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Resonance variations of the in-plane conductivity of surface electrons (SEs) over liquid
3
He induced by

microwave (MW) radiation of a fixed frequency are experimentally and theoretically studied for low tem-

perature scattering regimes (T � 0.5 K). The system was tuned to resonance by varying the amplitude of the

vertical electric field which shifts the positions of SE Rydberg levels. The line-shape change and reversing

of the sign of the effect are found to be opposite to that reported previously for weak vertical electric fields.

A theoretical analysis of conductivity of the SE system heated due to decay of electrons excited to the sec-

ond Rydberg level by the MW explains well the line-shape variations observed. It shows also that shifting

the MW resonance into the range of weak vertical fields leads to important qualitative changes in the

line-shape of SE conductivity which are in agreement with observations reported previously.

PACS: 67.90.+z Other topics in quantum fluids and solids; liquid and solid helium;
73.20.–r Electron states at surfaces and interfaces;
73.25.+ i Surface conductivity and carrier phenomena;
78.70.Gq Microwave and radio-frequency interactions.
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Introduction

Surface electron (SE) states on liquid helium [1,2] are

formed owing to the interplay between an attractive im-

age potential acting above the surface, V z zimg ( ) /� �� ,

and a very high repulsion barrier V0 1� eV appearing at

the interface (z � 0 ). The image potential is very weak be-

cause � � � �e 2 1 4 1( ) / ( )� � and the dielectric constant

of liquid helium � is uniquely close to 1 (� �1 0 057� . for

liquid 4He, and � �1 0 043� . for liquid 3He). In an approxi-

mation V0 � 	, SE energy levels are spaced similarly to

Rydberg levels of a Hydrogen atom: 
 
l R l� � / 2, where

l �12, , ..., and 
 R is the corresponding Rydberg energy

which are about 7.6 K for liquid 4He and about 4.2 K for

liquid 3He. The effective Bohr radius of SE Rydberg

states a mB e� �
2 / � is about two orders of magnitude

larger than the conventional Bohr radius, which makes

these states insensitive to small surface distortions.

Therefore, at low temperatures, liquid helium provides a

remarkable opportunity to study a very clean two-dimen-

sional system of highly correlated electrons. The SE

Rydberg states and a Stark effect in the vertical electric

filed E� were first observed by Grimes and Brown [3] in

a microwave (MW) resonance absorption experiment.

If Coulomb interaction is disregarded, SE motion

along the interface can be described by the free electron

spectrum � k ek m� �
2 2 2/ , where k is a two-dimensional

wave-vector. At typical helium temperatures, electron in-

teractions with vapor atoms and capillary wave quanta

(ripplons) are weak enough to be treated in terms of elec-

tron scattering which limits SEs conductivity along the

interface. For liquid 4He (3He), scattering by vapor atoms

dominates at T � 1K (0.5 K), while at lower temperatures

T � 0 5. K (0.3 K) SEs are mostly scattered by ripplons

whose wave vectors q k
 2 are much smaller than typical

wave-vectors of thermal ripplons. The ripplon-limited

conductivity was observed by measuring the power ab-

sorption in a parallel AC electric field [4], the plasmon

resonance [5] and cyclotron resonance (CR) [6]

broadening.
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Combined photoresonance and mobility measure-

ments [7] were performed as an interesting indirect probe

of SE Rydberg states. These measurements had shown

that in the case of liquid 3He at T � 0 35. K, electron mobil-

ity decreases at the MW resonance for low powers, but the

effect changes the sign for higher powers. The reduction

in electron conductivity was attributed to electron-vapor

atom scattering, even though this explanation was in con-

tradiction with results of similar quantum CR measure-

ments [6] which display an increase in SE conductivity.

Of course, the comparison with quantum CR data could

be misleading because in the presence of a strong mag-

netic field SE conductivity is affected by the many-elec-

tron effect which can lead to a substantial narrowing of

the CR [8,9].

Recent conductivity measurements for SEs exposed to

resonant MW radiation above liquid 3He in the vapor

atom scattering regime [10] indicate that heating of the

electron system is the key occurrence of a MW resonance

experiment with SEs. This heating occurs because of

electron decay from the excited Rydberg level to the

ground level induced by interaction with vapor atoms.

