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We study theoretically the excitation of the nonlinear surface Josephson plasma waves in slabs of layered su-
perconductors by the incident plane waves using the prism method in the Otto configuration. The bilateral, 
symmetrical with respect to magnetic field, excitation is considered. The excitation leads to the resonant sup-
pression of the specular reflection, i.e., to the Wood anomalies. Due to the nonlinearity, the reflectivity resonant-
ly depends not only on the wave frequency ω and the incident angle θ, but on the wave amplitude h as well. We 
show that the total suppression of the reflectivity can be attained by the appropriate choice of ω, θ, h, and other 
parameters of the problem. The results of the analytical calculations are supported by numerical simulations. 

PACS: 74.78.Fk Multilayers, superlattices, heterostructures; 
74.50.+r Tunneling phenomena; Josephson effects; 
74.72.–h Cuprate superconductors. 
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1. Introduction 

The recent growing interest in the unusual elect-
rodynamic properties of layered superconductors is due to 
their possible applications in physics and other fields of 
modern science, including terahertz (THz) imaging, astron-
omy, spectroscopy, health monitoring, environmental con-
trol, chemical and biological identification, etc. The artificial 
stacks of Josephson junctions, e.g., Nb–Al–AlOx–Nb, are 
the examples of these materials. The strongly anisotropic 
high- cT  Bi2Sr2CaCu2O8+δ single crystals are another cha-
racteristic members of this family. Intensive experiments 
for the c-axis conductivity in these crystals justify the use 
of a model in which the very thin superconducting CuO2 
layers are coupled by the intrinsic Josephson effect through 
the thicker dielectric layers [1–5]. Thus, a very specific 
plasma (so-called, Josephson plasma) is formed in layered 
superconductors. The current capability of this plasma is 
strongly anisotropic not only in the absolute values of the 
current density. Even the physical nature of the currents 
along and across layers is principally different. The current 
along the layers is the same as in usual bulk superconduc-
tors, whereas the current across the layers has the Joseph-
son origin. 

The Josephson current flowing along the c-axis couples 
with the electromagnetic field inside insulating dielectric 
layers, causing a specific kind of elementary excitations 
called the Josephson plasma waves (JPW) [6–8]. So, the 
layered structure of superconductors favors propagation of 
the electromagnetic waves through the layers. The great 
challenge is to excite the electromagnetic waves in layered 
superconductors in a controllable manner because of their 
THz frequency range [9,10] which is still hardly reachable 
for both electronic and optical devices. 

The presence of the sample boundary can produce a 
new branch of the wave spectrum below the Josephson 
plasma frequency Jω , i.e., for < Jω ω . These surface 
Josephson plasma waves (SJPWs) [11,12] are analogs of 
the surface plasmon polaritons [13,14] in optics. Surface 
waves play an important role in many fundamental reson-
ance phenomena, such as Wood anomalies in reflectivity 
[14,15] and transmissivity [16–23] of periodically-
corrugated metal samples. 

So far, the Wood anomalies in layered superconductors 
have been studied for the linear waves only [12]. In this 
case, the reflection coefficient is controlled by the incident 
angle and/or the frequency detuning ( )Jω −ω . At the 
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same time, the electrodynamics of  layered superconduc-
tors is described by the nonlinear coupled sine-Gordon 
equations [24]. This nonlinearity is originated from a non-
linear relation between the Josephson interlayer current 
and the gauge-invariant interlayer phase difference of the 
order parameter. As a result of the nonlinearity, a number 
of nontrivial nonlinear phenomena, such as the slowing 
down of light, self-focusing effects, the pumping of weaker 
waves by stronger ones, etc. [25,26], can be observed in 
layered superconductors. As was shown in Refs. 8 and 26, 
the nonlinearity provides the existence of the waveguide 
modes in slabs of layered superconductors. These nonli-
near waveguide modes (NWGMs) are localized inside the 
slab and exponentially decay away from the superconduc-
tor. The dispersion curves, ( )qω , of the NWGMs are be-
low the «vacuum light line», = cqω , where q  is the 
wave-number and c  is the speed of light. This means that 
the NWGMs have wave-vectors greater than the wave-
vectors of light of the same frequency in the vacuum. 
Thus, to excite the NWGMs by means of incident irradia-
tion, it is necessary to use special methods [14], such as the 
attenuated-total-reflection method. 

