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Low-temperature thermodynamic properties of two-dimensional electron ensemble on ordered and disor-

dered host-lattice is studied numerically by transfer-matrixes method. It is shown that at low temperatures and

weak disordering of host-lattice sites positions change in chemical potential leads to successive transitions of

the system from ordered phases (like generalized Wigner crystal) to disordered states. The ranges of stability

of these crystals as the function of temperature, chemical potential and disorder parameter are established.
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1. Introduction

The layered and low-dimensional conductors attracts

significant interest of researchers. This interest caused by

a number of unusual thermodynamic and kinetic proper-

ties inherited by such systems. Among these systems the

conductors with Coulomb self-localization (CS) are of

special interest. It is well known that CS appears when

charge carriers tunneling between host-lattice sites is sup-

pressed by their mutual Coulomb repulsing. The charge

carriers becomes fully localized on host-lattice sites and

the only mechanism of particles motion is jumps of elec-

trons (or holes). As the result, the dynamics of CS sys-

tems is discrete. The exact criterion of CS is the smallness

of overlapping integral, t, in contrast with the typical

change �� �� ( )a /l0
2 in inter-particle repulsion energy as

it hops (tunnels) between the host-lattice sites. Here a0 is

mean host-lattice spacing, l a /ce
d� 0

11( ) / mean inter-par-

ticle distance, � the average Coulomb energy per particle,

d dimension of the system and ce is electron concentra-

tion. As was shown in [1], in zero-temperature limit and

in the case of ce �� 1, the charge carriers forms ordered

structure — generalized Wigner crystal (GWC). The

ground state (GS) structure of GWC is fully described in

terms of one-dimensional (1D) theory developed by Hub-

bard [2–4]. It should be noted that GWC formation has

universal nature irrespective of the potential of inter-par-

ticle repulsion details and geometry of host-lattice. Such

a «lowering of dimension» leads, in particular, to rather

specific zero-temperature dependence of ceagainst chem-

ical potential, �, which is well developed fractal structure

of «devil staircase» type [3].

One of the most famous examples of 2D GWL is the so

called MOSFET structure (metal-oxide-semiconductor

field-effect transistor) with holes impurity band. Besides,

the systems where the charge carriers are pressed out on

surface by external electric field applied perpendicular to

surface also belong to CS class of conductors. In this case

the applied electric field plays the role of chemical poten-

tial �. Changing in � varies electron concentratio ce in

wide range. Besides, there are strong reasons to suggest

that CS criterion (t � ��) can be also fulfilled in layered

metalooxides of high temperature superconductor types.

Another important group is 1D CS compounds. These

are, first of all, quasi-one-dimensional organic conductors

[4]. Furthermore, a lot of artificially created 1D nano-sys-

tems systems, such as chains of quantum dots, exchanging

by electrons [5], chains of metallic nano-grains with tunnel

junctions (organic molecules of different types) between

them [6] also belong to this group.

Is of special interest the question about an influence of

disorder in host-lattice positions on low-temperature

properties of these systems. This question appears natu-

rally because the overwhelming majority of CS conduc-

tors are essentially disordered systems. For instance, in
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semiconductors MOSFET type this disorder is caused

by random distribution of impurities [7,8], in some

nanostructures [5,6] the disorder is determined by a dis-

persion on tunneling junctions.

Besides analytical approaches to such system investi-

gations (see, for example [1–4,9,10]), an interest to the

numerical studies has grown rapidly during the last de-

cade. This interest is caused by the fact that the analytical

theories are mainly focused on 1D systems and based on

very rough simplifying models that leads, as the result, to

qualitative estimations only. At the same time just the de-

tails of the ground state structure, the exact structure of

elementary excitations spectrum, the thermodynamic and

kinetic properties of such systems contain the most inter-

esting and important information. This information, in

particular, casts light on the extremely significant ques-

tions about the ergodic or non-ergodic behavior of the

systems, the spectrum of relaxation times etc. In this con-

nection the methods of computer simulations like

Monte-Carlo [11,12] become the most powerful and use-

ful scientific instruments. The merits and demerits of the

methods are well known. The universality and flexibility

should be attributed to advantages of these methods. At

the same time the difficulties accompanying the investi-

gation of non self-averaging characteristics of the sys-

tems (for example, the configurations) are shortcomings,

undoubtedly. Besides, the accuracy of calculation drops

crucially with disorder growing, whereas the calculation

time increase essentially. Last time new modifications of

Monte-Carlo methods have appeared. First of all, this is

the so-called multicanonical approach [13]. However, the

questions about convergence and authenticity of the ob-

tained results are open yet. As opposed to Monte-Carlo

simulation, we propose exact computer investigation of

2D CS systems using transfer-matrix method [14]. The

evident merit of this method is easy controlled accuracy.