Because the mass of a helium atom M is much larger than

the free electron mass me , the energy difference between

the two levels is not given out but is transferred to the ki-

netic energy of electron motion along the interface. Under

the resonance condition the effective electron tempera-

ture Te can be much higher than the ambient temperature

T . Such decay heating of SEs appears already at very low

excitation rates affecting electron conductivity [10] and

the MW resonance linewidth [11]. The important point is

that in the vapor atom scattering regime, SE conductivity

at the MW resonance steadily decreases with power, and

there is no the sign change of this effect at high excitation

powers similar to that reported previously [7]. At high

powers, there is only saturation of the conductivity de-

crease caused by the quantum saturation of the fractional

occupancy of the first excited level n2 approaching that of

the ground level n1. Therefore new studies of SE conduc-

tivity affected by photoresonance are necessary for un-

derstanding these interesting phenomena. An additional

interest in such studies is evoked by a possible use of elec-

trons occupying the two lowest SE Rydberg levels as

electronic qubits controlled by MW radiation (for a recent

review of this problem, see Ref. 12).

In this work we report the results of experimental and

theoretical investigations of SE conductivity changes in-

duced by MW resonance excitation for liquid 3He in a low

temperature range (T � 0 5. K) covering both vapor atom

and ripplon scattering regimes. At T � 0.35 K and low

MW powers, we observed an increase in mobility of SEs

which is opposite to the result reported previously [7].

This discrepancy is explained by our theoretical analysis,

which indicates that experimental results obtained at

T � 0 35. K can be understood only if electron–ripplon in-

teraction is taken into account. We found that the sign of

the conductivity change induced by the photoresonance

crucially depends on the range of the vertical (holding)

electric fields E� used for tuning of the resonant fre-

quency. For weak holding fields, E� � 3 V/cm, corre-

sponding to the conditions of Ref. 7, conductivity indeed

decreases at the MW resonance, if the excitation power is

low. For holding fields used in our measurements,

E� � 93 V/cm, in the same power range, decay heating

leads to the opposite effect — SE conductivity limited by

ripplons increases at the photoresonance. Because the

conductivity changes induced by MW radiation occur un-

der conditions of the linear transport regime, such hot

electrons could be used for probing the electron coupling

with surface excitations of Fermi-liquid 3He.

2. Experiment

Since DC current measurements are practically impos-

sible for SEs on liquid helium, the capacitive detection

method is frequently used for measuring conductivity

[13,14]. In magnetoconductivity studies, this method em-

ploys an electrode array in the form of a Corbino disk usu-

ally placed below the helium surface. In our case, the

Corbino electrodes were placed above the surface, as in-

dicated in Fig. 1. A positive voltage VB was applied to the

bottom electrode to hold electrons. The parallel metal

electrodes were separated by 2 6 01. .� mm. To confine

electrons laterally, each electrode was surrounded by a

guard ring charged negatively (not shown in Fig. 1). To

improve the heat contact between liquid 3He and the cell

body, the bottom part of the cell contained a sintered sil-

ver heat exchanger. The cell was placed inside of the

superconducting magnet to create magnetic field B di-

rected perpendicular to the helium surface. One electrode

of the Corbino array was driven with an AC voltage in-
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Fig. 1. Schematic drawing of the experimental setup: micro-

wave waveguides (a), Corbino electrodes (b), surface electrons

(c), bottom electrode (d), heat exchanger (e).



ducing a current in the electron layer. The measured cur-

rent was analyzed by means of the transmission line mo-

del, which allows to extract � xx data using a conventional

relationship [15].

In the cell, electrons were accumulated on the va-

por-liquid 3He interface placed in the middle between the

parallel metal electrodes. At typical helium temperatures,

practically all electrons occupy the ground surface level

( l �1). In our measurements the areal electron density

ns � � �17 10 7 2. cm . To excite electrons to the second sur-

face level (l � 2), MW radiation of a fixed frequency

( /� �2 130� GHz) was arranged to be passing through the

cell, as shown in Fig. 1 . Owing to the Stark effect, the SE

system was tuned in resonance with MW radiation by

varying the holding electric field E� . A constant mag-

netic field was applied, and the Corbino signal was re-

corded as E� was swept through the resonance. In order

to avoid complications with many electron effects affect-

ing quantum magnetotransport of SEs on liquid helium,

we employed only a weak magnetic field for which the

magnetoconductivity can be described by the classical

Drude equation

�
�

� �
xx

s

e c

e n

m
�

�

2

2 2
, (1)

