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A self-consistent statistical method [Phys. Rev. B66, 054302 (2002)] is used to describe thermodynamic

properties of free rare gas nanocrystals using thin plates as examples. It is shown that size influence on ther-

modynamic properties of nanocrystals is caused by size-dependent quantization of the vibration spectrum

affecting the parameters of a statistical distribution function of atomic displacements and, thus, governing

size dependence of average values of energetic contributions to the Gibbs free energy of the system. For Xe

nanocrystals, we present calculated size dependences of the Debye temperature, heat capacity, interatomic

distance, melting temperature, etc.
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1. Introduction

The effect of size dependence of the melting tempera-

ture was discovered in the middle of the last century in

electron microscopy studies of granular metallic films

[1]. It was found that the melting temperature of free

nanocrystals is substantially depressed as the crystal size

decreases. The temperature can be changed by hundreds

degrees, and this effect is pronounced even in the me-

soscopic size range. Later, it was also established that this

phenomenon has universal nature. It is inherent in any

crystalline matter: metallic and semiconductor nanocrys-

tals [2–5], rare gas [6,7] and ionic solids. It should be

noted that depression of the melting point is observed

only in free nanocrystals. If a nanoparticle is embedded

into some medium, it may be considerably superheated

[8,9].

Recently it was reported that thermodynamic proper-

ties of nanocrystals, such as cohesion energy [10,11],

Debye temperature [10,12,13], activation energy of diffu-

sion [14,15], vacancy formation energy [16,17] etc. dis-

play also size dependence. These experimental facts point

to size influence on statistical characteristics of atoms in a

nanoparticle.

In early theoretical studies of thermodynamics of na-

nocrystals, authors attempted to explain the strong size

dependence of the melting temperature. Because of the

lack of a common melting theory, these models took into

account a variety of size-dependent factors affecting the

transition between solid and liquid nanophases. In ther-

modynamic consideration of an equilibrium between

these phases, an important role was ascribed to the sur-

face of the nanoparticle [3,5,18–20]. Size dependence

of the chemical potentials of both phases was described

by introducing the capillary pressure, caused by surface

curvature, and excess surface energy. Some phenomeno-

logical models of melting of free nanoparticles employed

the effect of surface melting inherent in the most solids.

For example, the liquid-layer model [2,21] postulates for-

mation of a quasi-liquid layer at the surface of a nano-

crystal at temperature below its melting point.

Among recent theoretical approaches to description of

size-dependent melting of nanocrystals, we would like to

mention the liquid-drop model [22] taking into account

reduction of the cohesion energy of atoms of a nanoparticle

with reduction of its size and using a relation between the

melting temperature and the cohesion energy [23].

A considerable advance in computational capacity

made for the last decade has enabled first-principles simu-

lation of dynamical behavior and energetic characteristics

of systems consisting of more than 10 5 atoms [24–32], i.e.

nanocrystals in the so-called mesoscale regime.
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To our opinion, one of the most comprehensive molec-

ular dynamics (MD) studies of thermodynamics of nano-

sized systems was carried out in Ref. 29 for spherical Cu

nanocrystals. The results obtained in Ref. 29 demonstrate

that both melting temperature and the latent heat of fusion

decrease smoothly as particle radius decreases. The anal-

ysis of energetic and structural properties of nanocrystals

revealed existence of a rather thin surface layer where av-

erage potential energy and root-mean-square (rms) dis-

placements of atoms are largely different from those of

the core region. According to results obtained in Ref. 29,

the behavior of the average potential energy of atoms of a

nanocrystal is characterized by essentially nonlinear rise

near Tm. As shown in Refs. 33, 34 for the bulk solids, such

a behavior is attributed to evolution of anharmonic insta-

bility of the phonon system of the crystal which is directly

related to the melting transition.

