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Localized electrons in dense heavy noble gases
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The paper addresses counterintuitive behavior of electrons injected into dense cryogenic media with

negative scattering length a0. Instead of expected polaronic effect (formation of density enhancement clus-

ters) which should substantially reduce the electron mobility, an opposite picture is observed: with increas-

ing | |a0 (the trend taking place for inert gases with the growth of atomic number) and the medium density, the

electrons remain practically free. An explanation of this behavior is provided based on consistent account-

ing for the non-linearity of electron interaction with the gaseous medium in the gas atom number density.

PACS: 71.10.–w Theories and models of many-electron systems.
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One of the most interesting and still important issues

in physics of cryogenic media is the problem of electron

clusters which emerged almost simultaneously with that

of electron bubbles. However, it is much less transparent

(compared to the case of electron bubbles) from the ex-

perimental side. Although there are some indications of

the existence of electron clusters in xenon [1], they are

not observed on the expected scale in media with compar-

atively high atomic polarizabilities (krypton, xenon)

which are presumably likely to develop various electron

autolocalization phenomena. On the contrary, the data on

electron mobility in Ar, Kr, and Xe [2–4] reveal that elec-

trons remain practically free (compared to mobility of

positive ions possessing the structure of massive

polaronic-type formations) in their motion, at least in the

vicinity of the characteristic electron mobility peak which

is observed for all heavy inert gases.

The existing description [5–7] of electron clusters in

cryogenic media with negative scattering lengths a0 em-

ploys the well-known approximation [8,9] for elec-

tron-medium interaction energy which is linear in the gas

density n. Within this approximation, the minimal energy

V0 of delocalized electron injected into the gaseous media

is calculated as
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where m is the free electron mass. In terms of electron

energy bands in solids, V0 is the conduction band bottom

energy. The case of a0 0� corresponds to formation a sin-

gle-electron bubble. On the other hand, a density

enhancement domain with higher gas atom concentration

(i.e., a cluster) may develop around the electron if a0 0� .

The authors of Refs. 5–7 made every effort to provide a

quantitatively accurate description of the gas density

around the localized electron in the linear approximation.

In addition to (1), they also introduced a non-local elec-

tron-gas interaction of the type

E d r d rn r v r r rint ( ) ( ) ( )� � � � ��� 3 3 2� , (2)

where �( )r is the electron wave function, took into ac-

count the deviation of the gas entropy contribution to the

total free energy from the ideal gas, etc. Their final con-

clusions [5–7] practically coincide with the intuitively

expected picture: the electron cluster should exist, and the

electron localization degree as well as the cluster mass

should monotonously grow with the density media and po-

larizability demonstrating exponential sensitivity to the tem-

perature. The outlined approach [5–7] reveals no hints of

electron mobility growth with the medium density [2–4].

In the present paper we show that in gaseous media

with negative values of a0 it is possible for electron, in a

ceratin range of gas densities and temperatures, to form

an autolocalized state involving formation of a cluster

with the characteristic length 	 �� aB (where aB is the

Bohr radius) if the electron-gas interaction V n0( ) is

treated beyond the linear approximation as in Eq. (1). The

paper is organized as follows. First, we present the formal
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grounds for considering the non-linear behavior of V n0( ).

Then the electron cluster structure is calculated within the

non-linear approach. Finally, the nature of deviations

from non-linearity at small n is discussed.

As already mentioned earlier, the existing theory of

autolocalized electrons in cryogenic media employs the elec-

tron-gas interaction (1). However, the true minimal energy of

an electron injected in inert gases with negative scattering

length (Ar, Kr, Xe) is substantially non-linear. Direct experi-

ments [10] reveal that the energy V n0( ) is only approxi-

mately linear at very small n following Eq. (1). With further

growth of n, the energyV0 reaches some minimal valueVmin

at a certain density nmin after which it grows again

(see Fig. 1; for Ar nmin � 
13 10 21 cm–3,Vmin .� �0 3 eV, for

Kr nmin � 
14 10 21 cm–3, Vmin .� �0 66 eV, for Xe nmin �
� 
11 10 21 cm–3, Vmin .� �0 83 eV). Most important in our

problem of cluster formation is the range of n near nmin

where the derivative � �V / n0 changes its sign. Indeed, it is

natural to assume that dominating in the problem of

self-consistent calculation of the gas atom number den-

sity n r( ) will be the densities minimizing the electron-gas

interaction energy. Hopefully, the quantitative analysis

can be based on any reasonable interpolation of the true

V n0( ) reproducing the correct minimum depth and posi-

tion. In fact, we used the simplest polynomial approxima-

tion yielding in addition the correct slope of V n0( ) at

small n:
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The parameters A and B were chosen for each inert gas in

such a way that the correct values [10] of the minimum

depth Vmin and position nmin were reproduced.