In this paper, we study theoretically the excitation of 
the NWGMs in slabs of layered superconductors and the 
nonlinear Wood anomalies in the slab reflectivity. We 
consider the Otto experimental configuration where the 
superconducting slab is separated from the two dielectric 
prisms by the vacuum gaps (see Fig. 1). 

The plain electromagnetic waves propagate in the 
prisms so that their incident angles θ  exceed the angle tθ  
of the total internal reflection. In the absence of the super-
conductor, the incident waves completely reflect from the 
bottoms of the prisms. However, the evanescent waves 
penetrate in the vacuum gaps a distance about a wave-
length. The wave-vectors of the evanescent modes are 
oriented along the bottom surfaces of the prisms and their 
values are higher than / cω . This feature is the same as for 
NWGMs. So, it is natural to expect the spatial-and-
temporal matching (coincidence of both, the frequencies 
and wave-vectors) of evanescent modes and NWGMs for a 
certain incident angle. This method of the wave excitation 
is known as the attenuated-total-reflection method 
[11,14,27,28]. 

We show in this paper that, due to the nonlinearity, ref-
lectivity of the superconducting slab depends resonantly 
not only on the wave frequency and the incident angle, but 
on the wave amplitude as well. Thus, the Wood anomalies 
can be controlled by the intensity of the incident wave. 
Moreover, we find the optimal conditions for the total sup-
pression of the specular reflection. 

The paper is organized as follows. In Sec. 2, we discuss 
the geometry of the problem and present the main equa-
tions for the electromagnetic field in the dielectric prisms, 
the vacuum gaps, and the superconductor slab. In Sec. 3, 
we derive the equation for the reflectivity of the incident 

wave and analyze its dependence on the incident angle, 
vacuum gap thickness, and amplitude of the incident wave. 
The results of numerical simulations support our theoreti-
cal predictions. 

2. Distribution of the electromagnetic field 

2.1. Geometry of the problem 

We study a layered superconducting slab sandwiched be-
tween the two dielectric prisms, separated from them by the 
vacuum gaps of thickness l. The thickness s  of the super-
conducting layers is much less than thickness d  of insulat-
ing layers (see Fig. 1). The coordinate system is chosen in 
such a way that the crystallographic ab-plane coincides with 
the xy-plane and the c-axis is along the z-axis, the plane 

= 0z  corresponds to the middle of the slab. The thickness 
D  of the slab is much greater than the interlayer distance, 
that allows one to consider the continual limit. 

The two plane electromagnetic waves propagate inside 
the dielectric prisms. We consider the case of transverse 
magnetic polarization of the waves, when the magnetic 
field is parallel to the surface of the slab, 

 = { ,0, }, = {0, ,0}.x zE E HE H  (1) 

Fig. 1. Geometry for the resonance excitations of NWGMs in a 
layered superconductor slab of thickness D  sandwiched be-
tween two dielectric prisms. The latter are separated from a 
layered superconductor slab by two vacuum gaps of thickness l . 
An electromagnetic wave with incident angle > tθ θ  can excite 
SJPWs that satisfy the following resonance condition: 

sin / =d c qω θε . Here ik  and rk  are the wave-vectors of the 
incident and reflected waves associated with the magnetic field 
amplitudes iH  and rH . The resonance excitation of SJPWs by 
the incident wave produces a strong suppression of the reflected 
wave. This method for producing surface waves is known as the 
«attenuated-total-reflection» method. 
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The incident angle θ  for the two waves exceeds the 
angle of total internal reflection,  

 1> = arcsin ,t
d

⎛ ⎞
θ θ ⎜ ⎟⎜ ⎟

⎝ ⎠ε
 (2) 

where dε  is the permittivity of the dielectric prisms. The 
magnetic field in the two waves is assumed to be symme-
tric with respect to the middle of the slab,  

 ( , , , ) = ( , , , ).d dH x y z t H x y z t−  (3) 

This allows us to consider the field distribution for > 0z  
only. 

