0 0=H S H S−′  is the diagonal matrix; the unitary 
matrix S  consists of eigenvectors of the unperturbed 
Hamiltonian; the excitation operator ( )V t  is converted as 
following: 

1 ( ) ( ) 1 ( )

=1,2

1( ) = ( ) = ( ) , = .
2

i i i
i z z z

i
V t S V t S t S Sε τ τ σ− −−′ ∑  (60) 

Fig. 13. (Color online) Ladder-type transitions in the two-qubit
system. Calculated as functions of the flux bf  (at 0.015af = ):
the energy levels (a), transition matrix elements nmT  (b), the
occupation probabilities iP  (c) [53]. 
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The dissipative environment can be described as the 
thermostat, for which the convenient model is the bath of 
harmonic oscillators, see Fig. 9. Within the Bloch–Red-
field formalism, the Liouville equation for the quantum 
system interacting with the bath is transformed into the 
master equation for the reduced system's density matrix 

( )tρ . Then the master equation for the density matrix of 
our driven system can be written in the energy representa-
tion as following [102,103]: 

  [ ]= , ,ij ij ij ij nn jn ij ijij
n j

ii V Wρ ω ρ ρ δ ρ γ ρ
≠

− − + −′ ∑  (61) 

where = ( ) /ij i jE Eω − , and the relaxation rates 
= 2mnW Re nmmnΓ  and 

      ( )=mn mrrm nrrn nnmm mmnn
r

γ Γ Γ Γ Γ∗ ∗+ − −∑  (62) 

are defined by the relaxation tensor lmnkΓ , which is given 
by the Fermi Golden rule. As it was shown in Refs. 147–
149, the noise from the electromagnetic circuitry can be 
described in terms of the impedance ( )Z ω  from a bath of 
LC  oscillators, described by the Hamiltonian of interac-
tion ( ) ( )1

I 2= ( )a b
z zH Xσ σ+  in terms of the collective bath 

coordinate = k kkX c Φ∑ . Here kΦ  stands for the mag-
netic flux in the kth oscillator, which is coupled with the 

strength kc  to the qubits. It follows that the relaxation ten-
sor lmnkΓ  is defined by the noise correlation function 

( )S ω  

2
0

= ( ), ( ) = e ( ) (0) ,i tlmnk
lmnk nkS S dt X t XωΛ

Γ ω ω
∞

−∫  

 (1) (2) (1) (2)= ( ) ( ) .lmnk z z lm z z nkΛ τ τ τ τ+ +  (63) 

The correlator ( )S ω  was calculated in Refs. 147, 148 with-
in the spin-boson model and it was shown that the relevant 
real part of the relaxation tensor 

     
1Re = ( ) coth 1

8 2
nk

lmnk lmnk nk
B

J
k T
ω

Γ Λ ω
⎡ ⎤

−⎢ ⎥
⎣ ⎦

 (64) 

is defined by the environmental Ohmic spectral density 
( ) =J ω α ω  and is cut off at some large value cω , where 

α  is a parameter that describes the strength of the dissipa-
tive effects. 

From the above equations the expression for the relaxa-
tion rates from level | n〉  to level | m〉  follows 

 
1= ( ) coth 1 .
4 2

mn
mn nmmn mnW J

T
ω

Λ ω ⎡ ⎤−⎢ ⎥⎣ ⎦
 (65) 

In Ref. 54 these relaxation rates were calculated as func-
tions of the partial flux biases af  and bf . It was demon-
strated that the fastest transitions are those between the 
energy levels corresponding to changing the state of the 
first qubit and leaving the same state of the second qubit. 
Such a difference in the relaxation rates creates a sort of 
artificial selection rules for the transitions, similar to the 
selection rules studied, e.g., in Refs. 150–152. To describe 
the hierarchy of the relaxation rates, consider them in the 
simplified case, ignoring the interaction between the 
qubits; then the single-qubit relaxation rates follow from 
Eqs. (62) and (65) [102,153] 

 
2

1
1 01 10= = coth ,

2 2
ET W W

E T
αΔ Δ

Δ
− +  (66) 

 
(0)2

1 1
2 01 1 2

1= Re = .
2

TT T
E

α εγ
Δ

− − +  (67) 

In particular, in the vicinity of the point =b bf f ∗  in Fig. 14,a, 
where ( ) ( )=a bE EΔ Δ , we obtain ( ) ( ) 2

1 1/ ( / )a b
b aT T Δ Δ . 

If 1 2Δ Δ  is chosen, consequently the first qubit relaxes 
much faster. 