In this work we study influence of size-dependent

modification of the phonon spectrum on thermodynamic

properties of rare gas nanocrystals using a thin plate of

nanosized thickness as an example. Similar consideration

for metallic nanoplates was carried out in Ref. 35. We

show that taking into account the finite size of the nano-

crystal results in quantization of its vibrational spectrum

which becomes essentially discrete. Formation of a dis-

crete vibrational spectrum affects parameters of statistical

distribution of atomic displacements in the nanocrystal

and, therefore, the average values of its energetic cha-

racteristics. As it will be shown, this is the chief mecha-

nism responsible for depression of the melting point and

change of thermodynamic properties of free nanocrystals

with decreasing their size.

2. Free energy of a nanocrystal

To examine size influence on thermodynamics of

nanocrystals, we use a self-consistent statistical method

[36] developed to compute thermodynamic properties of

simple solids. The method consists, first, in derivation of

a binary distribution function of atomic coordinates and,

second, in a variational procedure of computation of in-

teratomic distance and effective parameters of quasi-elas-

tic bonds between atoms of the crystal. It was shown that

the phonon spectrum of the crystal determines parameters

of the distribution function and, therefore, the average

values of energetic characteristics of the crystal. There-

fore, this approach allows to clarify how size-dependent

modification of the phonon spectrum of a small crystal af-

fects its thermodynamic properties. The method has been

applied to description of thermal characteristics of the

rare gas crystals (RGC) [36–38] and some simple fcc met-

als [39]. In the framework of this method we also com-

puted the formation energy of a vacancy in the RGC as a

function of temperature and demonstrated that approach-

ing the melting point (which is assumed to be directly re-

lated to the point of anharmonic instability) is accompa-

nied by dramatic reduction of the energy required to cre-

ate structure defects of the lattice [33,34,40]. As in our

previous studies, we assume the interatomic interaction to

be pairwise and approximated by the Morse potential
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The parameters A, R0, and � for RGC have been deter-

mined in Ref. 33 so that calculated values of interatomic

distance, bulk modulus, and sublimation energy at zero

temperature fitted the corresponding experimental data.

In this work we restrict ourselves to the high-tempera-

ture limit when the distribution function of atomic dis-

placements in a simple crystal may be presented as a pro-

duct of one-particle Gaussian functions [33] given by
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where q i is the displacement of an atom from the ith lat-

tice site, 
 � k T AB / is the reduced temperature, c is a

dimensionless effective parameter of quasi-elastic bond

of neighboring atoms, and the coefficient n( )
 determines

contribution of the phonon spectrum to the distribution

width. At high temperature it is expanded into a power se-

ries as [36]
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is the de Boer parameter for the Morse potential, M is

atomic mass. The condition for the applicability of the

high-temperature approximation is given by inequality


 � c�. Coefficients nl are determined by the phonon

spectrum of the crystal [36]. For example,
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where K is reduced wave vector [36],
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is the reduced frequency of a phonon with wave vector k

and branch j, calculated from the dynamical matrix of the

lattice, and e jx ( )k is the projection of a phonon polariza-
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tion vector on the x axis. The integration in (5) and (6) is

carried out over the first Brillouin zone. For a bulk fcc

crystal, n0 2� , n1 5 6� / . Equations (5) and (6) were de-

rived in Ref. 36 for the bulk crystals, but, according to

Ref. 41, such expressions are applicable to any finite sys-

tem of bound harmonic oscillators.

In the high-temperature approximation the Gibbs free

energy� of a simple fcc crystal consisting of N atoms can

be written as [33,36]
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Here R is the nearest neighbor distance, b R R� ��( )0 is

a reduced lattice expansion, z �12 is the coordination

number, p P A� / ( )� 3 is reduced external pressure, and

v R� 3 2/ is volume per atom.

The first term in (8) determines the entropy part of the

free energy of atomic vibrations in the crystal, the second

term represents the average potential energy of interac-

tion of neighboring atoms. The third term determines

a contribution to the free energy of the crystal due to

the cubic anharmonicity of collective atomic vibrations,

evaluated in the second order of the perturbation theory

( .a3 2 31� for the RGC [33,34]). The next term takes into

account the long-range attraction between atoms of the

crystal, with � and � being the parameters of the Len-

nard–Jones potential and � l � 4 91. for the fcc lattice [33].