Formally, the problem of finding the ground state of a

single electron in the gaseous media reduces to minimiz-

ing the free energy F of the entire «electron+gas» system

with respect to variations of the (spherically symmetric)

electron wave function�( )r and gas atom number density

n r( ) [11,12],
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where B T( ) is a function of temperature which does not

affect final results and therefore is not specified here.

This procedure results in a set of two coupled equations

for n r( ) and �( )r :
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where ng is the gas atom number density at infinity, n r( )

is the local atom number density,�( )r is the electron wave

function normalized to unity, and T is the temperature.

To solve the Eqs. (5)–(7) we employed (just as in Refs.

11,12) the variational approach with �( )r selected in the

form
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Here the variational parameter k measures the electron

localization. By substituting Eq. (8) into Eq. (7) and find-

ing n r k( , ) one can calculate the free energy of the system

F k( ) (4). To study the possibility of electron auto-

localization at given ng and T one should then plot

the curve �F k F k F( ) ( )� � deloc (where F V ngdeloc � �0( )

� NT n B Tgln( ( )) is the total free energy of system con-

sisting of a uniform gas and delocalized electron de-

scribed by the wave function�( )r � const, N being the to-

tal number of gas atoms in the system and check if this

curve has a minimum which is sufficiently deep compared

to the temperature. For single electron bubbles, where

a0 0� , this program was realized in [11,12] where the lin-

ear approximation for V0 was employed. The single elec-

tron bubble formation proves energetically favourable at

sufficiently low temperatures and sufficiently high densi-

ties (threshold values of temperature and density follow

the relation n T� 2 3/ ), and all the parameters of arising

bubble well satisfy the adopted assumptions: the bubble

size is much larger than the interatomic distance, the free

energy minimum depth substantially exceeds tempera-

ture, etc. We omit any quantitative details since for a0 0�
the non-linearity of V n0( ) does not introduce any qualita-

tive corrections to the bubble parameters and the resulting
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Fig. 1. Minimal energy of delocalized electron injected in ar-

gon as a function of gas atom number density as a typical ex-

ample of behaviour of V n0( ) for heavy inert gases with nega-

tive scattering length.



picture is practically identical to that obtained earlier

[11,12].

In the problem with a0 0� we first mention that the re-

lation

n r k n
a r k
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2 2
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2� ��
(9)

following from Eqs. (7) and (1) leads in the linear theory

to an unavoidable singularity in the density distribution

n r( )� 0 (in the adopted model which neglects inter-ato-

mic repulsion at small distances nothing can prevent the

arbitrarily strong shrinking of electron wave function and

the corresponding growth of the gas density at the center

of the cluster resulting in infinite reduction of the system

free energy) as illustrated by variational calculations

which yield for�F k( ) the results plotted in Fig. 2 (curve 1).

By employing a more general expression for n r k( , )

with V n0( ) specified by Eq. (3) it is easy to see that the

trend towards density enhancement around the localized

electron taking place at relatively large distances from the

cluster core and correctly described by Eq. (9) is stopped

near the cluster center where the derivative � �V n0 /

changes its sign. It is also qualitatively clear that the halt

in the density growth is actually important if the uniform

gas density ng far from the cluster core is not too close to

nmin . If the inequality n ng � min is satisfied, the cluster

formation mechanism defined by Eqs. (5),(7) becomes in-

efficient (no energy gain can be acquired by tuning the

gas density to its optimal value in the vicinity of the clus-

ter center), and that is actually why electrons in heavy

inert gases behave as practically free particles for gas

densities close to nmin .

Now that the singularity suppression mechanism is

clear, one can apply the outlined variational procedure to

quantitatively test the above qualitative picture concern-

ing the possibility of electron cluster formation. Calcula-

tions reveal that at not too high temperatures T there do

exist density ranges where the free energy gain due to

electron localization �F k( ) as a function of k has a mini-

mum with the depth exceeding T (curve 2 in Fig. 2). Nu-

merical results for Xe are shown in Fig. 3 where the free

energy gain calculated for electron wave function defined

by Eq. (8) and optimized with respect to k is plotted. It is

clearly seen that the localized state is only energetically

favourable for not too low densities outside some interval

around nmin ; the characteristic cluster radii prove to be

(10–20) aB . It should be noted that the structure of arising

localized state proves to be completely different for

n ng � min and n ng � min . As already mentioned earlier,

the free energy gain in the localized state occurs due to the

proximity of the gas atom density around the electron (r) to

the density nmin providing the lowest possible interaction

energy between the electron and the gas. Therefore, at

n ng � min the localized state corresponds to formation of a

cluster (i.e. density enhancement in the vicinity of r � 0),

while at n ng � min a single-electron bubble is formed with

the gas atoms squeezed out of the vicinity of r � 0).