where �c is the cyclotron frequency, and � is the collision

frequency describing momentum relaxation of SEs. For

example, at T � 0.35 K, the magnetic field B was about

233 G which is within the semi-classical transport regime

(��c T�� ). Of course, the frequency � of the AC voltage

VIN is too much lower than �c and � to be taken into ac-

count in the Drude eqbation. Extracting � from the

magnetoconductivity data we can judge of the DC con-

ductivity of SEs in the absence of the magnetic field

� �� e n ms e
2 / and compare its variations induced by MW

with the old results of Ref. 7.

The MW resonance itself can be described by the usual

Lorentzian form determining the stimulated absorption

(emission) rate [16]

r
E

12

2

2
21

2

0 5
�

� � �

.

[ ( )]

� �

� � �
, (2)

where �21 2 1� �( ) /
 
 � is the resonant frequency de-

pending on the holding electric field, � is the half-width

calculated previously in Ref. 17, � � � �eE zMW 1 2| | / � is

the Rabi frequency, EMW is the MW field amplitude,

� �1 2| |z is the electric dipole length for the transition. For

low excitation, the energy absorbed from the MW field is

proportional to ��21 12r . Since � ��� 21, the excitation

rate and energy absorption as functions of E� have a

sharp resonance structure when �21( )E� is close to the

MW frequency �.

Variations in electron collision frequency �( )E� ob-

tained from our magnetoconductivity data, as described

above, are shown in Fig. 2. At T � 0 48. K, the electron col-

lision frequency has a typical resonance structure with a

maximum positioned at E� � 93 V/cm. Thus, under the

condition, the MW resonance excitation leads to a de-

crease in SE conductivity, as expected for the vapor atom

scattering regime [10]. In this case, the increase in the col-

lision rate is caused by decay heating of SEs and their oc-

cupation of higher surface levels, where the inter-level

collision rate is high.

The recording signal greatly changes, if the ambient

temperature T � 0 35. K which corresponds to the condi-

tions and results of Ref. 7 discussed in the Introduction.

The most important conclusion which comes out from

Fig. 2 for this case is that MW radiation leads to an in-

crease in conductivity (� �� e n ms
2 / ) at low powers. This

is opposite to the result of Ref. 7. The resonance line in
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Fig. 2. Variations of the effective collision frequency with E�
induced by MW radiation and measured at three typical ambi-

ent temperatures.



not of the Lorentzian shape and the effect changes the

sigh as E� approaching the resonance value. It is clear

that the sign change of the effect is due to the contribution

from vapor atom scattering. Therefore, the conductivity

increase in the region of resonance tails is, obviously, due

to electron–ripplon scattering. This conclusion is con-

firmed also by the data obtained at T � 0.3 K, when vapor

atom scattering is substantially reduced. For such condi-

tions, the dependence �( )E� has a usual resonance shape,

but the sign of its variations with E� is opposite to that

obtained in the vapor atom scattering regime (T � 0 48. K).

Scattering by vapor atoms only slightly affects the reso-

nance curve near its minimum. Since our new low temper-

ature data conflict with the data reported in Ref. 7, the

situation should be clarified by an appropriate theoretical

analysis.

3. Theory

3.1. Decay heating

For the vapor atom scattering regime, it is proven that

even a very small fraction of SE excited by the MW from

the first to the second surface level can substantially heat

the entire electron system [10,18]. This happens because

the decay rate of electrons occupying the second surface

level � 21
1� is determined mostly by electron interaction

with heavy vapor atoms. Therefore, a return of an elec-

tron back to the ground level is accompanied by a very

small energy exchange between an electron and a vapor

atom. Thus, practically all the excitation energy 
 21 (here

and below 
 
 
ll l l� �� � ) is transferred to the kinetic en-

ergy of electron motion along the interface which is even-

tually redistributed between other electrons because of

electron–electron collisions. At the same time, the energy

relaxation rate ~� for electron–atom scattering is much

lower than the decay rate of the first excited level � 21
1� .