2.2. Electromagnetic field in dielectric prism and vacuum 
gap 

The magnetic field dH  in the dielectric prism can be 
represented as a sum of the incident and reflected waves 
with amplitudes iH  and rH ,  

= cos( ) cos( ).d i r
d dH H qx k z t H qx k z t− −ω + + −ω +α  

  (4) 

Here tangential q  and normal dk  components of the 
wave-vector for waves in the prism are  

2 2= sin , = = cos ,d d d dq k k k q kθ − θε ε ε  (5) 

= /k cω , and α  is the phase shift of the reflected wave. 
When > /q cω , the Maxwell equations yield an expo-

nential solutions for the magnetic field in the vacuum gap,  

 = ( cos ( ) exp ( )v i
vH H h qx t k z+ −ω +β +   

 cos ( )exp( )).vh qx t k z−+ −ω + γ −  (6) 

Here h±  are the dimensionless amplitudes of the evanes-
cent waves that exponentially increase/decrease with the 
growth of z; β  and γ  are their phases, and  

 2 2 2= = 1 > 0.sinv dk q k k− θ−ε  

Using Maxwell's equations one can express the x-com-
ponents of the electric field in the dielectric prism and va-
cuum gap via the magnetic field amplitudes,  

 = ( cos ( )d id
x d

d

k
E H qx k z t

k
− + −ω −

ε
 

 cos ( )),r
dH qx k z t− − −ω +α   

 = ( sin ( ) exp ( )v iv
x v

k
E H h qx t k z

k
+ −ω +β −   

 sin ( )exp ( )).vh qx t k z−− −ω + γ −  (7) 

Further we find the electromagnetic field in the layered 
superconductor. 

2.3. Electromagnetic field in the layered superconductor 

The electromagnetic field inside the layered supercon-
ductor slab is determined by the distribution of the gauge-
invariant phase difference ( , , )x z tϕ  of the order parameter 
between the layers (see, e.g., Ref. 8),  

 
2

0
2 2 2

1= sin ,
s

r

c J J

HH
x tt

⎛ ⎞ω∂ ∂ ϕ ∂ϕ
+ + ϕ⎜ ⎟⎜ ⎟∂ λ ∂ω ∂ ω⎝ ⎠

  

 
2 2

= .
s

s ab
x

HE
c z t
λ ∂

−
∂ ∂

 (8) 

Here 0 0= / 2 cH dΦ π λ , 0 = /c eΦ π  is the magnetic flux 
quantum, abλ  and 1/2= /c J scλ ω ε  are the London pene-
tration depths in the in-plane and c-directions. Josephson 
plasma frequency is defined as  

 
8

= ,c
J

s

edJπ
ω

ε
 (9) 

where cJ  is the critical value of Josephson current densi-
ty, sε  is the permittivity of the dielectric layers in the slab. 
The relaxation frequency = 4 /r c sω πσ ε  is proportional to 
the c-axis quasi-particle conductivity cσ . 

The phase difference ϕ  obeys the set of coupled sine-
Gordon equations, that, in the continuous limit, take on the 
form of the following equation (see, e.g., Ref. 29):  

 
2 2 2

2 2
2 2 2 2 2

11 sin = 0.r
ab c

J J tz t x

⎡ ⎤⎛ ⎞ ω∂ ∂ ϕ ∂ϕ ∂ ϕ
− λ + + ϕ − λ⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂∂ ω ∂ ω ∂⎢ ⎥⎝ ⎠ ⎣ ⎦

 

  (10) 

In this paper we consider the case of weak nonlinearity 
when the Josephson current density sincJ ϕ  can be ex-
panded into series over small ϕ  up to the third order, 

3sin ( / 6)c cJ Jϕ ϕ−ϕ∼ . Equation (10) has waveguide 
solutions for the frequencies ω  lower than Jω . We con-
sider the frequencies ω  close to Jω  and introduce a para-
meter  

 = < 1,
J

ω
Ω

ω
  

close to one. In this case, in spite of the weakness of nonli-
nearity in Eq. (10), the linear terms nearly cancel each oth-
er, and the term 3ϕ  plays the crucial role in the problem. 
Moreover, when the frequency ω  is close to the Josephson 
plasma frequency, one can neglect the higher harmonics 
generation. 

