Структура низкотемпературной фазы гексафторэтана

Н.А. Клименко, Н.Н. Гальцов, А.И. Прохватилов

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: klymenko@ilt.kharkov.ua

Статья поступила в редакцию 7 августа 2009 г., после переработки 9 сентября 2009 г.

Проведены рентгеновские исследования поликристаллов C₂F₆ в температурном интервале 6–140 К. Для низкотемпературной фазы установлена моноклинная структура с параметрами решетки при 6 К, равными a = 8,9725 Å, b = 4,9546 Å, c = 9,3936 Å, $\beta = 95,07$ град. Элементарная ячейка содержит 4 молекулы. Проведен совместный анализ рентгеновских и ранее выполненных нейтронографических данных, в результате которого для низкотемпературной фазы C₂F₆ предложена пространственная группа симметрии $P2_1 / m (C_{2h}^2)$. Установлено, что ориентационный фазовый структурный переход при 103,97 К моноклинной решетки в кубическую объемно центрированную решетку сопровождается большим скачком объема $\Delta V/V = 4,01\%$. Этим обстоятельством объясняются наблюдаемые в твердом гексафторэтане значительные эффекты переохлаждения и перегрева фаз. Проведен подробный сравнительный анализ кристаллической структуры и физических свойств твердых фаз этана и его галогенозамещенных C₂F₆, C₂Cl₆ и C₂Br₆.

Проведено рентгенівські дослідження полікристалів C₂F₆ в температурному інтервалі 6–140 К. Для низькотемпературної фази встановлено моноклінну структуру з параметрами гратки при 6 К, які дорівнюють a = 8,9725 Å, $b = 4,954_6$ Å, $c = 9,393_6$ Å, $\beta = 95,07$ град. Елементарна комірка містить 4 молекули. Проведено спільний аналіз рентгенівських та раніше виконаних нейтронографічних даних, у результаті якого для низькотемпературної фази C₂F₆ запропоновано просторову групу симетрії $P2_1 / m (C_{2h}^2)$. Встановлено, що орієнтаційне фазове структурне перетворення при 103,97 К моноклінної гратки в кубічну об'ємно центровану гратку супроводжується великим стрибком об'єму $\Delta V/V = 4,01\%$. Цією обставиною пояснюються значні ефекти переохолодження та перегріву фаз, що спостерігаються в твердому гексафторетані. Проведено детальний порівняльний аналіз кристалічної структури та фізичних властивостей твердих фаз етану та його галогенозаміщених C₂F₆, C₂Cl₆ та C₂Br₆.

PACS: **61.50.-f** Структура объемных кристаллов; 61.50.Ah Теория кристаллической структуры, симметрия кристаллов, вычисление и моделирование;

61.41.+е Полимеры, эластомеры и пластики;

61.05.С- Рентгеновская дифракция и рассеивание.

Ключевые слова: низкотемпературная фаза, моноклинная структура, С2F6, рентгеновские исследования.

Молекулы гексафторэтана C₂F₆ обладают симметрией D_{3d} и имеют молекулярный вес M = 138,1 а.е.м. Ожижение газа при атмосферном давлении происходит при температуре 194,86 К, кристаллизуется C₂F₆ при 173,09 К. Упругость пара в тройной точке достигает величины 28,3 кПа. В твердом состоянии при температуре $T_c = 103,97$ К происходит структурный фазовый переход [1], связанный с изменением вращательного состояния молекул.

Структура высокотемпературной фазы C₂F₆ впервые была определена методом дифракции нейтронов в работе [2] на поликристаллических образцах. Установлено, что она имеет объемно центрированную кубическую решетку симметрии Im3m с двумя молекулами в элементарной ячейке Z = 2. При 110 К определен параметр решетки $a = 6,141_2$ Å. Было отмечено, что эта фаза имеет высокую степень молекулярного ориентационного беспорядка. Из полученных авторами результатов следовало, что переход к фазе более низкой симметрии происходит не при 104 К, как считалось ранее [1,3], а при более низких температурах в интервале 40–70 К. Именно здесь авторами обнаружено сосуществование высоко- и низкотемпературной фаз. Структура низкотемпературной фазы в этой работе не определена, однако обращено внимание, что полученные нейтронограммы не индицируются в рамках предложенной в [3] моноклинной ячейки.

