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The Bose–Einstein condensation of vacancies in a three-dimensional decorated lattice is considered. The

model describes possible scenario of superfluidity of solid helium, caused by the presence of zero-point va-

cancies in a dislocation network. It is shown that the temperature of Bose–Einstein condensation decreases

under increase of the length of the network segments, and the law of decrease depends essentially on the

properties of the vertexes of the network. If the vertexes correspond to barriers with a small transparency,

the critical temperature is inversely as the square of the length of the segment. On the contrary, if the ver-

texes correspond to traps for the vacancies (it is energetically preferable for the vacancies to be localized at

the vertexes), an exponential lowering of the temperature of transition takes place. The highest temperature

of Bose–Einstein condensation is reached in the intermediate case of vertexes with large transparency, but in

the absence of tendency of localization at them. In the latter case the critical temperature is inversely as the

length of the segment.

PACS: 67.80.–s Quantum solids;
67.10.Ba Boson degeneracy.

Keywords: supersolid, zero-point vacancies, dislocations.

1. Introduction

Experimental observation of nonclassical rotational

inertia in torsion experiments on solid He [1] (confirmed

by a number of other groups [2–4]) has revived interest to

the idea on supersolid. The idea goes back to pioneer

work by Andreev and Lifshitz [5] where it was shown that

the presence of vacancies in quantum crystals at zero tem-

perature (zero-point vacancies) can cause superfluid pro-

perties of such systems. However, as was found later

[6,7], in 4He crystals the concentration of vacancies is

negligibly small and distincts from zero only due to ther-

mal activation. The presence of extensive defects in the

crystal can change the situation and make the occurrence

of zero-point vacancies energetically favorable. Zero-po-

int vacancies may emerge if the kinetic energy gain ex-

ceeds the potential energy losses. Defects destroy ideal

periodicity of the lattice, the minimums of potential en-

ergy, that correspond to lattice site, become more shallow

and it may reduce the losses. If an extensive defect is ho-

mogeneous, zero-point vacancies can move freely along

the defect. At sufficient concentration of defects they

form a network, that provides possibility of flowing of the

vacancies through the whole crystal. Under lowering the

temperature such a gas of vacancies should go into a

superfluid state. In recent papers [8,9] it was established

by Monte Carlo simulation that in 4He crystals the grain

boundaries and dislocations do possess superfluid pro-

perties. On the other hand, as was shown in Ref. 2, a

rather long-term annealing (that removes dislocation

from the crystal) leads to a complete disappearance of the

effect of a step-like change of the period of a torsion os-

cillator filled with solid helium. Thus, superfluidity of va-

cancies in a network of dislocations can be considered as

probable mechanism of superfluidity of quantum crystals.
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The idea on dislocation superfluidity was put forward

in Refs. 10, 11 long before the observation of the ef-

fect [1]. As was shown in [10,11], the important parame-

ter that determines the temperature of the phase transition

in such a system is the length of the segment of the net-

work. However the approach [10,11] did not consider

such characteristic of the network as the transparency of

the vertexes (more precisely, there was some implicit as-

sumption on its value).

In this paper we consider a simple model of the net-

work that allows to investigate the dependence of the tem-

perature of the Bose–Einstein condensation on the length

of the segment and on tunnel characteristics of the ver-

texes.

2. The model

In what follows we will model a superfluid dislocation

as one-dimensional lattice chain with the period a and the

length l qa� . It is implied that the chain has nonzero con-

centration of zero-point vacancies n1 (one-dimensional

concentration). The chains (segments) are joined into a

regular three-dimensional network. Two edge sites of

each segment are the vertexes of the network (we will call

such sites the central ones). To be more specific, we con-

sider that the network obeys cubic symmetry. In fact, we

model the network as a decorated* cubic lattice with the

period l and the number of sites in the elementary cell

equal 3 2q � (Fig. 1). We are interested in the case of large

q. The vacancies that moves in a such lattice are described

in the tight-binding approximation. The model contains

two parameters: t, the amplitude of tunnelling between

nearest neighbor internal sites in segments, and t1, the

amplitude of tunnelling between a central site and a near-

est neighbor internal site. The one-site energies are as-

sumed to be the same for all sites. In the broader sense, the

model describes a network formed by one-dimensional

wires, along which bosons can move. The central sites

play the role of scatterers that connect the wires.

The number of zero-point vacancies N is supposed to

be much smaller than the numbers of sites in the deco-

rated lattice, i.e., the filling factor for the vacancies satis-

fies the inequality � � ��n a1 1. For the further analysis it

is convenient to introduce three-dimensional concentra-

tion of vacancies n q l� 3 3� / . We note that even at small

filling factor � �� 1 the number of vacancies per elemen-

tary cell can be much larger than unity (nl 3 1�� ) if the

condition � �� 1/ q is satisfied. Below we will consider

the filling factors belonging to the diapason1 1/ q �� ��� .