3. Vibrational spectrum of a thin plate

To determine size contribution to the free energy of a

nanocrystal of size h (h R�� ), we proceed from the as-

sumption that the size-dependent modification of the vi-

brational spectrum is most pronounced in its long-wave

part, with the wave vectors k h~ /� or kR � 1. Such a case

corresponds to the elastic vibrations of the medium and is

described by wave equations of theory of elasticity. The

consideration of the size dependence of thermodynamic

properties of nanocrystals will be carried out for the sim-

plest type of nanocrystals, a thin plate. In this case, the

dispersion relations have a rather simple appearance. A

consistent consideration of elastic vibrations and propa-

gation of elastic waves in plates was originally performed

by Lamb [42] in the framework of general theory of

elasticity.

Let us consider a plate of thickness h, with free sur-

faces parallel to the ( , )x y plane and the origin taken at the

center of the plate. The z axis is normal to the free sur-

faces z h� � / 2. The system is assumed to be of macro-

scopic size in the ( , )x y plane, so that vibrations can prop-

agate as plane waves in the x and y directions. Note that

we do not consider vibrations of the plate as a whole. The

components of the stress tensor vanish at the free sur-

faces,

� zx h� �
/2

0 ,

� zz h� �
/2

0 , (9)

� zy h�
�

/2
0 .

For such a system, the displacement vector u can be pre-

sented as a superposition of waves of the horizontal polar-

ization, with u ux z� � 0, u uy � , and waves of the verti-

cal polarization with u x  0, u z  0, and u y � 0. It is

important that these two types of waves do not mix at the

boundaries, so that they can be considered separately

(see, e.g., Refs. 42,43).

Waves of the horizontal polarization are described by

ordinary wave equations for the displacement u y ,
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where � �� / ct , � is an eigenfrequency, ct is transverse

sound velocity. A solution of (10) in a particular case of a

plane wave propagating along the x direction is given by

u C zy
i x� �cos ( ) ." # $e (11)

Parameters " and # are found from both the boun-

dary conditions (9) and the symmetry reasons allow-

ing two types of the solutions, a symmetrical one,

u z h u z hy y( / ) ( / )� � � �2 2 , and an antisymmetrical

one, u z h u z hy y( / ) ( / )� � � � �2 2 . These solutions lead

generally to a dispersion relation given by

�t t nc k� , (12)

with k n h nn � � � �$ % �2 2 2 1 2 3( / ) , , , ,� Here $ and %
are, respectively, projections of the wave vector on the x

and y axes for plane waves propagating in the xy plane.

The projection of the wave vector on the z axis takes on

discrete values,

k
n

h
z �

�
.

In the case of waves of vertical polarization, the dis-

placement is expressed in terms of scalar & and vector �

potentials,
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u �' �& rot �. (13)

The potential � can be chosen so that ( (y � and

( (x z� � 0. Then & and ( satisfy the wave equations,

)& &� �k 2 0 , (14)

)( (� ��2 0 , (15)

where k cl�� / , cl is longitudinal sound velocity. The so-

lutions of Eqs. (14), (15) are given by
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In terms of these notations, the boundary conditions (9)
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where p � �( ) / ( )$ " $2 2 2 . Hence we get the general dis-

persion relation for the acoustic part of the vibrational

spectrum of the nanocrystal,
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From the symmetry reasons, the projections of the dis-

placement vectors u x and u z should be either symmetri-

cal or antisymmetrical. At the symmetrical conditions

# � # �l tm n m n0 0 2 1 2 0 1 2� � � � +, ( ) / , , , , ,

the dispersion relation (22) appears as
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The antisymmetrical condition is specified by

# � # �l tn m m n0 02 1 2 0 1 2� � � � +( ) / , , , , , ,

leading to
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Note that satisfying the symmetrical condition for u x im-

plies satisfying the antisymmetrical condition for u z , and

viceversa.