This leads to a strong increase in electron temperature

even at very low excitation rates r12 21
310� � � .

Determination of electron temperature requires the

knowledge of the electron energy relaxation rate due to

interaction with scatterers for arbitrary level occupancies.

Decay heating leads to electron occupation of higher sur-

face levels, therefore outer levels (l � 2) cannot be disre-

garded in the expression for the energy relaxation rate

[18]
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where 
 R e Bm a� �
2 22/ , and n N Nl l e� / are fractional

occupancies of surface levels. We used
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where na is the density of vapor atoms, f zl ( ) are electron

wavefunctions describing surface states, Va is the ampli-

tude of the pseudo-potential Va e a/( )R R� frequently

used for description of the electron-atom interaction, and

�a
( )0 is the momentum relaxation rate of SEs for scattering

within the ground surface level (l l� � �1). In terms of ~�a

the power transfer can be written as ( )~ ( )T T Te a e� � .

For electron–ripplon scattering, energy relaxation is

much more complicated. Scattering processes which in-

volve only one ripplon also can be considered as

quasi-elastic, because the energy exchange ��q is very

small for q k
 2 . Energy relaxation is much more effec-

tive, when electrons emit couples of shortwave ripplons

with small total wave vectors (| |q + q� �� q) [19]. In this

case, the energy exchange 2��q at a scattering event is of

the order of Te and the energy transfer rate to the environ-

ment increases by about two orders of magnitude. Be-

cause of the strong repulsion barrier existing at the inter-

face V0, the largest contribution to the energy relaxation

rate is given from the nonlinear interaction term [2]

V z
V

z

e
int
( )

( )

( , ) ( )
2

2 0

2

21

2
r r�

0

0
1 , (6)

where Ve
( )0 is the electron potential for the flat interface,

and 1( )r is the surface displacement operator. The matrix

elements of V
int
( )2

describe two-ripplon scattering proba-

bilities already in the second order of the perturbation

theory.

The matrix elements g V zll e ll� �2 0 00 5 2 0 2. ( / )( ) [here

( )� ll� means � � �l l| |� ] can be expressed in terms of the

derivative of the electronic wave functions �f zl ( ) at the

helium surface (z � 0) calculated in the approximation

V0 �	. This results in

g V f f
z z

ll l l
ll l

�
�

�� � �
0

0
�

�
�

�

 
!

0

0
�

�
�

�

 
!� 0 0

1
00 03 3( ) ( )

v v

� �l
, (7)

where 30
1

02� � � / m Ve is the penetration depth of the

electron wavefunction into liquid, and v( ) /z z� � ��
� �eE z. Since ( / )0 0v z ll is finite in the limiting case

V0 � 	, the matrix elements g Vll� 4 0 .

Following the previously described procedure [20],

the energy loss of SEs per unit time can be presented in
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the conventional form � ~ ( )( )� � � �N T T Te r e e�2 with the

energy relaxation rate defined as

~
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where N q is the ripplon distribution function and 5 is the

liquid helium mass density. A detailed analysis of Eq. (8)

indicates that this expression is positive. For the

Boltzmann distribution of level occupancies nl and

l l� � �1, this expression transforms into the result ob-

tained in Ref. 20.

Equation (8) shows that for two-ripplon emission

within the surface levels (l l� � ), typical ripplons contrib-

uted to ~�2r belong to the short wavelength range

2��q eT� . In the case of liquid 3He, the behavior of the

surface excitation spectrum in this range is unknown. It is

not known also how the strong damping of ripplons ex-

pected at low temperatures affects the scattering probabil-

ities. Anyway, experimental data indicate that the strong

damping of capillary waves does not affect much

one-ripplon scattering probabilities which determine the

momentum relaxation of SEs. Therefore, in our numerical

evaluations of ~�2r we shall disregard damping effects and

assume that even in the short wavelength range the

ripplon spectrum coincides with the capillary wave

asymptote � 7 5q q� / /3 2.