Авторами [4] в результате исследований рассеяния нейтронов в интервале температур 70–170 К были подтверждены кубическая ОЦК структура высокотемпературной фазы, ее сильная ориентационная разупорядоченность и наличие в твердом C_2F_6 фазового превращения в области 103 К. Как следует из работ [5,6], высокотемпературные фазы более тяжелых галоидозамещенных этана, например гексахлороэтана C_2Cl_6 , имеют также кубическую ОЦК решетку симметрии *Im3m* с ориентацией осей молекул вдоль объемной диагонали ячейки.

Попытка определения структуры низкотемпературной фазы C₂F₆ рентгеновским методом впервые была предпринята в работе [3] на монокристаллах, выращенных в кварцевом капилляре диаметром 0,5 мм. Для получения набора дифракционных данных использован фотометод Вайсенберга. Применялось излучение медного анода. При прохождении по температуре через фазовый переход в низкотемпературную фазу из 24 монокристаллов уцелел только 1 образец. Было определено, что низкотемпературная фаза имеет моноклинную решетку с двумя молекулами в элементарной ячейке. При температуре 83 К в работе получены следующие параметры решетки: a = 9,3 Å, b = 5,1 Å, c = 4,6 Å, $\beta = 153,7^{\circ}$, которые соответствуют плотности 2,06 г/см². На основе проведенного анализа полученных структурных данных для низкотемпературной фазы предложена пространственная группа симметрии $P2_1 / m (C_{2h}^2)$. Однако, как уже отмечалось выше, полученные в работе [3] результаты не соответствуют данным нейтронографических исследований [2]. В частности, на базе приведенных в [3] параметров решетки невозможно проиндицировать нейтронограммы низкотемпературной фазы.

Из проведенного выше краткого обзора литературных данных следует, что имеющаяся структурная информация о фазовом переходе, структуре фаз, характере и величине ориентационного беспорядка молекул весьма противоречива и до последнего времени не получены ответы на ряд этих важных вопросов. Отсутствуют также сведения о термодинамических характеристиках фазового перехода в гексафторэтане. Целью настоящего исследования являлось надежное установление симметрии и параметров кристаллической решетки низкотемпературной фазы C_2F_6 , уточнение температуры фазового перехода и определение скачка объема на нем, а также проведение сравнительного анализа со структурными превращениями в других кристаллах галогенозамещенных этана.

Техника эксперимента

Поликристаллические образцы для исследований были получены непосредственно в рентгеновском

криостате при вакуумной конденсации газа C₂F₆ на предварительно охлажденную медную подложку. Исходная температура подложки для большинства серий экспериментов составляла 70 К, но в некоторых экспериментах она колебалась от 45 до 145 К. Чистота исходного газа составляла 99,96%. Газ осаждался несколькими порциями, каждая из которых соответствовала изменению давления в системе напуска 5-10 мм рт.ст. При этом скорость осаждения отдельной порции составляла ~1,7 мл/с. Полученные образцы в последствии отжигались в течение получаса при температуре при 100-120 К, что позволяло убрать механические напряжения. Во время отжига производилась запись исходной рентгеновской дифрактограммы. Затем отожженные образцы охлаждались до 6 К, либо нагревались до 140 К, после чего производили съемку дифрактограмм в режимах шагового нагрева или охлаждения соответственно. Скорость изменения температуры при нагреве и охлаждении образцов находилась в пределах 0,4-0,5 К/мин. Величина шага по температуре в разных экспериментах колебалась от 2 до 5 К. Особое внимание уделяли области фазового перехода, где шаг по температуре был порядка 0,1 К.

Измерение и стабилизацию температуры производили с помощью термоконтролера фирмы Lake Shore, который позволял поддерживать температуру с погрешностью не более 0,05 К. Нагревали и охлаждали образцы с заданной термоконтролером скоростью. Структуру тетрафторэтана исследовали методом порошковой рентгеновской дифрактометрии на дифрактометре ДРОН -3M в К_{α}-излучении медного анода (λ = = 1,54178). Погрешность определения параметров решетки не превышала \pm 0,02%, а интенсивностей рентгеновских отражений порядка одного процента.

Результаты и их обсуждение

В результате проведенных рентгеноструктурных исследований были получены качественные образцы и, соответственно, дифрактограммы как низко-, так и высокотемпературной фаз тетрафторэтана.