After the parametrization of the density matrix, 
=ij ij ijx iyρ + , the system's dynamics is described by the 

equations [54] 

 [ ]1= , , = 1, 2, 3;ii ir rr ii iiii
r i

x V y W x W x i
≠

− + −′ ∑   

 [ ]1= , , > ;ij ij ij ij ijijx y V y x i jω γ− −′   

 [ ]1= , , > ;ij ij ij ij ijijy x V y y i jω γ− + −′  
(68)

 

= 0iiy , 00 11 22 33= 1 ( )x x x x− + + ; =ji ijx x , =ji ijy y− . 

Fig. 14. (Color online) Energy level structure with = 0J . (a) One-
qubit and two-qubit energy levels as functions of the magnetic
flux bf  at fixed flux af . The arrows show the fastest relaxation,
which is assumed to relate to the qubit a. (b) and (c) Schemes for
three- and four-level lasing at b bLf f=  and b bRf f= . The
driving magnetic flux pumps (P) the upper level; fast relaxation
(R) creates the population inversion; the two operating levels can
be used for lasing (L) [54]. 
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When discussing Fig. 14 we pointed out that in the sys-
tem of two coupled qubits there are two ways to realize 
lasing, making use of the three or four levels to create the po-
pulation inversion between the operating levels. In Ref. 54 
the lasing in the two-qubit system was demonstrated by 
solving numerically the Bloch-type equations (68). Besides 
demonstrating the population inversion between the oper-
ating levels, an additional signal with the frequency match-
ing the distance between the operating levels was applied, 
to stimulate the transition from the upper operating level to 
the lower one. So, the driving was considered to be, first, 
the monochromatic signal ac( ) = sinf t f tω  to pump the 
system to the upper level and to demonstrate the popula-
tion inversion. Then another signal stimulating transitions 
between the operating laser levels is applied 

ac( ) = sin sinL Lf t f t f tω ω+  with 2 1=L E Eω − . Solv-
ing the system of equations (68), one obtains the popula-
tion of ith level of our two-qubit system, =i iiP x . The re-
sults of the calculations are presented in Fig. 15, where the 
temporal dynamics of the level populations is given for 
two situations. 

As shown in the inset schemes in Fig. 15, the fastest 
(dominating) relaxation transitions are | 3 | 2〉 → 〉  and 
|1 | 0〉 → 〉 . The system is excited by either one- or two-
photon transitions, with 3 0= E Eω −  in Fig. 15,a or with 

3 02 = E Eω −  in Fig. 15,b. This creates the population 

inversion between the levels | 2〉  and |1〉 . Note that analo-
gous competition of the driving and relaxation can lead to 
the population inversion in other multilevel systems 
[124,154]. Fast relaxation, |1 | 0〉 → 〉 , helps creating the 
population inversion between the laser levels | 2〉 and |1〉 , 
which is the advantage of the four-level scheme [155]. 
Then the transition | 2 |1〉 → 〉  is stimulated by another sig-
nal with a frequency matching the laser operating levels 

2 1( )L E Eω = − . Figure 15 was calculated for the following 
realistic parameters [53]: / =15.8a hΔ  GHz, / = 3.5b hΔ  GHz, 

( )
0 / = 375a

pI hΦ  GHz, ( )
0 / 700b

pI hΦ =  GHz, / = 3.8J h  GHz, 
/ = 1Bk T h  GHz; and also /2 9Lω π =  GHz, 3·ac= = 5 10Lf f −  

with the driving frequency / 2 = 47.4ω π  GHz for (a) and 
/ 2 = 23.7ω π  GHz for (b). 
For the realization of such lasing schemes, the system 

of two qubits should be put in a quantum resonator, e.g., by 
coupling to a transmission line resonator, as in Ref. 141. 
Then the stimulated transition between the operating states, 
demonstrated in Fig. 15, will result in transmitting the en-
ergy from the qubits to the resonator as photons. 

Conclusions 

Here we presented the experimental and theoretical re-
sults of the study of driven single and coupled supercon-
ducting qubits. The multiphoton transitions in both charge 
and flux qubits were studied in details. Those processes are 
important for both demonstrating the fundamental quantum 
phenomena in mesoscopic systems and for developing con-
trolling mechanisms for perspective devices. 

The system of qubits, coupled to the controlling elec-
tronics and measuring resonator, can be described within 
the semiclassical approach. After presenting this formalism 
in application to probing the qubit systems, we have shown 
some specific experimental results, which were accompa-
nied by the calculated counterparts. The agreement be-
tween them shows contemporary possibility to demonstrate 
and describe quantum phenomena in mesoscopic systems. 
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