The demerit is the restriction on the system size caused by

computer productivity. The matter is that the calculation

time for this model is proportionate to L L2 3 , where L is

linear size of the system. Analogously, the memory size,

required for the calculation � 22L.

The main goal of this paper is to study low-tempera-

ture thermodynamic properties of 2D CS systems and in-

fluence of disorder in host-lattice sites positions on these

properties. Besides, even in the case of regular host-lat-

tice the theory developed in [1] is inapplicable for con-

centration range1 2 1/ ce� � . The proposed method allows

us to fill this gap.

2. Hamiltonian

We will consider rarified electron gas (ce � 1) and,

thus, spin indexes are dropped (model of spin-less fer-

mions). Besides, we will neglect tunneling of electrons

between host sites. The Hamiltonian of such a system, H ,

can be written as:

H � �
	

 
1 2/ u n n n

i j

i j i

i

i j(| | )

r r

r r r

r

r – r � , (1)

here ri are coordinates of 2D host-lattice sites; independ-

ent variable ni � 0 1, is a number of electrons in ri th

host-lattice site (occupation numbers); �is chemical po-

tential and u i j(| | )r r� a screened Coulomb potential of the

inter-electron repulsion; summation is carried out over all

the sites. It is clear that in the case of ordered host-lattice

the vectors ri can be written as r a bi k l� � , where a and b

are primitive translation vectors and k, l are some integer,

in the case of diordered host-lattice the vectors ri ar-

ranged randomly.

3. Approximation

In this paper the lattice-gas model with near-neighbor

(NN) approximation is used. In spite of the simplicity,

this model allows us to establish new properties of the

system under consideration. Adaptation of the model de-

mand an additional punctuality, because the long-range

potential of inter-electron repulsion is cut off over the dis-

tances a0 (we will consider squad host-lattice with inter-

val between host-lattice sites equals a0). At the same

time, it is well known that the details of the u r( ) do not af-

fect qualitatively on the thermodynamic characteristics

[2,3,15], if the following restrictions should be fulfilled:

(i) u r( ) is monotonic, everywhere convex function, (ii)

u r( ) diminishes faster than r �1. NN-approximation does

not satisfied the above restrictions in full extend, but as

was recently shown in the case of 1D systems of these sort

[10], such changes in u r( ) lead to a weak modification of

the characteristics of the system only. Besides, we will

consider strong-screened Yukava-like potential with ra-

dius of interaction R a0 0� :

u r u r /R r(| | ) exp( | | )| |� �0 0 ,

constant u 0 was chosen as the following: u a /R0 0 0� exp( ),

so that u a( )0 1� for all R0. All the mentioned above al-

lows us to consider the proposed model as completely ad-

equate one.

As usual, instead of Hamiltonian (1) with random

host-lattice sites positions and regular function u r(| | ) it is

convenient to transfer randomness into potential of inter-

action and consider the system as an electron ensemble on

regular host-lattice with random function u r(| | ). In such

an approximation the Hamiltonian (1) has the following

form:

H � �
� �

 
u n n ni j i

i j

N

j i

i

N

,

,

� ,
(2)
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here N is the total number of host-lattice sites; all these

sites are enumerated by index i u i j, , is random energy

of interaction between the sites with numbers i and j, sign

<i, j> means that the summation in first term is taken over

near neighbors of ith site. In the simplest case of strictly

ordered squad host-lattice the Hamiltonian (2) can be eas-

ily represented in spin variables s ni i� 2 1– , where

si � �11, .