At small filling factors one can neglect the interaction

between the vacancies. The temperature of Bose–Einstein

condensation T0 for a noninteracting gas of bosons in a

compound lattice is determined by the equation
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where ��(k) is the spectrum of bosons in a lattice, � is the

band index, k is the wave vector,�0 is the chemical poten-

tial at T T� 0 (that coincides with the energy of the bottom

of the lowest band). In Eq. (1) the index � runs from 1 to

3 2q � (the number of sites in the unit cell), and summation

in taken over k belonging to the first Brillouin zone

( / /� � �� �l k li ).
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where b i ,�
� (b i ,�) is the operator of creation (annihilation)

of a boson in the site � in the i-th cell, i is the radius-vector

of the i-th cell, n x l� ( , , )0 0 , n y l� ( , , )0 0 , n z l� ( , , )0 0 are

the primitive vectors of translation. The following nota-

tion for � is used: � � v, the central site, � � �� ( , ), the �-th

internal site in a segment aligned in � direction.

Applying the Fourier-transformation

b
N

b

i

i
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k
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e (3)
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* In difference with the simple cubic lattice the decorated lattice contains additional elements — lattice chains along the bonds.

Fig. 1. Elementary cell of the decorated lattice (q � 5). Large

circles represent central sites, small ones, the internal sites of

the segments.



(where N i is number of unit cells), we rewrite the Ha-

miltonian as

H M b b� � �
� �

� �
� �1 2

1 2

1 2,

,
, ,( )k

k k . (4)

The matrix M k( ) has dimension ( ) ( )3 2 3 2q q� � � and is

presented in the following block form:
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Here Dq�1 is the ( ) ( )q q� � �1 1 matrix that corresponds to

the tunnelling between internal sites:
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and T� and T�
� are of 1� �( )q 1 and ( )q � �1 1matrixes that

describe the tunnelling between the central site and the

nearest internal site:
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� � t t1 / is a key parameter of the model (the ratio of am-

plitudes of tunnelling between an internal site and a cen-

tral site and between two internal sites).

The spectrum of bosons satisfies the dispersion equa-

tion det ( )�I M� � 0. Using the expressions (5)–(7) for M,

we obtain the explicit form of the dispersion equation

[ (~)] [~ (~) (~)� � �q q q� � �� �1
2

1
2

26� � � � �

� � ��( ) cos ( )]1 2 02q k l�
�

� , (8)

where ~ /� �� t and � q q(~) det (~ )� �� �I D .

3. Band structure of the spectrum

As follows from the dispersion equation (8), some

bands are reduced to degenerate levels. The energies of

these levels are given by the equation

� q� �1 0(~)� . (9)

Equation (9) coincides with the dispersion equation

for an isolated chain with q �1 sites. The energies of the

levels are equal to

�
�

s t
s

q
� �2 cos (10)

(s q� �1 2 1, , ,� ). The degree of degeneracy of each level

is 2N i . The wave functions of such states have zero

weight in the central sites that is in agreement with the ab-

sence of dispersion.

The spectrum of the bands with a finite dispersion sat-

isfies the equation

~ (~) (~) ( ) cos ( )� � � � �
�

�� �q q
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2
2
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The left hand side of Eq. (11) is a q-th order polynomial. It

has q distinct solutions that corresponds to q bands (al-

lowed bands). The widths of the bands essentially depend

on the parameter �. It is illustrated in Fig. 2.

One can see from this figure, that there is a special

value � �� �c 1 3/ at which all allowed bands have the

largest width, and there is no gaps between the bands. At

� �� c and � �� c the allowed bands become narrower and

energy gaps (forbidden bands) appear. The effect of nar-

rowing is strongest for the lowest and the highest bands.

As we will see later, the temperature of Bose–Einstein

condensation is determined mainly by the width of the

lowest band. Qualitatively, the dependence of the width

of bands on � is explained as follows. At small � it is ener-

getically preferable for the vacancies to localize inside

segments, and the central sites play the role of the barriers

with a small transparency. As is known, in particular,

from the Kronig–Penney model (see, for example, Ref. 12),

in such a situation there is a sharp narrowing of the lowest

band. At � �� c it is energetically preferable for the vacan-

cies to localize at central sites, and overlapping between

such localized states becomes very small.
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Fig. 2. The band structure for bosons in the decorated lattice

(for q � 9). The allowed bands are shown grey.