In Fig. 1 we plotted dispersion curves for the longitu-

dinal characteristic vibrations of a thin plate obtained

from (23). At a rather small thickness h of the plate, the

long-wave part (kR � 1) of the vibrational spectrum of the

nanocrystal differs substantially from that of the bulk

crystal, described by the linear relation between the fre-

quency and the wave vector, � $j jc� ( j l t� , ). The spec-

trum of the thin plate splits into separate vibration bran-

ches. For each branch, there is an integer number of

wavelengths going across the plate thickness. The disper-

sion curves are well approximated by parabolas and can

be analytically represented as

� $ % � � $ %n n b n lc2 2 2 2 2( , ) ( ).,� � � (25)

Here�n b, is the minimal value of the frequency of the nth

vibration branch, � n �1. For each of both symmetrical

(23) and antisymmetrical (24) cases we have two types

of solutions for �n b, corresponding to longitudinal and

transverse characteristic vibrations that are generally

written as

�
�

n b
j

j
n

h
c

,
� ,

where j l t� , . As in the case of waves of the horizontal po-

larization (12), the wave vector for the both longitudinal

and transverse standing waves of the vertical polariza-

tions is given by Eq. (12).

A similarity of the expression for ( )
,

�
n b
j 2 to the for-

mula for the energy of a quantum particle in a one-dimen-

sional potential well [44] is explained by the wave nature

of both quantum particles and vibrational modes, exhibit-
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Fig. 1. Dispersion curves of longitudinal vibrations of a thin

plate for n �1 5, ..., . The dotted line corresponds to the disper-

sion relation � $� cl for the bulk crystal.



ing discreteness of the eigenvalues in the case of a small

size of the system.

For the bulk fcc crystals, the first Brillouin zone has

the form of a truncated octahedron which may be well ap-

proximated by a sphere of radius k vs
0 2 1 36� ( / ) /� . The ra-

dius k s
0 is determined by the requirement that the number

of independent values of the wave vector falling within

the sphere is equal to the number of atoms of the simple

lattice.

In the case of nanocrystals, evaluation of the radius k s

of the spherical Brillouin zone requires taking into ac-

count the discrete character of k z in replacing summation

over k by integration. This can be done using the

Euler–Maclaurin formula [45]
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Presence of a size-dependent factor in (28) results in ap-

pearance of similar corrections to the coefficients nl in

(3),

n h n
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h
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where nl
0 is the bulk value of nl , the first two coefficients

, l are , 0 0 68� . and ,1 0 74� . . As will be shown below, the

size dependence of the coefficients n hl ( ) leads to a num-

ber of physical effects observed in nanocrystals.

It should be noted that the above procedure of calcula-

tion of the coefficients , l seems to give overestimated

values, because Eq. (28) for the quasi-discrete wave vec-

tor is valid, strictly speaking, only in the range kR � 1, sen-

sible to the particle size. Near the boundaries of the

Brillouin zone, the values of k are determined by the

structure of the crystal lattice and are slightly dependent

of the crystal size. However, the structure of Eq. (28)

should remain, on the whole, the same, so that , l may be

considered as parameters of the theory.

4. Thermodynamic properties of nanocrystals

The equilibrium values of the quasi-elastic bond pa-

rameter c0 and reduced lattice expansion b0 are deter-

mined from minimization of the Gibbs function (8) with

respect to c and b,

!
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The condition for the equilibrium values of the va-

riational parameters to exist is that
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The sufficient condition D � 0 defines the point of anhar-

monic instability of the crystal where the minimum of

g p c b( , , , )
 with respect to c and b disappears.

In the case of nanocrystals, the Gibbs free energy de-

pends, besides temperature 
 and pressure p, on the crys-

tal size h representing an additional independent thermo-

dynamic variable (while volume per atom is unchanged).