H � �
�

�
�

� �

 


~ ( ~ ) ( ~ )

,

u
s s

u
s

u N
i j

i j

N

i

i

N

4

2

2 2

� �
. (3)

Here ~ ( ) ( )u u a u a� �0 0 2 . It should be stressed that in

Hamiltonian (3) the inverse-symmetry is broken for all

� 	 2 0
~u . In other words, beside «external filed» �, an ef-

fective «internal» field determined by ~u affects on

«spins». That is why in the limit � 
 0 the ground state of

(2) and (3) is vacuum-like one.

In this paper we will consider squad host lattice and,

thus, a i b j� �a a0 0, (i and jare unit vectors in X and Y di-

rections, correspondingly). It is convenient to rewrite the

microscopic variables n
ir as the following: n n

i k lr � , ,

where r a bi k l� � (k,l are integer).

The interaction energies u i i(| | )r r� � we rewrite as the

following:

u i i(| | )'r r� �

� � � � � � � � � � �� �u k k l l u k l k lk l k l(| ( ) ( ) )| ) ( , , , ), ,a b � � .

Here � k l, and � � �k l, are random shift vectors of the

correponding host-lattice sites. The module of � has nor-

mal distribution law with dispersion � which is varied

from 0 (ordered host-lattice) up to 1 (complete disorder).

The angular dependence of � is random one with uniform

distribution. The Hamiltonian (2) acquires the form:

H � � �
�� � �

�

� �

�

�

 


l
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k

L

l l

L
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L

k lu k l k l n n

11 1

1

1

1

( , , , )

''

, k l, � �

�
��


� nk l

l

L

k

L

,

11

.

(4)

Here L is linear size of the system (L N2 � ). We impose to-

roidal boundary condition on the system. It means that

n n n nk L i L l l, , , ,,� �� �1 1 1 1 .

Let us introduce a set of occupation number values

�-th line

�� � � �� { , , , }, , ,n n nL1 2 � .

Taking into account the toroidal boundary condition

� �L � �1 1. In NN-approximation �th line interacts with

( )� �1 th and ( )� � 1 th lines only. The interaction energy of

�th and ( )� � 1 th lines, E( , )� �� � � 1 , has the form

E u k k n n

k

k k( , ) ( , , , ) , ,� � � �� � � �� � �
1 1 +

� � � �
 � �u k k n n

k

k k( , , , ) , ,� � � �1 1 1 1

� � �
 � �u k k n n

k

k k( , , , ) , ,� � � �1 1 1 1. (5)

The first term in (5) is interaction energy of electrons in �th

line with vertical neighbors from ( )� � 1 th line, second and

third terms are corresponding energies of diagonal interac-

tions. Besides, let us introduce E( )�� which is energy of

electron interaction in �th line (horizontal interaction) plus

the energy produced by chemical potential �.

E u k k n n n

k

k k k l

k l

( ) ( , , , ) , , ,

,

� � � �� � �� � �
 
�1 1 .

(6)

The corresponding transfer-matrixes �P� [14] have the form:

� � ��

� ��
� �� � �

� � �� � �
| � |

( ( , ) ( ))
P T

E E

1

1
1

e .

Here T is the temperature. It should be noted again that the

proposed method allows us to include into consideration

both vertical (horizontal) and diagonal NN interactions.

The big sum is

Z

H

� �
�

�

�
�

�

�

�
�

��

�
�

�

�
�


 �e Spur

=1

N
T

ni

P

{ }

�
�

�

, (7)

the summation is carried out over microscopic states { }ni .

Thermodynamic potential

f T
N

T( , ) ln ( )� � �
1

Z (8)

has been calculated numerically. For algorithm testing the

dependence f(T,0) has been calculated for microscopic

variables ni � –1,1 (Ising model) and ordered host-lat-

tices 6�6, 8�8 and 10�10. The result is presented in

Fig. 1. The exact solution (dashed curve) is plotted for

comparison. One can see good agreement even for rather

small host-lattices.