The electron temperature is determined by the energy

balance equation

( ) ( )~( )n n r T T Te e1 2 21 12� � �
 � , (9)

where ~( )� Te is the total energy relaxation rate due to va-

por atoms and ripplons. At the same time, fractional occu-

pancies nl should be obtained from the rate equations

dn dtl / � 0 which ensure the balance between electron

transition to and from surface levels caused by scatterers

and the MW field. In the case of electron-vapor atom in-

teraction, scattering frequencies which enter the rate

equations for level occupancies have a very simple form

w s T
l l
a

a ll l l l l e� � � � �� � �( ) ( ) [ (| | ) / ]� 0 2exp 
 
 . (10)

For transitions down the surface levels (l l� �and 
 l l� � 0),

the scattering rate w
l l
a
� �

( )
does not depend on Te , while for

scattering up (l l� �, 
 l l� � 0), the scattering rate w
l l
a
� �

( )
ac-

quires an additional exponential factor e
� �
l l eT/

.

If electron–ripplon scattering dominates, at T � 01. K,

the scattering frequencies are determined mostly by

one-ripplon processes. Collecting corresponding proba-

bilities found in the framework of the usual perturbation

treatment, the scattering rates can be presented in the

following form

w
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where � q eq m� �
2 2 2/ . The matrix elements of the elect-

ron–ripplon couplingU q can be written as [2] � � � �l U z lq| ( )|

� �� �( )eE Fq ll ll , where
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and K x1( ) is the modified Bessel function of the second

kind. It is obvious that w w T
l l

r
l l

r
ll e�� � � �� �( ) ( )

exp ( / )
1 1 
 .

Since 8 ll � 0, diagonal matrix elements of U q are deter-

mined only by the holding field term eE� and the term

eEq which originates from the polarization interaction

with oscillating liquid. For off-diagonal terms, 8 ll� sub-

stitutes the holding field term which turns to zero.

At T � 0.1 K, the decay rate of excited SE states is de-

termined mostly by quasielastic one-ripplon scattering,

while the energy relaxation is mostly due to inelastic

two-ripplon scattering discussed above. Electron scatter-

ing induced by one-ripplon processes limits the lifetime

of the first excited Rydberg level and transfers the energy

difference 
 21 into the kinetic energy of electron motion

along the interface. Then electron–electron collisions

which have the highest rate redistribute it among other

electrons forming a nondegenerate distribution of the

in-plane momentum with an effective electron tempera-

ture T Te � . With much lower rate (about 10 6 s–1) all the

electrons transfer the energy to the environment emitting

couples of short wavelength ripplons. Therefore, decay

heating of SEs at the MW resonance is expected in the

ripplon scattering regime as well. At much lower temper-

atures, the one-ripplon contribution to the decay rate of

excited surface levels freezes out and one have to take

into account two-ripplon emission processes [21] which

start to limit the lifetime of excited surface levels. Still,

this limiting case, which requires a separate examination,

is beyond the conditions of the experiments discussed

above.

To obtain the electron temperature at the MW reso-

nance (� �� 21 ) as a function of the Rabi frequency, we
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found numerical solutions of the energy balance equation

and the rate equations for nl under different experimental

conditions. Typical dependence Te ( )� at the resonance

maximum is shown in Fig. 3. In these calculations, the

wave functions of the first 10 levels were obtained by

means of numerical solution of the corresponding

Schrodinger equation, while the next 190 levels were ap-

proximately described by Airy functions. At the begin-

ning, with an increase in the Rabi frequency, Te increases

fast. Then, at high excitations (r12 21 1� � ), electron tem-

perature saturates due to the saturation of the level occu-

pancy of the first excited level n n2 1� . Figure 3 indi-

cates that electron temperatures of about 10 K can be

reached at the saturation condition. For a fixed �, elec-

t ron tempera ture decreases wi th | ( )|� �� �21 E in

accordance with Eq. (2), because it reduces the excitation

rate r12.

3.2. Conductivity of hot electrons

It is clear that decay heating of SEs is a very important

effect induced by the MW resonance. In the vicinity of the

resonance one can have ultra-hot electrons covering the

cold surface of liquid helium (T Te �� ). For weak driving

electric fields, conductivity of such hot electrons can be

described by the linear transport theory. Additionally, in

this system, electron–electron collisions are usually much

higher than other relaxation rates which allows us to sim-

plify the conductivity treatment. To obtain the effective

collision frequency �which enters the Drude conductivity

equation we can just evaluate the kinetic friction acting

on the whole electron system, assuming that in the mov-

ing reference frame, the electron liquid can be described

by the equilibrium dynamical structure factor [2]. Gener-

a l ly, the kinet ic f r ic t ion can be represented as

F Vfric � �N me e a�
v

, where Vav
is the average velocity.