To obtain quantitative estimation for the Bose–Ein-

stein condensation temperatures it is necessary to find the

spectrum of the bands for arbitrary q. It follows from the

definition of � q (~)� that this function satisfies the recur-

rent relation

� � �q q q(~) ~ (~) (~)� � � �� �� �1 2 (12)

(� 1(~) ~� �� , � 2
2 1(~) ~� �� � ). Using the relation (12) and

applying the method of mathematical induction one can

prove that
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Equations (13) and (14) allow to reduce the Eqs. (9) and

(11) to compact trigonometrical equations. In particular,

the substitution ~ cos�  � 2 reduces Eq. (9) to the equation

sin q � 0 (with the additional condition sin  " 0) which

solutions correspond to the energies (10).

For finding the spectrum we use the substitution
~ cos ( )� �  � �2 that reduces Eq. (11) to the following

equation for  :
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At � �� �c 1 3/ , Eq. (15) can be easily solved that yields

the spectrum
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( j q�1 2, ,� ), where square brackets indicate the integer

part. One can see from (16) that at any q the bandgaps are

equal to zero. We display also approximate expression for

the half-width of lower bands
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( j q�� ). As follows from (17), the half-widths are in in-

verse proportion with the square of length of the segment

(at fixed a).

At � �� c one can find an approximate solutions of

Eq. (15) in a diapason of small  (that correspond to the

lower bands). We specify the case of � not too close to � c ,

when the condition ( )1 3 12� ��� q is satisfied. The so-

lution of Eq. (15) can sought as    � �j j
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It gives the following expression for the spectrum of

lower bands
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In this case the half-width of the lowest band is equal to

W
t

q
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�
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i.e., it is inversely proportional the third power of the

length of the segment. We note that in the Kronig–Penney

model at small transparency of the barriers the width of

the bottom band is also inversely proportional to the cube

of distance between the barriers (see, for instance, [12]).

If � exceeds � c (and q �� 1), a sharp narrowing of the

lowest band takes place, and this band drops below the

level �2t. Using the substitution ~�  � �2 cosh , we obtain

from (11) the following equation

coth sinh  �( )( )q 1 3 2� �
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At q( )3 1 12� � �� it is convenient to seek for a solution of

Eq. (21) in the form    � �0
~, where  0 is given by the

equation
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(i.e.  �0
26 1 2� �ln ( ) / ), and an exponentially small cor-

rection ~ can be obtained directly from (21):
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The spectrum of the lowest band reads as
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Thus, the lowest band becomes exponentially narrow

with the half-width
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W t
q

1 0
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04 0� �
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.

All the others bands lay above the level �2t. The spectra

for the lower bands (starting from j � 2) are determined

by the Eq. (19) if one replaces j for j �1 in its left hand

part. The eigenfunctions for the lowest band have the

maximum weight in the central site and it falls quickly

with the distance from the central site.

4. Temperature of Bose–Einstein condensation

Due to the presence of degenerate levels in the spec-

trum the Eq. (1) for the temperature of Bose–Einstein

condensation (BEC) is modified to

N
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We are interested in systems with a rather large concentra-

tion of vacancies (n l�� �3). In this case the BEC tempera-

ture is much larger than the width of the lowest band. It al-

lows to use the approximate expression for the Bose

distribution function for such a band
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The rest bands and degenerate levels give non-negligi-

ble contribution into (25), only if their energies, counted

from a bottom of the lowest band, are of order or less than

the BEC temperature. The main contribution into (25)

yields the lowest band. Therefore, for evaluation of what

bands and levels should be taken into account, one can

use the estimate T W nl0 1
3* .

Let us first consider � �� c (and q c�� �1 1 2 2/ ( / )� � . In

this range of the parameters the half-width of the lowest

band W q1
3+ � , while the energy gap between the first

and second band � g q,1
2+ � . At small filling factors � the

three-dimensional concentration satisfies the condition

nl q q3 3� ��� . Hence, T g0 1�� � , and it is enough to take

into account in Eq. (25) only the lowest band and the low-

est degenerate level (that lies at the top of the lowest

band). As a result, Eq. (25) is reduced to

nl dk dk dk
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It is instructive to write down the answer for the BEC temperature in terms of one-dimensional concentration of vacan-

cies n1, the distance between nearest sites a, and the length of the segment l:
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l
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2
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2 1

2
1 2
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1 3
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�
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At � �� c the energy gaps between the bands approach zero and one should take into account many bands and levels.

