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Collective modes are studied in superfluid helium when the normal and superfluid components have a

relative velocity w. In this paper the general dispersion relation for first and second sound modes is obtained

for arbitrary values of w, and we have found the relationship between the amplitudes of the oscillating vari-

ables for first sound. It is shown in a first sound wave, that both temperature and pressure can oscillate, and

moreover, the normal fluid velocity can exceed the superfluid velocity in the wave. In the general case of

first sound, the normal fluid not only has a velocity component parallel to the wave vector, but also a trans-

verse velocity component. It is shown that when there is only a phonon system in the helium, the amplitude

of the temperature oscillation in a first sound wave in an anisotropic phonon system, can exceed that in a sec-

ond sound wave in an isotropic phonon system, for similar values of the normal fluid density.

PACS: 67.25.D– Superfluid phase;
67.25.dt Sound and excitations.

Keywords: normal and superfluid components, first and second sound, phonon system in helium.

1. Introduction

In superfluid helium systems with high values of the

relative velocity of the normal and superfluid components

are studied experimentally in various ways. One of them

uses pulses of thermal excitations in helium [1]. Such

pulses are created by a heater immersed into helium at

very low temperature when a short electrical current is

applied to the heater. The heater then radiates excitations

into the helium. Another way to create a large relative ve-

locity is to make the helium move through narrow chan-

nels. In these systems, the velocities of the normal or

superfluid components can be very close to the critical ve-

locity. Such systems have attracted the attention of both

theoreticians [2–4] and experimentalists [5–9].

The two-fluid hydrodynamic equations of superfluid

helium cause a fundamental difference between helium

and classical liquids. The processes that can take place in

pulses of classical gases, or in moving liquids, has in prin-

ciple the same properties as processes in a stationary gas

or liquid. This is due to the fact that the coordinate frame

can be transformed into a frame where the gas pulse, or

moving liquid, is stationary.

In superfluid helium the situation is very different. If

the relative velocity w v v� �n s , where v n and v s are the

normal and superfluid velocities, is not equal to zero, then

it is impossible to find a frame where velocities of both

components of helium are equal to zero. This fact means

that most phenomena will have different properties in

superfluid helium and, moreover, new properties com-

pared to stationary helium when w � 0.

The theoretical description of these problems was first

made by [10]. There second sound propagation was ana-

lyzed at very small values of velocity w . Results on sec-

ond sound, at arbitrary values of w, were presented in [11]

where the dispersion equation for second sound was ob-

tained with the approximations that the coefficient of

thermal expansion, and momentum density of helium, are

equal to zero. These approximations are not valid in the

general case.
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In Refs. 2 and 12, as well as in Ref. 3 the temperature

dependence of the critical velocity of motion in helium

w c T( ) was studied. This allowed us to determine the lim-

its of thermodynamic stability in helium. In Refs. 3 and 4

it was shown that quasiparticle system, with large values

of w, possesses unique thermodynamic properties.

In this paper, the general dispersion relation for first

and second sounds, at arbitrary values of w, is obtained.

We have obtained the relationship between the ampli-

tudes of the hydrodynamic variables for first sound. The

results obtained in this paper are significantly different

from the well-known results which are obtained for iso-

tropic phonon system (w � 0) in superfluid helium.

2. Sound modes in superfluid helium

The hydrodynamic equations for superfluid helium ac-

cording to Refs. 13, 14 can be written as follows:
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Here � is the density of helium; �n and �s are densities of

the normal and superfluid components, respectively; v n

and v s are velocities of normal and superfluid compo-

nents, respectively; S is entropy of unit of volume;� is the

chemical potential of unit of mass of helium, A w� �n S/ ;

w v v� �n s is the relative velocity of the normal and

superfluid components. After linearization of this system

of equations, we consider the solution, for small devia-

tions, as plane waves in an infinite medium:
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Here v ks s|| /� v k , and similarly for vn|| and w ||. Vector k is

the wave vector and k its modulus, u is the modulus of the

phase velocity and u k�� / , where � is the angular fre-

quency of the mode. Small deviations of the parameters

are marked with the symbol «tilde». From Eq. (7) it fol-

lows that the oscillation of the superfluid velocity is al-

ways longitudinal if u vs� ||. The reason that the collective

mode with u vs� || does not exist, is because the superfluid

always has potential flow. At the same time from Eq. (8) it

follows that the oscillation of the relative velocity ~w and

the normal fluid velocity ~vn , have in general both longitu-

dinal and transverse components relative to the wave vec-

tor k.