The dissipation in the slab is considered to be suffi-
ciently small,  

 2= 1.
(1 )

r

J

ω
ε

ω −Ω
�   

As was shown in Ref. 30, the intralayer quasi-particle con-
ductivity, abσ , should also be taken into account if ω  is 
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far enough from the Josephson plasma frequency. The con-
tribution of the in-plane conductivity to the dissipation can 
be easily incorporated in our analysis. However, for the 
frequency range considered here (close to )Jω , this con-
tribution is strongly suppressed and can be safely omitted 
because the relative value of the term with abσ  is  

 
2

(1 ) 1.ab ab

c c

⎛ ⎞λ σ
−Ω⎜ ⎟λ σ⎝ ⎠

�   

In fact, the electric field in the superconducting slab has 
the z-component also. This component induces a charge in 
the superconducting layers when the charge compressibili-
ty is finite. This results in an additional interlayer coupling 
(so-called, capacitive coupling). Such a coupling signifi-
cantly affects the properties of the longitudinal Josephson 
plasma waves with the wave-vectors perpendicular to the 
layers. The dispersion equation for the linear Josephson 
plasma waves with arbitrary direction of the wave-vectors, 
taking into account capacitive coupling, was obtained in 
Ref. 31. According to this dispersion equation, the capaci-
tive coupling can be safely neglected in our case, when the 
wave-vector has a component /q cω  along the layers, 
due to the smallness of the parameter 2= /DR sDα ε . Here 

DR  is the Debye length for a charge in a superconductor. 
We seek the solution of Eq. (10) in the form,  

 0 12 1/2
1= ( sin( ) cos( )),

(1 )
A qx t A qx tϕ −ω + −ω

−Ω
  

  (11) 
with z-dependent amplitudes 0,1.A  We introduce the di-
mensionless z-coordinate,  

 
2 1/2= , = .

(1 )
c

ab

qz λκ
ξ κ

λ −Ω
 (12) 

so that, the normalized half-thickness of the sample is 
= / 2 abDδ κ λ . 
Substituting phase difference ϕ  in the form of Eq. (11) 

in Eq. (10), one obtains the following set of equations:  

 
3
0

0 0= ,
8
A

A A
′′⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

 (13) 

 
2

1 0
1 0 1= ,

8
A A

A A A
′′⎛ ⎞

′′− − ε⎜ ⎟⎜ ⎟
⎝ ⎠

 (14) 

where prime denotes derivation over ξ . 
Solving Eqs. (13) and (14), we derive  

 3
0 0 0

9( ) = exp exp (3 ),
64

A a aξ ξ + ξ   

 0
1 1( ) = exp exp

2
a

A a
ε

ξ ξ + ξ ξ +   

 
2 3
0 1 09 9

exp (3 ) exp (3 ),
64 128
a a aε

+ ξ + ξ ξ  (15) 

with constants 0,1a . 
Thus, we expressed the electromagnetic field in the upper 

half-space > 0z  via the amplitudes ,i rH , h± , and 0,1a . 
Below we find the relations between them and analyze the 
reflective properties of the system under consideration. 