Since the main contribution into (25) is given by the levels and the bands, which energies counted from the bottom of the

lowest band are smaller than T0, it is enough to take into account only such levels and bands. Besides, it is possible to ap-

proximate all bands, except the first one, by the degenerate levels (with degree of degeneracy N i ), located between de-

generate levels (10). As a result, Eq. (25) is reduced to
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where smax and j max are numbers of levels and bands,

which energy is of order of T0. In view of fast conver-

gence of the sums in Eq. (28) they can be extended to in-

finity. The integral in Eq. (28) can be evaluated numeri-

cally. As a result, we obtain T W nl0 1
30 2� . . Using (17) we

find

T ta
n

l
0

2 13� . (29)

At � �� c the energy gap that separates the lowest band

from the lowest level and the second band is exponen-

tially large in comparison with the width of the bottom

band. Hence, it is enough to consider in (25) only the low-

est band. It gives T W nl0 1
30 7� . . At large q l a� / this tem-

perature is exponentially small. For example, at � �1 the

BEC temperature is equal to
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T tn l l a
0 1

5 29� �e ln / .
(30)

We should note that since the states in the lowest band

correspond to the vacancies localized near the central

site, the result (30) is more sensitive to the interaction

than the results for other �. Due to the tendency to local-

ization at central sites, the interaction can be neglected,

only if number of vacancies per elementary cell is less or

of order of unity. Therefore, the result (30) should be con-

sidered as qualitative one.

5. Conclusion

The model of decorated lattice considered in this paper

describes three physically distinct situations, depending

on value of �. The case of small � corresponds the situa-

tion, when intersections of dislocations play the role of

barriers with a small transparency for the vacancies. In

this case the BEC temperature is inversely proportional to

the square length of the segment. The case � �� c de-

scribes the situation, where the vacancies tend to localize

at the dislocation intersections. In such a situation the

BEC temperature decreases exponentially with the in-

crease of the length of the segment. At last, the case � �� c

corresponds the situation where vacancies can move

freely through the intersections, and do not localize at

them. The latter situation is the most preferable for the

BEC: only linear decrease of the temperature of transition

with the increase of the length of the segment takes place.

We consider that the functional dependences of the BEC

temperature on the length of the segment are more or less

universal and do not depend on mechanisms that cause the

appearance of the barriers (or the centers of localization)

on the dislocation intersections.

It is of interesting to estimate BEC temperature for the

most preferable case (29). If one defines the effective

mass of vacancies on a simple (not decorated) cubic lat-

tice M ta* /� �
2 22 , the result (29) can be presented in the

form

T
M

n

l
0

2
13

2
�

�

*
. (31)

The answer (31) up to the numerical factor of order of

unity coincides with the estimate given in Ref. 11. As was

shown in [9] by numerical simulation, the superfluid part

of dislocation contains a number of lattice sites in its

cross-section. Therefore, a more realistic model of super-

fluid dislocation is not a single lattice chain but a bunch of

chains. The Eq. (31) does not contain any parameters of

the decorated lattice and it can be applied for general

model of superfluid dislocation. In the latter case the

quantity n1 should be understood as linear concentration

per dislocation. Implying that the effective mass of vacan-

cies is approximately equal to the mass of 4He atom, we

evaluate (31) as T n l0 1 18� -( / ) K·�2. At linear concen-

tration of vacancies n1 1� �
–1 (a value obtained in [9]) the

temperature T0 01� . K is reached for the length of the seg-

ment l �180 �, that corresponds to two-dimensional den-

sity of dislocations nd � -3 1011 cm–2. This is the upper es-

timate for T0 and it shows that in real situation the BEC

temperature is rather low.

In conclusion, we discuss shortly the question on the

relation between the Bose–Einstein condensation and the

superfluidity of vacancies in the network of dislocations.

At temperatures lower than the BEC temperature the

long-range phase correlations are established in the sys-

tem. In our case the phases on different segments become

correlated. It allows to describe the system (below T0) by

a complex order parameter that reflects the possibility of

nondissipative flow along the dislocations. (An interac-

tion between the vacancies, necessary for superfluidity, is

always presented in real systems. We just imply this inter-

action to be repulsive and rather small.) Above T0 the

flowing without relaxation is impossible. But the spe-

cifics of the system studied consists in that the tem-

perature T0 and the temperature of degeneracy for the

gas of vacancies on a segment Td are quite different:

T tn a Td � ��1
2 2

0. Therefore, the relaxation time for the

flow at T T Td �� � 0 can be very large, and above T0 a pe-

culiar quasi-superfluid phase can be realized (see Ref. 11,

and also discussion in Ref. 9). Let us note that in the

experiment [13] the attempt of direct observation of

Bose–Einstein condensation in solid helium was made

(through the measurements of temperature dependence of

the kinetic energy per atom). According to the results of

Ref. 13, in the temperature range where nonclassical rota-

tional inertia is observed (measurements were done down

to 0.07 K), the Bose–Einstein condensate does not ari-

se yet.
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