На рис. 1 и 2 видно, что дифрактограммы высокотемпературной и низкотемпературной фаз существенно различаются между собой. В результате проведенного нами анализа дифрактограмм высокотемпературной фазы были подтверждены выводы работ [2,4] о том, что β-С₂F₆ имеет объемно центрированную кубическую решетку симметрии Іт3т. Элементарная ячейка содержит 2 молекулы. Полученный параметр решетки a = 6,092 Å гексафторэтана при 105 К оказался близким к значениям, следующим из нейтронографических исследований [2,4]. В работе [2] приведен параметр решетки a = 6,1412 Å при 110 К. Обработка полученной в [4] нейтронограммы дала значение параметра a = 6,093 Å при T = 105 K, которое практически совпадает с величиной а нашей работы. Величины плотности гексафторэтана, рассчитанные по этим па-

Рис. 1. Типичная рентгеновская дифрактограмма высокотемпературной фазы гексафторэтана C₂F₆.

раметрам, оказались равными в настоящей работе при 104,5 К $\rho = 2,018 \text{ г/см}^3$, в [2] при 110 К $\rho = 1,979_2 \text{ г/см}^3$ и по данным работы [4] при 105 К $\rho = 2,027 \text{ г/см}^3$. С учетом изменения плотности за счет теплового расширения эти величины разумно согласуются с плотностью $\rho = 1,85 \text{ г/см}^3 \text{ C}_2\text{F}_6$ вблизи тройной точки при T = 172,6 K [7,8].

На основании анализа значительного количества дифрактограмм низкотемпературной фазы в широком интервале температур с использованием программы автоматического индицирования «DICVOL» было определено, что α -фаза C₂F₆ имеет моноклинную решетку со следующими параметрами при 6 К: a = 8,9725 Å, $e = 4,954_6$ Å, $c = 9,393_6$ Å, $\beta = 95,07$ град. Элементарная ячейка α -C₂F₆ содержит четыре молекулы и имеет молярный объем V = 62,47 см³/моль. Рентгеновская плотность оказалась равной $\rho = 2,207_2$ г/см³. Отметим, что полученная нами моноклинная ячейка низкотемпературной фазы C₂F₆ по параметрам решетки и количеству молекул не соответствует ранее предложенной в работе [3] моноклинной решетке. Естественно, что рассчитанная по параметрам порошковая рентгенов

Рис. 2. Типичная рентгеновская дифрактограмма низкотемпературной фазы гексафторэтана C₂F₆.

Рис. 3. Часть нейтронограммы работы [2] низкотемпературной фазы C_2F_6 , приведенная к рентгеновской длине волны $\lambda = 1,54178$ Å, использованной в настоящей работе.

грамма [3] не соответствует полученным экспериментальным рентгеновской и нейтронной дифрактограммам, приведенным на рис. 2 и 3. Как уже было сказано выше, авторами [2] отмечалось, что полученные ими нейтронограммы не возможно индицировать в рамках предложенной в [3] моноклинной ячейки.

Результаты индицирования одной из рентгеновских дифрактограмм α -фазы гексафторэтана с использованием полученных в настоящей работе параметров решетки представлены в табл. 1. На рис. 3 и в табл. 1 для сравнения с нашими исследованиями приведены углы отражения и нейтронограмма, полученные в [2] на поликристаллических образцах при температуре 20 К. Представленная на рис. 3 нейтронограмма и данные табл. 1 приведены в соответствие с рентгеновскими данными перерасчетов углов отражения нейтронограммы [2], полученной при длине волны нейтронов $\lambda = 1,9885$ Å, к соответствующим углам дифракции при использованной в настоящей работе длине волны рентгеновского излучения $\lambda = 1,54178$ Å.

Из сравнения рис. 2 и 3 видно удовлетворительное качественное соответствие рентгено- и нейтронограмм. При этом надо отметить заметное различие интенсивностей отдельных линий. Это можно объяснить разной природой рассеяния нейтронов и рентгеновских лучей, кроме того, возможно влияние различия микроструктурного состояния образцов в сравниваемых работах. В то же время наблюдается относительно хорошее согласие расчетных и экспериментальных углов дифракции как для рентгеновских, так и нейтронографических исследований, что свидетельствует о надежности выбора элементарной ячейки α-фазы C₂F_{6.} Однако, как следует из данных табл. 1, для ряда нейтронографических линий соответствие экспериментальных и расчетных значений несколько хуже, чем для рентгеновских дифрактограмм. Скорее всего, это обусловлено недостаточно высокой точностью нашей обработки нейтронограммы, опубликованной в статье [2].