3. Reflectivity of the superconducting slab 

We now proceed to the analysis of the reflectivity 
= /r iR H H  of the incident waves. To this end, we match 

the tangential components of the electric and magnetic 
fields at the prism–vacuum and vacuum–superconductor 
interfaces. This yields the following expression for the 
reflectivity,  

 
2 2 2

2
2 2 2

4 4( )= ,
4 4( )

S p Y X YR
S p Y X Y
+ + −

+ + +
 (16) 

where  

 2 2 2 2
0 0= ( ) ( 1) 2( ),S X X p X X−− − + −   

 1
2

0 0

8= cos ,
8

t
A

Y C
A A

⎛ ⎞ε
− + θ⎜ ⎟⎜ ⎟−⎝ ⎠

  

 0 = ( cos ), = cos .t tX C p X pθ + ζ ζ − θ  (17) 

Functions 0,1A  are taken here at the superconducting slab 
surface =ξ δ . Parameter  

 
2 1sin= =

cos cos
dv

t t

k
p

k
θ−

θ θ

ε
  

is determined by the incident angle and is small, ζ  is the 
surface impedance of the solitary slab in the absence of the 
dissipations,  

 
2

0 0
2

0 0

(8 3 )
= ,

(8 )
A A
A A

′ −
ζ Γ

−
 (18) 

and 1/2= /ab c sΓ Ωλ κ λ ε . Amplitude 0A  of the field in the 
superconducting slab can be expressed via normalized am-
plitude of the incident wave,  

 
2

0
1= ,iH H h−Ω
κ

 (19) 

using the continuity of the tangential components of the 
electromagnetic field. 

Parameter C  defines the coupling of the electromag-
netic field in the dielectric prism and superconductor slab 
and is governed by the vacuum gap thickness l ,  
 ( ) = exp( 2 ).vC l k l−  (20) 

The coupling between the prism and superconducting slab 
leads to the change of the dispersion relation for the 
NWGMs, that can be found by equating the dominator of 
Eq. (16) to zero. Equality = 0X  corresponds to the dis-
persion relation for NWGM in the layered superconductor 
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in the absence of dielectric prism. We consider the case of 
small values of this parameter, 1C� . Actually, this re-
gion, where the radiation leakage of the excited NWGMs 
through the prism does not dominate, corresponds to the 
strongest excitation of the waveguide modes by the inci-
dent waves. The coupling results in breaking of the total 
internal reflection of the electromagnetic waves from the 
dielectric prism-vacuum gap interface. Due to this coupl-
ing, the reflection coefficient R  in Eq. (16) becomes less 
than unity. Moreover, as we show below, the reflection of 
waves with frequency < Jω ω  can be totally suppressed 
by choosing the appropriate value of the incident angle θ  
and the amplitude of the magnetic field. This provides a 
way to control, detect, and filter the THz radiation. 

3.1. Suppression of specular reflection 

The main contribution to the numerator (and denomina-
tor) of Eq. (16) is the term ( , , )S h Cθ . This leads to the 
sharp angle dependence of the reflectivity. The reflectivity 
noticeably differs from one for the angles close to the an-
gle of total internal reflection. Moreover, the deviation 
must be close to small value 2 1/2/ 2( 1)dΓ −ε . If this condi-
tion holds, the reflectivity becomes sensitive to the other 
parameters of the problem, amplitude h  and coupling pa-
rameter C. This dependence is given by the following ex-
pression:  

 
( ) ( )
( )

2 22
res res2

2 2 2
res res

= ,
( )

h h B C C
R

h h B C C

− + −

− + +
 (21) 

where  

 
3 2

res
3
res

( )
= .

C C
B

CC
ε +

 (22) 

The resonant value of the amplitude and coupling parame-
ter are as follows,  

 
2 2 2

2 res
res

( )
= 128 ( )

1 2 1
d

t
d d

C C
h

C
+ Γ

θ−θ −
− −

ε

ε ε
,  

 res = 1.
8 d

d
C ε

−
Γ
ε

ε
 (23) 

Equation (21) describes the pronounced dependence of 
the reflectivity on the amplitude of the incident wave. 
When its value is far from resh , the reflectivity is close to 
one. The minimal value of reflectivity is reached for 

res=h h ,  

 res
min

res
= .

C C
R

C C
−
+

 (24) 

Further, varying the thickness of the vacuum gap, one 
can achieve the total suppression of the reflected wave. 