For the vapor atom scattering regime, the effective col-

lision frequency which determines DC conductivity

( / )� �� e n ms e
2 has a simple form [18]
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There are two important factors which cause changes in

� ( )a , if SE are heated. The first factor is the electron occu-

pation of high surface levels which increases inter-level

scattering and the momentum relaxation rate � ( )a . The

second factor is a decrease in matrix elements sl l� with

level numbers which acts in the opposite way. It is re-

markable that the outcome of the competition of these two

factors strongly depends on the holding electric field.

For typical holding fields used in our experiments

(E� �100 V/cm), the first factor dominates and the eff-

ective collision frequency � ( )a increases with � with-

out an observable sign of a decrease [10]. Nevertheless,

our new calculations conducted for weak holding fields

( .E� � 315 V/cm) related to the experiment of Ref. 7 re-

sults in a more complicated behavior of � ( )( )a � shown in

Fig. 4. At low powers, � ( )a decreases with the MW exci-

tation by about 4%, and then we have the sign change of

the effect. This decrease is induced by the reduction in

matrix elements sl l� whose magnitude depends strongly

on E� . Thus, for weak holding fields scattering by vapor

atoms should be reduced by MW radiation at low powers,

which is opposite to the mobility decrease at the pho-

toresonance reported previously [7]. This means that va-

por atom scattering cannot be the origin of that mobility

decrease.

The ripplon contribution to the momentum collision

frequency of SEs can be obtained similarly to Eq. (11)
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The additional factor of the integrand containing

( )� q l l� �
 originates from the factor qk which usually en-

ters the equation for the momentum relaxation rate. In our

evaluations of matrix elements � � �l U z lq e| ( )| , we shall use

the variational form of SE wave functions f zl ( ) �
� �A zP z b zl l l( ) exp [ / ]2 , where Al is the normalization

constant, P zl ( ) is a polynomial of power l �1. We shall use

also the following notations b b bll l l� �� �( ) / 2.

To understand the origin of strange variations in � ( )r

induced by decay heating, it is convenient to rearrange the

collision rate of electrons using the specific form of elec-

tron-ripplon coupling and the Boltzmann approximation

for fractional occupancies n nl l
B� ( )

. The later works well

for low and medium excitations and fails under the satura-

tion condition [18]. In this approximation, using � ( )r �
� � l l

B
l
r

n
( ) ( )� , we introduce the collision frequency of

electrons occupying a level l,
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where functions W yll� ( ) are defined by

W y
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and � bll �
is defined similar to � q with bll� standing for q.

Usually, low temperature asymptotes of W yll� ( ) valid for

y �� 1 are used for specific evaluations, such as mobility

calculations [22] and the nonlinear conductivity studies

[23]. For example, in this approximation, W y11( ) �

� 0 5 4 1. ln ( / )y � . In our treatment of hot electrons, we

cannot restrict ourselves to this approximation because

4Te can be of the order of � bll �
.

In spite of the cumbersome form of Eq. (16), the main

features of �
l
r( )

can be seen quite easily. In contrast with

�
0
( )a

, the electron–ripplon collision frequency for elec-

tron scattering within the ground level depends strongly

on Te . For l l� � �1, the first term of Eq. (16), representing

the holding field term eE� of U q , decreases with elect-

ron temperature as Te
�1. The second term of Eq. (16) has a

more complicated dependence on Te . Nevertheless, it is

quite clear that for warm SEs the term whose integrand

containsWll�
2 increases with electron temperature approxi-

mately as T Te b eln ( / )2
1

� , because the low temperature

asymptote ofW y11( ) given above has only logarithmic de-

pendence on y. At higher Te , when 4 1
1

� b eT/ � , we can

simplify W y y11 1 3( ) /9 and the second term becomes

approximately independent of Te . With further increase

in Te , when the argument ofW11 becomes large, even this

term start decreasing with electron temperature. Thus, we

conclude that the integral effect of decay heating on � ( )r

depends strongly on the magnitude of the holding electric

field E� . For zero or a weak value of E� , the collision

rate starts to increase with warming of SEs, then attains a

maximum and starts to decrease. If the holding field is

sufficiently strong, the collision rate decreases with heat-

ing even for warm SEs (Te � T).