Hence, the non-linear corrections to the interaction en-

ergy (1) behave in qualitatively different ways for a0 0�
and a0 0� . For positive scattering lengths, non-linear cor-

rections to Eq. (1) only slightly modifies the overall pic-

ture of electron localization arising in the linear approach.

On the contrary, for negative scattering lengths the pres-

ence of non-linearity in V n0( ) becomes critically impor-

tant since in the adopted model it is the only factor capa-

ble of preventing the cluster from shrinking to the Bohr

length scale. Therefore, it is very desirable to study the

deviation of V n0( ) from the linear approximation (1), at

least for small n. However, in spite of the fact that the

problem of calculating V n0( ) has been addressed in many

works (e.g., see Refs. 13), currently available theoretical

results are mainly numerical in nature and derived by re-

placing the disordered medium with imaginary crystalline
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Fig. 2. Gain in the free energy due to electron localization in Xe

as a function of the variational parameter k in linear approxima-

tion (curve 1) and taking into account the non-linear behaviour

of V n0( ) (curve 2) calculated for ng � 
4 1021 cm�3, T �150 K.
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Fig. 3. Gain in free energy due to electron localization in Xe as

a function of gas atom number density at three different tem-

peratures, T, K: 150(----), 200 (....), 250 (�).



solid consisting of the gas atoms with appropriate density

after which the conduction band bottom is calculated

within the Wigner–Seitz model. Major efforts in these

works have been concentrated on choosing the optimal

pseudopotential describing the free electron interaction

with the inert gas atom closed shell and correct screening

of the long-range attracting potential ��e r2 42/ due to

the Coulomb interaction between the electron and

polarizable gas atom, � being the atom polarizability. On

the other hand, it is interesting to note that for

short-ranged potentials the Wigner–Seitz model allows

finding the asymptotic behaviour of V n0( ) at small n be-

yond the linear approximation through the scattering

length a0. Indeed, in that case the requirement of vanish-

ing of the wave function first derivative at the spherical

cell boundary (whose radius tends to infinity as n� 0) re-

sults in the following expression for the conduction band

bottom:
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. It is seen that the relative corrections

to the linear approximation (1) are proportional to the

small parameter a /R0 1�� which is the prediction that

can be tested experimentally. As an example, plotted

in Fig. 4 are experimental data on low density behavior of

V n0( ) for argon in the (( ) ) , )V V /V n0
3� lin lin coordinates,

where V Vlin � 0 f rom Eq. (1) . I t i s obvious tha t

�V n /V a /R0 0( ) lin  , although the experimental propor-

tionality coefficient is different from that predicted by

Eq. (10). The reason for this discrepancy is most likely

the long-ranged nature of the effective potential for

electron interaction with the gas atom containing the po-

larization contribution obeying the r �4 law.

Thus, by taking into account the non-linear behaviour

of V n0( ), it is possible to extend the existing theory of

electron autolocalization in dense gases with positive

scattering lengths (single-electron bubbles in helium) to

electrons in inert gases with negative scattering lengths

and describe possible formation of electron clusters in

these media. The clusters can arise at gas densities both

lower and higher than nmin and are not formed at densi-

ties close to nmin . The outlined picture is consistent with

available data on electron mobility ! in dense cryogenic

gases. The point is that with growing n the possibility of

interpreting the mobility ! in terms of single-particle col-

lisions between the electrons and gas atoms is gradually

lost. However, if under these conditions the electron still

remains in an almost free non-localized state as suggested

by the above analysis, it is natural to describe its interac-

tion energy with the gaseous media responsible for scat-

tering by the expression [14]

� �V
V n

n
n0

0�
�

�

( )
, (11)

where �n is the gas density fluctuation of the thermal ori-

gin. It is then obvious that the derivative � �V n / n0( ) van-

ishing at n n� min yields a peak in the density dependence

of electron mobility. Hence, experimental observation of

electron mobility peaks in all three heavy inert gases

around the respective values of nmin can be considered as

a confirmation of the absence of electron localization in

the vicinity of the mobility peak.
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