As a result, a number of thermodynamic characteristics of

the crystal display size dependence. For example, the

Debye temperature is directly proportional to the equilib-

rium value of the parameter c p h0( , , )
 and is written as

[37,38]

. �D j BA c p h k� / 0( ) ( , , ) / ,/6 2 2 1 3
0� � 
k (32)

where coefficients � �j j kRk k� / ( ) account for different

polarizations of the acoustic waves, and / 0 �� jk 0 67. for

the fcc crystals. The volume and temperature dependence

of .D determines the Gr=�neisen parameter,

,G
D T

D V

/ V

/ T
� �

! !
� ! !
( ln ln )

( ln ln )

.
.1

. (33)

The equilibrium value of b p h0( , , )
 governs the inter-

atomic distance, the coefficient of thermal expansion, and

the bulk modulus of the nanocrystal. All these properties

would depend on the crystal size.

If the melting temperature Tm is assumed to be identi-

cal to the temperature of anharmonic instability of the

crystal [33,34], then it can be shown in the framework of

the present statistical model that Tm is related to the factor

n( )
 as






m
B mk T

A a n
� ~

( )

1

3
3

. (34)

Hence it follows that even a slight increasing of n( )
 due

to reduction of the crystal size results in appreciable de-

pression of the melting temperature of the nanocrystal.

Since R h/ 11 1, it follows from (34) that

T

T h

m

m
b
� �1

3

"
, (35)

where Tm
b is the melting temperature of the bulk material,

and " ,� 9 0R. This is the well-known relationship be-

tween the relative melting temperature of a planar

nanocrystal and its inverse size (see, e.g., Ref. 22).

In Figs. 2 and 3 we plotted, respectively, the inter-

atomic distance and the reduced coefficient of thermal ex-

pansion � 
� db/d in Xe nanocrystals versus particle size
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at three values of temperature calculated from (30). Here-

after all theoretical results are presented for zero external

pressure. A nanocrystal of size h � 218. nm melts at T �125

K, which explains some nonlinear rise of �( )h in the top

curve.

While the interatomic distances in the considered

nanocrystals show no marked dependence on the crystal

size, the effective parameter c p h0( , , )
 of the quasi-elas-

tic bond varies substantially with h. Such dependence

calculated for Xe nanocrystals is illustrated with Fig. 4

which demonstrates that c0 decreases nonlinearly as h de-

creases even at temperatures much lower than the corre-

sponding melting temperature of the nanocrystal.

Size dependence of the Debye temperature .D of

small crystals was observed in a number of experimental

studies [10,12,13]. In the framework of the present ap-

proach, .D is proportional to the quasi-elastic bond pa-

rameter c0 (32). The .D h( ) dependence of Fig. 5 agrees

qualitatively with that obtained experimentally, e.g., for

gold nanoparticles [12].

In many bulk solids, the melting transition is preceded

by anomalous behavior of temperature derivatives of

thermodynamic functions (isobaric heat capacity, thermal

expansion coefficient, Gr�neisen parameter) due to evo-

lution of the anharmonic instability in the phonon subsys-

tem of the crystal as T Tm2 [33,34]. As seen from Fig. 6,

the isobaric heat capacity C P behaves itself in a similar

way when the melting point is approached via reduction

of the crystal size at constant temperature (the top curve).

In other words, approaching the melting point by chang-

ing a thermodynamic variable corresponding to the size h

of the nanocrystal is in some way similar to variation of

temperature or pressure of the crystal.

In Fig. 7 we show the melting temperature of a free Xe

thin plate as a function of its thickness calculated from

Eqs. (30) and the condition D � 0, compared with that ob-

tained from Eq. (34).
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At present, the only generally recognized melting cri-

terion is the empirical Lindemann rule suggesting that a

solid melts when the rms displacement of atoms reaches a

characteristic fraction of the interatomic distance. In

terms of notations accepted in this work, the Lindemann

ratio # is given by

#




 �
2

2

2
0
2 2

3

4
�
/ 0

�
q

R c R gt( )( )
. (36)

Here gt � 0 77. is the correlation smearing of the distribu-

tion width of an atom at a lattice site [36].