4. Results and discussions

The momentum collision rate � ( )r given by Eqs. (15)

and (16) has a very complicated form, which is not conve-

nient for evaluations when many surface levels should be

taken into account. In this case, there are two options: one

can simplify the electron–ripplon coupling, or take into

account only a very restricted number of surface levels. In

this work, we consider only 1 and 3-level models with the

exact form of U q . The wave functions of surface levels

are found according to the conventional variational

principle.

For electron–vapor atom scattering, the momentum re-

laxation rate given in Eq. (14) is much more simple, and,

therefore, it can be evaluated for a large number of sur-

face levels sufficient for the convergence of the result, if

we approximate higher levels (l � 3) by the corresponding

Airy functions. This allows us to take into account up to

400 surface levels. The chosen approximation is expected

to describe well the conductivity of hot SEs for strong

holding fields (E� � 100 V/cm). For weak holding fields,

it can describe well only the conductivity of warm and not

very much heated electrons (Te � 2 K).

The numerical evaluations of � ( )( )a
eT and � ( )( )r

eT

support the qualitative analysis of the momentum relax-

ation rate given at the end of preceding Section. Since the

MW power used in our experiments is much lower than

that providing the electron temperature saturation, we ex-

pect that the Boltzmann distribution of level occupancies

is a reasonable approximation for evaluation of � ( )( )r
eT .

For the conditions of the experiment of Ref. 7 (E� �
= 3.15 V/cm, T � 0.35 K), the effective collision fre-

quency calculated employing different models is shown
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in Fig. 5. Though, at T Te � , the electron–ripplon colli-

sion rate is substantially lower than that induced by vapor

atoms, it depends on electron temperature even at low

MW powers, where � ( )a is approximately constant. Cal-

culations conducted for the 1-level model result in a rapid

increase in � ( )r with Te (dotted line), which turns into a

slow decrease at Te � 13. K.

Taking into account more surface levels affects mostly

the decreasing part of the dependence � ( )( )r
eT which be-

comes sharper as shown by the dash-dotted line. The total

collision frequency � � �� �( ) ( )a r of the 3-level model as

a function of Te preserves the conductivity maximum

(dash-dot-dotted line) and decreases strongly at Te � 1 K.

Even the inclusion of 400 levels in calculations of � ( )a

(solid line) does not affect the maximum of the total colli-

sion frequency (here the contribution � ( )( )r
eT is still cal-

culated for the 3-level model).

The above given theoretical results explain the mobil-

ity decrease at the photoresonance previously observed

for low powers [7]. Even numerically, the change in the

collision frequency at the maximum which is about 3%

(Fig. 5) agrees well with typical changes of SE mobility

observed in the experiment. Regarding the reversing of

the sign of the effect observed at high powers, it agrees

with the 3-level model considered here (dash-dot-dotted

line), though this model cannot be applied for Te � 12. K.

Therefore, this property should be verified by an all-level

treatment which is very difficult for such a weak holding

electric field. The existence of the collision frequency

maximum at Te � 0 88. K leads to a complication of the

shape of the conductivity resonance (�( )E� ) induced by

MW radiation of intermediate powers, which also agrees

with observations [7].

In our experiments, the holding electric field is much

stronger than that used in Ref. 7: E� � 93 V/cm. For such

a field, at Te � 0 48. K, scattering by vapor atoms is domi-

nant, and, as shown previously [10,18], the correspond-

ing collision frequency of SEs increases steadily with

heating. The experimental data relevant to this tempera-

ture and shown by the first data line of Fig. 2 are consis-

tent with this conclusion. The photoresonance decreases

the conductivity of SEs.