Indeed, the condition res=C C  and Eqs. (20), (23) yield 
the optimal value of l,  

 opt
81= ln .

2 1
d

d
l

k
Γδ

Γ ε −

ε

ε
 (25) 

Thus, we have shown that, under certain conditions, the 
reflectivity of the slab vanishes. These are optimal condi-
tions for the excitation of the NWGMs in the supercon-
ducting slab. 

3.2. Results of numerical calculations 

In this subsection, we present the results of numerical 
calculations that support the conclusions obtained analyti-
cally. Equations (13), (14) were solved numerically and 
then the reflectivity was calculated using Eq. (16). 

The dependence of the reflectivity on the incident angle 
is shown in Fig. 2. The amplitude of the magnetic field of 
the incident wave is fixed. This plot is obtained for two 
different values of the vacuum gap thickness. The solid 
curve corresponds to the situation when the coupling pa-
rameter equals to its optimal value, opt opt( = ) = =C l l C

opt= exp( 2 )vk l− . Thus, the minimal value of the reflectivi-
ty coefficient in this case equals to zero, in agreement with 
the analytic predictions. 

The dependence of the reflectivity on the magnetic field 
amplitude h  of the incident wave is presented in Fig. 3. 
The data are obtained for the same two values of the va-
cuum gap thickness, so the minimal value of the reflectivi-
ty for the optimal thickness equals to zero. The incident 
angle for this plot is fixed. 

We also illustrated the effect of total suppression of the 
specular reflection by the distribution of the total magnetic 

Fig. 2. The dependence of the reflectivity R2 on the incident an-
gle θ for the two different vacuum gap thicknesses: = 0.04l  cm 
(dashed curve) and opt= = 0.05l l  cm (solid curve). Thus, the 
minimal value of the reflectivity for the second case equals to 
zero. The normalized incident wave amplitude is = 0.14h . Other 
parameters are: = 2000Åabλ , / = 60,c abλ λ  = 4,dε

= 0.05,ε  2 5(1 ) = 2.5 10 ,−−Ω ⋅  / = 0.3,abD λ  = 2Jω π  THz. 
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field in the vacuum and the dielectric prism, Figs. 4 and 5. 
The interference pattern is seen for the non-resonant case 
(see Fig. 4), when the amplitudes of the incident and reflect-
ed waves practically coincide. Under the resonance condi-
tion (see Fig. 4), when the reflected wave is totally sup-
pressed, the interference pattern in the far field disappears, 
while the near-field «torch» structure of the NWGM is clear-
ly seen near the vacuum-layered superconductor interface. 

4. Conclusion 

Thus, we have studied theoretically the excitation of 
nonlinear waveguide modes in the layered superconducting 
slab by the attenuated total reflection method. We have 
shown that, choosing the optimal combination of the para-

meters of the problem, the reflected wave can be totally 
suppressed. The equations determining the electromagnetic 
field in the layered superconductor slab are nonlinear. Due 
to this nonlinearity, the Wood anomalies can be controlled 
not only by the incident angle, frequency detuning, and the 
vacuum gap thickness, but by the amplitude of the incident 
wave as well. This means that one can fix the wave fre-
quency and the incident angle, and observe vanish of the 
sample reflectivity, varying the wave amplitude and the 
vacuum gap thickness. It is important that even small non-
linearity can play the crucial role in the NWGMs excitation 
due to the cancellation of the displacement and Josephson 
currents in a superconducting slab. So, even small values 
of the wave amplitude can be sufficient for suppressing 
the specular reflection. Indeed, this amplitude is deter-
mined by Eq. (19), where 0 20H � Oe for 20 Åd �  and 

12 mm.cλ �  The numerical results are presented for 
0.1,h ∼  2 6(1 ) / 0.5 10 .−−Ω κ ⋅�  At the same time, 

Eq. (19) shows that the nonlinear Wood anomalies can be 
observed for very small amplitudes if the frequency detun-
ing 2(1 )−Ω  is sufficiently small. 
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