We choose the coordinate frame, with axis x directed

along the vector of the relative velocity w, axis y lies in

the plane determined by the vectors w and k and k y � 0

(see Fig. 1). Equations (5)–(8) are a system of five equa-

tions for any two scalar variables, for example, pressure
~
P

and temperature
~
T , and the superfluid velocity ~

||vs (its pro-

jection on vector k) and two components of the vector of

relative velocity ~w.

Now we should take into account the thermodynamic

equations:
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and the relation for the chemical potential
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and determines the relations between the derivatives of

the thermodynamic variables:
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Fig. 1. The coordinate frame with the x axis directed along w,

and with the y axis lying in the plane which defined by vector

w and wave vector k. The angle � is between vectors k and w.
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The system (5)–(8) has a nontrivial solution, for any

value of w, if its determinant is equal to zero. This condi-

tion gives an equation of fifth order with respect to the

phase velocity u.

The dispersion equation for one of the modes can be

easily found directly from the system of Eqs. (5)–(8).

This is because the vector Eq. (8) becomes a scalar equa-

tion when u vn� ||. So, a nontrivial solution of Eqs. (5)–(8)

should exist if u v kn n� �|| /v k . We call this mode the

transverse mode and have analyzed it in Ref. 15.

3. Dispersion equation for first and second sounds

at arbitrary values of relative velocity

To obtain the dispersion relation for first and second

sound, we can start from the Eqs. (5)–(8) with u vn� ||,

which explicitly excludes the transverse mode. So we

take the expression for ~
||vn from (6) and for ~

||vs from (7)

and put them into Eq. (5). Finally we get the equation
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Then we get for the y component of relative velocity from

Eq. (8)
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For the x component of Eq. (8) and the amplitude of the

temperature oscillation, we obtain following equations:
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Using relation (13), for small deviations of the chemical

potential, in the Eq. (17) we find
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The system of Eqs. (19)–(21) together with thermody-

namic relations (9)–(11) form a system of three equations

for the three independent variables
~
P,

~
T , ~wx . For a non-

trivial solution of this system of equations to exist, the de-

terminant from these equations must be zero. This gives a

fourth order equation for u, since Eqs. (19) and (20) are

linear and Eq. (21) is quadratic with respect to u. As a re-

sult, we get the dispersion relation as an algebraic expres-

sion of the fourth power. This is explicitly presented in

Appendix A. The four roots of this dispersion relation are

the two modes of first sound and the two modes of second

sound, at arbitrary values of the relative velocity w.

In the limiting case of w � 0, the general relations

(A.1)–(A.6) give the results for the velocities of sound

obtained in Ref. 13. In the case of small values of w, in the

linear approximation and neglecting thermal expansion

�, the general relations (A.1)–(A.6) give the result in

Ref. 10, obtained there for the case w c�� and � � 0.

4. First sound at arbitrary values of relative velocity

Consider the first sound mode in the important practi-

cal case when � �n �� , and � �s � at arbitrary values of w.

This case, in particular, occurs in experiments [1,5,8,9].

We choose the coordinate frame where j � 0. This can

be always obtained by the appropriate Galilean transfor-

mation. Using the inequality� �n �� , in this frame we get

v w vn s� �, 0 . (22)

At relatively low temperatures, when � �n �� , the general

dispersion relation (see Appendix A) has a solution

u c� � (23)

for first sound.

To get the relation between the oscillating variables,

we start from the initial system of Eqs. (19)–(21), where

we substitute the dispersion relation (23) and take into

account Eq. (22) and condition � �n �� . As the result, we

get the following expressions for the mode u c� � :
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Here we introduce variables C, D, and E defined in Ap-

pendix B.
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For the mode u c� � , the relations can be obtained by

substituting, in Eqs. (24) and (25), the angle � �� for �,

which corresponds to substituting �u for u. By projecting

the oscillation of superfluid velocity onto the vector k,

and with Eq. (7) and relations (22), we get for the first

sound modes u c� � :
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where we have used, in accordance with Eq. (13) or (22),

the approximate equality
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which applies for first sound because the contribution of

thermal excitations to ~� can be neglected as � �n �� .