For the ambient temperature T � 0 35. K, the depend-

ence �( )Te becomes completely different, as indicated in

Fig. 6. At first, consider the contribution from the

electron–ripplon scattering only (lines R). For the models

of the SE system analyzed here, the momentum collision

frequency � ( )r mostly decreases with heating. The pla-

teau feature which is seen for the 3-level model at T2 2�
K remains remarkably even in models taking into account

larger numbers of surface levels which we do not discuss

in this publication. At the same time, the contribution

from vapor atoms (line A) calculated for the all-level

treatment increases steadily with Te .
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For the total collision frequency shown by the solid

line, the contribution � ( )a was calculated using the

all-level treatment, while � ( )r was taken from the 3-level

analysis, as described above. Thus, instead of the maxi-

mum found above for E� � 315. V/cm, we have a mini-

mum of the momentum relaxation rate. This minimum af-

fects the shape of the conductivity resonance induced by

the MW in the way which agrees with the corresponding

data shown in Fig. 2. Even numerically, the decrease in �
at the minimum is about 12% which is close to that ob-

tained in our measurements. At high electron tempera-

tures, we have a reversing of the sign of the effect which

is opposite to that previously observed for the weak hold-

ing field: at low MW excitation powers, SE mobility in-

creases with Te , while at high powers it decreases.

At even lower T � 0 3. K, the contribution from vapor

atom scattering is substantial for high MW excitations as

shown in Fig. 7. The total collision frequency normalized

decreases stronger than at T � 0 35. K, attains a minimum

of about 0.76, and then very slowly increases reaching

only 0.8 at Te �10 K. In this case, we conclude that the

shape of the conductivity resonance at medium powers

should be similar to the Lorentzian shape, slightly af-

fected at the maximum (the minimum of �), as it is for the

third data line in Fig. 2. According to the solid line of

Fig. 7, vapor atoms restrict the total reduction in � and it

should not exceed 24%. The observed reduction in � as

shown in Fig. 2, is about 17% which is consistent with our

calculations.

It should be noted that the absolute value of the mo-

mentum relaxation rate of SEs on liquid 3He previously

measured employing different experimental setups [7,24]

used to differ from the theoretical value by a factor of 2.

Our new data of � obtained by measuring � xx under a

weak magnetic field providing the semi-classical trans-

port regime are in much better agreement with the theory.

For example, the out-of-resonance data shown in Fig. 2

give: � � 15 3 10 8. � s–1 (T � 0 48. K), 2 4 10 8. � s–1 (T �
= 0.35 K), and135 10 8. � s–1 (T � 0 3. K). The corresponding

theoretical values for the total collision frequency are rea-

sonably close: � � 16 10 8� s–1 (T � 0 48. K), 2 6 10 8. � s–1

(T � 0.35 K), and 146 10 8. � s–1 (T � 0 3. K). Thus, our new

equilibrium conductivity data obtained for SEs on liquid
3He and the theory agree even numerically with the accu-

racy of about 7.5% in both the ripplon and vapor atom

scattering regimes.

5. Conclusions

SEs on liquid helium exposed to resonance MW radia-

tion represent an interesting system of hot electrons

whose temperature can be much higher than the ambient

temperature. The transport properties of such hot elec-

trons along the interface can be described by the linear

transport theory which allows to use them for probing the

electron coupling with surface excitations of quantum liq-

uids. At low ambient temperatures, the energy relaxation

time of hot electrons is expected to be limited by emission

of couples of short wavelength ripplons (��q eT� / 2),

which potentially could be used for experimental study of

the spectrum of surface excitations of liquid 3He in a high

energy range (up to about 5 K).

Our measurements of the conductivity resonance in-

duced by MW radiation show that decay heating of SEs

previously reported for scattering by vapor atoms remains

to be an important factor in the ripplon scattering regime

as well. It changes the momentum collision rate for elec-

tron scattering within the ground Rydberg level and leads

to electron occupation of higher levels. At certain condi-

tions, the interplay between scattering by ripplons and

scattering by vapor atoms affects strongly the shape of the

conductivity resonance and leads to a reversing of the

sign of the effect induced by MW radiation. Surprisingly,

this reversing of the sign of the effect is opposite to that

reported previously [7]. The theoretical analysis of SE re-

laxation rates in the presence of MW radiation given here

indicates that conductivity changes induced by MW radi-

ation are very sensitive to the magnitude of the MW fre-

quency which determines the range of holding electric

fields used for tuning to the resonance. This analysis ex-

plains well the conductivity variations observed, and

eliminates the discrepancy between data obtained for

different experimental setups.
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