The results presented in Figs. 4 and 8 allow us to treat

the physical meaning of the Lindemann criterion in terms

of the solid state instability. The evolution of the anhar-

monic instability is always accompanied by nonlinear re-

duction of the quasi-elastic bond parameter c p h0( , , )

which reaches its minimal value at the instability point

corresponding either a critical temperature 
 c or a critical

size of the particle (Fig. 4). According to (36), such a

reduction of c0 in the critical range results in dramatic in-

creasing of the rms displacement of atoms, so that its ratio

to the average interatomic distance rises up to # � 01. . In

addition to increasing the rms displacement, the critical

range is characterized by a nonlinear rise in the isobaric

heat capacity (Fig. 6), the coefficient of thermal expan-

sion etc. as well as by a sharp drop in the formation energy

of the structural lattice defects, as was shown for bulk

solids [33,34,40], thus promoting a transition to a struc-

turally disordered phase.

Reduction of the crystal size involves, along with a

shift of the temperature range of the anharmonic instabil-

ity towards lower temperatures, a respective temperature

shift of peculiarities of thermodynamic properties. This

effect is illustrated in Fig. 9 presenting the temperature

dependence of the Gr�neisen parameter computed for dif-

ferent crystal sizes.
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thickness calculated by minimization of the Gibbs free energy

(8) (solid curve) and from Eq. (34) (dotted curve).
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In conclusion, one should note that influence of dis-

creteness of the spectrum of eigenvalues on energetic

characteristics of many-particle finite systems was con-

sidered previously for atomic nuclei [49] and nano-

particles of degenerated semiconductors [50]. In these

studies it was demonstrated that corrections due to the

discreteness of the spectrum are proportional to h�1.

5. Discussion

So far there is a large amount of experimental data con-

cerning size influence on the bulk properties of

nanoparticles, such as cohesion energy [10,11], Debye

temperature [10,12,13], and activation energy of diffu-

sion [14,15]. One of the most pronounced manifestations

of change of thermodynamic properties observed in

nanosized crystalline systems is the effect of reduction of

the melting temperature of free nanocrystals [1–9]. So the

principal problem of statistical description of thermody-

namics of nanocrystals is elucidation of the mechanism of

size effect on statistical characteristics of atoms in such

systems. Relying on the results of MD simulations of

thermodynamic properties and melting of nanocrystals

[29,30], it is natural to conclude that a thin (relative to the

particle size) surface layer has only a minor influence

upon the bulk properties of the particles; moreover, in the

case of spherical particles an additional capillary pressure

should contribute to increasing of both the melting

temperature and the Debye temperature.

It is shown in this work that the principal size-depen-

dent mechanism governing thermodynamic behavior of a

nanocrystal is quantization of its vibrational spectrum. It

leads to increasing of the parameter n( )
 of the statistical

distribution function of atomic coordinates (2) and chang-

ing, as a consequence, the average value of the interaction

energy of atoms in the nanocrystal. One emphasizes that

such an impact on a crystalline system mediated by direct

change of the statistical distribution function is inherent

only in nanosystems. In this connection, it is worth noting

a peculiar character of thermodynamic response of a na-

nocrystal to variation of its size. As the crystal's size de-

creases, the parameter c p h0( , , )
 of quasi-elastic bond of

its atoms decreases (Fig. 4), as well as the Debye tempera-

ture (32), while interatomic distance remains nearly con-

stant (Figs. 2, 3). The melting temperature (34) of the

nanocrystal is markedly decreased (Fig. 7). Independ-

ently of the crystal size, the melting transition occurs

when the Lindemann criterion is satisfied (Fig. 8). Along

with a size-dependent shift of the melting temperature,

there is also a corresponding shift of the range of the an-

harmonic instability where thermodynamic properties

(isobaric heat capacity, coefficient of thermal expansion

etc.) display a peculiar behavior.
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