Substituting expressions (24), (25), and (27) into

Eq. (18) gives the projection of the oscillation of the rela-

tive velocity onto the axis that is perpendicular to vector

w, ~w y , for the first sound mode with u c� � :
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For the mode u c� � , we substitute � �� for � in Eq. (28)

and multiply the right hand side by –1.

The relations (24)–(28) determine the oscillation of

the main thermodynamic variables, the superfluid and the

relative velocity components, for the first sound modes

u c� � . This case is very important in practice as it is the

case where the contribution of the thermal excitations is

negligible (� �n �� ) and the relative velocity can take any

value.

In the limit w � 0, from Eqs. (B.1)–(B.3) we get
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where we use the equality (14) for the transformation of

the thermodynamic derivatives. In the limit w � 0, the os-

cillations of all vector values are longitudinal (i.e., along

k), so, we can take � � 0 in (29). Substituting (29) and (30)

into (24) and (25) we get, using (26), the relations be-

tween the amplitudes of the oscillating variables. These

coincide with the result of Ref. 13. At w � 0 there is no dif-

ference between modes u c� � . For first sound, at w � 0,

pressure and the normal and superfluid velocities oscil-

late, and the temperature oscillations are determined by

the small value of the coefficient of thermal expansion in

helium. As will be shown below, an unusual situation ap-

pears when w is not small.

5. Collective mode of first sound in a phonon system

at arbitrary values of w

Let us consider a phonon system when we only have

phonons in the superfluid helium. For example, helium at

T � 0.6 K for the isotropic case, and a phonon pulse in he-

lium at T � 0.05 K in the anisotropic case.

The general relations can be written explicitly for the

phonon system with linear dispersion:

� � cp , (31)

where c P/2 � � �� is the sound velocity of liquid helium. In

this case [13]
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Calculating the respective derivatives for the phonon

system, we get
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is the Gruneisen constant. Using these expressions for the

thermodynamic derivatives we get from Eqs. (19)–(21)

the following expressions for the amplitudes of the first

sound mode u c� � in a phonon system:
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In order to get the relations for the mode u c� � , one

needs to substitute � �� for �, and multiply the right hand

side of Eq. (39) by (–1).

Consider the limiting case � � 0, when the wave vector

k is directed along the vector of the relative velocity w.

From Eqs. (37)–(39) and Eq. (26) for the first sound mode

u c� � we obtain:
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For the mode u c� � we get
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In Fig. 2 we show the ratio of the amplitudes ~ / ~v vn s for

the first sound modes u c� � and u c� � , as a function of

the relative velocity w, for a phonon system at � � 0, cal-

culated from Eqs. (40) and (43). We see that, in the mode

u c� � , when w c/ � 0.67, the normal component does not

oscillate, and when w c/ � 0.67 the normal and superfluid

components oscillate in antiphase. In Fig. 3 we show the

ratio of the relative amplitudes
~

/ ( ~ )Tc Tvs for the first

sound modes u c� � and u c� � as a function of the rela-

tive velocity w, for a phonon system at � � 0, calculated

from Eqs. (42) and (45). We see that in the mode u c� � ,

when w c/ .� 0 63 the temperature does not oscillate, and

for w c/ .� 0 63 the temperature and ~v s oscillate in anti-

phase.

We note, that for a phonon system in superfluid he-

lium, the velocity of the normal fluid, in first sound, is

many times that of the superfluid. For the case w � 0 in

Eq. (40)
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So, in first sound ~ ~v vn s� . The same result can be obtained

directly from the relations in Ref. 13.

It is interesting to note that in spite of the small value

of the coefficient of thermal expansion, the relations (24),

(25) involve the ratio between the small values of the

thermal expansion coefficient � and the entropy of pho-

non gas S. This ratio is temperature independent in the

phonon region. In detail:
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From this general equation for the phonon system we get
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It follows from Eq. (42) (or (45)) that the relative oscilla-

tions of temperature are not small compared to the rela-

tive oscillation of ~ /v cs , even at w � 0.