4. Low temperature thermodynamics

As was shown in [1] the ground state configuration of

2D lattice electron gas on ordered host-lattice is fully de-

scribed in term of 1D Hubbard’s theory [4]. It means, in

particular, that for any fixed � the ground state configura-

tion is periodic structure (crystal) composed of one or two

sort of electron bands. Both these bands are parallel, infi-

nite in one direction and have fixed shift vector in other

direction. If the concentration of the bands is of the form

c /q qe ( ) , , , ...� � �1 2 3 , then the only one sort of electron

bands appear in the GS structure (see, for example,
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Fig. 2,a). Otherwise, two types of bands form the ground

state structure (see Fig. 2,b). The mutual arrangement of

these bands can be calculated on the base of simple for-

mula [2]:

r a i/ci e� 0[ ]. (9)

This formula was obtained for 1D systems of this sort. It

describes the mutual arrangement of the electrons with

concentration ce over 1D host-lattice with period a0. Sign

[...] means an integer part, ri is the position (coordinate)

of ith electron. In 2D case ri has sense of the position of

the electron «band» with number i. As mentioned above,

one of the most interesting consequence of such structure

of the GS is zero-temperature dependence ce ( )� which is

well-developed fractal structure of devil-stair type [2,3].

In this connection it is reasonable to start the investiga-

tion of 2D systems from low-temperature dependence

ce ( )� . It’s also interesting and important, because the

results of theory [1] are applicable for concentration re-

gion c /e � 1 2 only. At the same time the proposed NN ap-

proximation allows us to investigate the thermodynamic

properties of the system under just in the region ce � 1.

As far as c
N

ne i

i

�
�

1

1

, the low-temperature depen-

dence ce ( )� can be calculated as the following:

c
f T

e T( )
( , )

|�
�

�
� �

�

� 
0.

The results of calculation ce ( )� for � � 0 (ordered

host-lattice), a0 1� and fixed temperature T u a� �10 3
0( )

are presented in Fig. 3. One can see stair-like dependence

with the stairs, corresponding to rational electron concen-

trations. In the limiting case of R a0 0�� , when the only

vertical and horizontal NN interactions are taken into

considerations, the stairs with ce = 1/2 and 1 (curve a) ap-

pear. Taking into account diagonal NN interactions leads

to appearance of additional stairs with ce = 1/4 and 3/4

(curve b). It means that the effective lowering of the di-

mension and generalized Wigner crystal (GWC) forma-

tion, discovered in [1] preserves in the region1 2 1/ ce� � .

An influence of the disorder in host-lattice positions, �
on ce ( )� dependence is presented in Fig. 4. The calcu-

lat ions were carr ied out for host- lat t ice 10�10,

T u a� �10 3
0( ) and R0 1� . Besides, an additional averag-

ing of the results over 10 random realizations were car-

ried out. The dependence of typical fluctuation � as the

function of realization number N 0 is presented in Fig. 5.

As it seen from the figure, an increase of N 0 over 10 does

not effect on � almost.
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Fig. 1. The results of calculation f T( , )� � 0 for regular Ising

model (ni � �11. ). Host-lattice sizes are: 6�6, 8�8 and 10�10.

In addition, the curve corresponding to exact solution is pre-

sented. The region of maximal deviation numerical and exact

solutions is presented on insert.
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Fig. 2. Examples of 2D GWL corresponding to different elec-

tron concentrations ce. c /e �1 3 (a), c /e � 2 5 (b).
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Fig. 3. The dependence ce( )� for ordered host-lattice (� � 0)

and different values of R T0 � � �10 3
0u a( ), host-lattice size is

10�10. R0: 10
–3

(a), 0.25 (b), 1 (c).



5. Phase transitions

In this paragraph we will consider the phase diagram

of the system. As far as Hamiltonian (3) has «anti-

ferromagnetic» nature due to inter-electron repulsion, the

most appropriative method is studying c Te ( ) dependence

at different �. This dependence is analogue of magnetiza-

tion M over T dependence at different values of external

magnetic fields H for magnetic systems. As it well

known, the extremum point corresponds to phase transi-

tion temperature (N�el point). Typical dependences c Te ( )

are presented in Fig. 6. One should pay attention to the

structures of these curves. As was mentioned above, in

the simplest case of ordered host-lattice the system can be

considered as spin assemble placed in both «internal

field», produced by «exchange» interaction u and «exter-

nal field» conditioned by �. These fields have different

sign and at some values of � � 2~u the total «field»

changes the sign. Besides, there is additional term

– ( )�N/2 in Hamiltonian. That is why at � � 2~u the de-

pendence c Te ( ) changes their geometry. For � � 2~u ,

c T / M Te ( ) ( )� �1 2 and c T / M Te ( ) ( )� �1 2 for � � 2~u .