There are two reasons why, in the first sound mode

u c� � at w c� , the relative values of the temperature os-

cillation can reach large values in comparison with rela-

tive oscillations ~ /v cs in spite of small value of thermal

expansion coefficient. Firstly, the thermal expansion co-

efficient and entropy occur in the ratio � / S, and, sec-

ondly, in the mode u c� � , when the relative velocity be-

comes w c� , the temperature oscillation becomes very

large. The relation between the amplitudes in first sound

in phonon systems, when w is not very small, strongly

depends on the angle � between the wave vector k

and the relative velocity vector w. This follows from

Eqs. (37)–(39). In the case � �� / 2 we get for both modes

u c� � :

~ ( ) ( ) ~v u u
w

c
vny G G s� � � � �

�

�
�
�

�

�
�
�

1
1

2
3 1 1

2

2

2
, (49)

~ ~ ( ) ( ) ~v w u u
w

c

w

c
vnx x G G s� � � � �

�

�
�
�

�

�
�
�

1 1
2

2

2
, (50)

~ ~ ,P cvs� � (51)

~

( ) ( ) ~ .
T

T
u u

w

c c
vG G s� � � �

�

�
�
�

�

�
�
�

3 1 1
1

2

2

2
(52)

In Fig. 4 we show the ratio of the amplitudes, ~ / ~v vny s and
~ / ~v vnx s , for the first sound mode u c� � , as a function of

the relative velocity w, for a phonon system at � �� / 2,

calculated from Eqs. (49) and (50). We see that the normal

fluid does not only oscillate in the longitudinal direction,

but that there are also transverse oscillations. In Fig. 5 we

show the ratio of the relative amplitudes
~

/ ( ~ )Tc Tvs for the

first sound modes u c� � as a function of the relative ve-

locity w, for a phonon system at � �� / 2, calculated from

Eq. (52). We see that as w c/ increases, the amplitude of

the temperature oscillations increases.

At w � 0, when the phonon system has no definite

direction, we find, as expected, that the oscillations of

the vector variables are longitudinal, ~ ~v wnx x� � 0, and

Eqs. (49), (51), and (52) coincide with Eqs. (40), (41),

and (42), respectively, at w � 0.

In this paper, we have found the relationships between

the amplitudes of the oscillating variables of first sound.
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Preliminary results for second sound were presented at

QFS conference [16] and has been published in Ref. 17.

A detailed study of second sound will be presented in our

next paper.

We compare the results obtained in this paper to those

for the isotropic case. In the case of second sound in the

isotropic phonon system (i.e., w � 0) (see Ref. 13) the re-

lation between the hydrodynamic parameters is

~ ~v
u

vs
G

n
n�

�
2

3 1

�

�
, (53)

~

( )

~P

c

u

u
vG

G

n
n�

�

�
�

�

�

3 1

3 3 1
, (54)

~

( )

~
T

T u

v

c
G

n� �
�

2

3 3 1
. (55)

In the relations (53)–(55) and below, we choose the inde-

pendent variable ~vn because the superfluid velocity ~vs

practically does not oscillate, see Eq. (53). The relations

(53) and (55) should be compared with the respective re-

lations for first sound in an anisotropic phonon system.

For typical experimental values from Refs. 1, 5, 8, 9,

for strongly anisotropic phonon systems w/c � 0.97 and

T � 0.05 K.

For second sound in the isotropic phonon system, for

the same density of normal component as in anisotropic

case (i.e., at T � 0.42 K), it follows from Eqs. (53)–(55)

that:

~

~ . ,

~

~ . ,

~
/

~ /
.

v

v

P

cv

T T

v c

s

n n n

� ) � ) � �� �1 0 10 2 9 10 0 156 6

�
. (56)

For the mode u c� � of first sound in a phonon system

with w c/ � 0.97, it follows from Eqs. (40)–(42) at � � 0

that:

~

~

~

~ . ,

~
/

~ /
.

v

v

P

cv

T T

v c

s

n n n

� � � �
�

0 053 6 2 , (57)

and for the first sound mode u c� � , in an anisotropic

system with w c/ � 0.97 at � � 0, i t fo l lows from

Eqs. (43)–(45) that:

~

~

~

~ . ,

~
/

~ /
.

v

v

P

cv

T T

v c

s

n n n

� � � � �
�

0 59 2 25 . (58)

For the first sound mode in the isotropic phonon system it

follows from Eqs. (43)–(45) that:

~

~

~

~ . ,

~
/

~ /
.

v

v

P

cv

T T

v c

s

n n n

� � �
�

0 17 0 83 . (59)

We see, second sound, in the isotropic phonon system, in

accordance with (56) is mainly a temperature wave and a

wave of ~vn , and pressure and the superfluid component

practically do not oscillate. The normal and superfluid

currents are not equal in a phonon system, and can have

the same direction. For first sound in the isotropic case, it

follows from (59) that the superfluid and normal veloci-

ties, pressure and temperature all oscillate, and the tem-

perature oscillation is not small. As for the mode of first

sound, in the anisotropic case, for the mode u c� � ,

mainly the normal velocity and temperature oscillate, and

pressure and superfluid velocity practically do not oscil-

late (see (57)). At the same time, in the first sound mode

u c� � , in a phonon system with w c/ � 0.97, in accor-

dance with (58), all the variables oscillate with similar

values.

6. Conclusion

A notable feature of a strongly anisotropic phonon

system in superfluid helium, created in experiments

[1,5,8,9], is the large value of the relative velocity w, of

the superfluid and normal components. The sound modes

in stationary (w � 0) helium and for the case of small w,

have been studied for many years, but the analysis of

sound propagation at arbitrary w has not been done until

now.

In this paper the general dispersion equation for first

and second sounds in superfluid helium is found, at an

arbitrary thermodynamically stable value of w. It was

shown, that in the limit of small contribution of thermal

excitations, � �n / �� 1, at arbitrary value of w in super-

fluid helium, the first sound modes can be excited with

the dispersion law� � � ck. The general relation between

the amplitudes of the oscillating variables in the first

sound mode, is derived. In spite of «isotropic type» of dis-

persion law for the first sound modes, the relations be-

tween the amplitudes of the oscillating variables, strongly

depend on the kind of mode (either � � � ck or � � � ck)

and on the angle between the velocity w and the wave

vector k. In the limiting case w � 0, the general relations

for the amplitudes of the oscillating variables is presented

in Ref. 13.

The relation between the amplitudes of oscillating va-

riables in first sound are studied in detail for the case of an

anisotropic phonon system with arbitrary w. This condi-

tion is very important in practice because high values of w

are realized in phonon pulses propagating in superfluid

helium [1,5,8,9].

It is shown, that for strongly anisotropic phonon sys-

tems, as created in experiments, the amplitude of super-

fluid velocity, pressure, and temperature at a given oscil-

lation amplitude of the normal velocity can be the same

order of magnitude as the corresponding relations in a

wave of second sound in the isotropic phonon system, and

even exceed them. It should be noted, that even in the iso-

tropic (w � 0) phonon system, the oscillation of velocities
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of superfluid ~vs and normal ~vn components do not equal

one to another: ~ ~v vs n� , and

~ [ ( ) / ]~ ~v u v vn G s s� � � �1 3 1 2 6 .

At w � 0 the inequality between ~vs and ~vn become stron-

ger, see Fig. 2.

We should note here, that in the phonon region, the

amplitude of the relative temperature (38) in first sound

modes turns out not to be small in comparison with the

relative oscillation amplitude of the normal (or super-

fluid) component and strongly grows with w when w is

close to c for the mode � � � ck, see Fig. 3.

So, the sound modes in superfluid helium, at nonzero

values of the relative motion w, possess unusual proper-

ties, which are most apparent at large values of w. The au-

thors hope that the relations between the amplitudes of

the oscillating variables in the sound modes of superfluid

helium when there is relative motion of normal fluid and

superfluid components, obtained in this paper, will stimu-

late new experiments to study sound modes in anisotropic

quasiparticle systems of superfluid helium.

Appendix A

The general dispersion equation for first and second sounds in superfluid helium at arbitrary value w can be presented as fol-

lows
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where we use the following shortcut
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