Here M T( ) as a function which is analogous of M T( ) for

antiferromagnets. For � � 2~u the total «field» equals zero

and c T /e ( ) � �const 1 2.

Determining extremal points of c Te ( ) dependence for

different � one can plot the dependence Tc ( )� , where Tc is

phase transition temperature. The results of numerical

calculation for ordered (� � 0) and disordered (� � 0 05. )

host-lattices are presented in Fig. 7. One can see that for

each region of � in zero-temperature devil-staircase there

is an «hat» in Tc ( )� dependence. It means that for any fi-

nite temperature T change in � parameter transforms the

system from ordered phases (GWC) to disordered ones

(like Wigner glass). The critical temperature is maximal

in the vicinities of � interval centers, tending to zero on

the borders. This phenomenon explains a number of ex-

periments in 2D semiconductor layers in external perpen-

dicular electric fields. This field plays the role of �
because press out the volume electrons to 2D layer. For

example, in experiments of M. Pepper group [16,17]

change in external field leaded to drastic change in elec-

tric conductivity in the layer. It means that in some inter-

val of external electric fields (or in some �-regions in

terms of proposed model) the GWC forms. The conduc-

tivity of the system decreased crucially due to localiza-

tion of electrons.
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As it seen from Fig. 6, the heights of these «hats» de-

crease with disorder parameter � growth. This allows us

to establish the critical temperature Tc as the function of

disorder parameter �. T Tc c
max ( . )� �� 3 1 and R0 1� is pre-

sented in Fig. 8. The chemical potential � � 3 1. corre-

sponds to the maximum of Tc for devil-staircase step with

c /e �1 2. Solid line in this figure corresponds to the best

fitting by the function T Ac � �0 0( )� � � . Critical disor-

der parameter � 0 � 0.123, power parameter � � 0.38.

6. Results and discussion

We have shown that the model of lattice gas with

near-neighbor interaction leads to a rich thermodynamics.

In spite of the simplicity of the model, it contains the most

essential features of discrete 2D systems of such a sort. It

is established that in low-temperature limit and weak

host-lattice sites position disorder the system under con-

sideration is generalized Wigner crystal. It means, in par-

ticular, that zero-temperature dependence of electron

concentration ce as the function of chemical potential � is

fractal structure of devil staircase type. In this structure

for each interval of � there is a rational value of ce

(so-called devil stair). This result fully confirms to pre-

liminary investigations [1], which are valid, however, for

concentration range c /e � 1 2. Now, one can to assert that

the generalized Wigner crystal formation takes place in

whole concentration range ce � 1.

It is clear, that at any finite temperature T and disorder

parameter � the devil stairs are «diffused». The ranges of

stability and corresponding critical temperatures Tc as the

function of chemical potential and disorder parameter

have been established. Besides, it is shown that change in

chemical potential leads to successive transitions of the

systems from ordered phases (generalized Wigner crys-

tal) to disordered states like Wigner glass. This phenome-

non may explain experimental results where small change

in electron concentration leads to giant oscillation of con-

ductivity in 2D plains (see, for example, [16–18]). In-

deed, in this experiments the concentration of electrons

(or holes) was varied by external electric filed applied

perpendicular to 2D plain. As was mentioned above, this

field plays the role of chemical potential. As the result,

the conductivity in 2D plain changes drastically due to

transitions from ordered phases to disordered states. It

should be noted, that the question about conductivity

properties of such systems is far from this paper frame-

works. Indeed, we neglect the processes related to finite-

ness of t. Such an approximation is absolutely reasonable

in «dielectric» (GWL) phase due to inequality t �� �� (see

Introduction), but the finiteness of t becomes important in

the conductive («metallic») phase, where self-screening

effects becomes strong.

It is planned to study the kinetic properties of such sys-

tems taking into account finiteness of t by Monte-Carlo

methods in near future.
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