Таблица 1. Низкотемпературная фаза гексафторэтана: расчетные ($2\Theta_{calc}$) и экспериментальные ($2\Theta_{exp}$) углы отражения от плоскостей (*hkl*), интенсивности дифракционных линий (*I*), различие ($\Delta = \Theta_{calc} - \Theta_{exp}$) расчетных и экспериментальных дифракционных углов, углы отражения ($2\Theta_{Press}$) по данным работы [2]

Индексы плоскостей	Расчет	Эксперимент	Интенсивность	Press et al.	$\Lambda = \Theta_{\text{outo}} - \Theta_{\text{over}} $
h k l	2 _{Ocalc} , град	$2\Theta_{exp}$, град	<i>I</i> , имп/с	20 _{Press.} град	
0.0.2	18.068	Tr I			
200	18,908	10 787	874	10.862	0.079:0.00/*
011	20 280	19,787	874	19,802	0,079, 0,004
110	20,280	20.467	1872	20 549	0.025.0.082*
20-1	20,494	21,407	4211	20,349	0,023, 0,082
$\frac{20-1}{102}$	21,202	21,200	2686	21,323	0,002, 0,003
102	22,212	22,100	2000		0,032, 0,040
210	22,255	26.830	5751	26.906	0.036: 0.04*
11-2	20,009	20,050	372	20,500	0.010:0.090*
21-1	27,931	27,139	1060	28,050	0.059:0.019*
003	28.618				
2.0-3	33 553				
013	33 963	33 970	630	33 983	0.008.0.020*
30-2	34 223				
11-3	34 707	34 701	316	34 695	0.006.0.012*
310	35,148				
21-3	38.283				
0 0 -4	38,483	38,441	2265	38,388	0.043: 0.095*
1 2 -1	38,704				
10-4	38,926				
121	39,162	39,169	4474	39,172	0.007; 0.010*
30-3	39,958				
400	40,366	40,318	185	40,273	0,038; 0,093*
4 0 -1	40,667				
20-4	41,981	_			
12-2	42,082	42,080	962	42,019	0,002; 0,063*
4 0 1	42,413				
1 2 2	42,935	_	—	42,963	0,028*
11-4	43,152	43,150	3241	—	0,002
221	43,263		—		—
4 1 -1	44,738		—	44,678	0,060*
204	45,224		—	45,184	0,040*
2 2 -2	45,367				
21-4	45,977			46,024	0,047*
4 0 2	46,565		—	—	
0 2 - 3	46,831		—	46,832	0,001*
30-4	47,233		—	—	
1 2 -3	47,405	—	—	47,356	0,050*
214	49,099			—	_
321	49,360			49,269	0,090*
1 0 5	50,616	_	—	50,566	0,050*
3 0 4	51,786	_	—	51,868	0,082*
322	52,912			52,865	0,047*
50-2	53,214	—	—	53,296	0,082*
024	53,905	—	—	—	
51-1	54,650		—	54,638	0,012*
32-3	55,103		—	—	
314	55,228		—	55,137	0,091*
420	55,371	—	—	55,441	0,070*

Индексы плоскостей <i>h k l</i>	Расчет 20 г град	Эксперимент	Интенсивность І имп/с	Press et al.	$\Delta = \Theta_{calc} - \Theta_{exp} $
	20 _{calc} , град	20ехр, Град	-,	20Press, 1 рад	
511	56,396		—	—	
031	56,587			56,561	0,026*
502	56,730	_	—	—	_
421	57,001		—	56,974	0,027*
50-3	57,077			—	
1 3 -1	57,432		—	57,371	0,061*
41-4	57,555	_	—	—	_
215	58,159	_	—	—	
31-5	58,938	_	—	58,843	0,095*
10-6	59,238		—	—	—
422	60,405		—	—	_
132	60,657		—	60,596	0,061*
305	60,724			—	
42-3	61,561	_	—	—	_
40-5	61,785		—	61,822	0,037*
21-6	64,311	_	—	64,280	0,026*
61-1	65,328			65,302	0,026*
423	65,422	_	—	—	
3 3 -2	66,977		—	67,007	0,020*
60-3	67,209		—	—	_
31-6	68,027			68,108	0,080*
61-3	70,186		—	—	_
10-7	70,274		—	70,280	_
43-1	71,176		—	—	_
134	71,209		—	71,274	0,065*
12-6	71,469		—	—	_
700	74,281		—	—	_
620	74,295		—	74,337	0,042*
234	74,488	_	—	—	_
61–4	74,988	_	—	—	
117	75,289		—	75,196	0093*
30-7	75,306	_	—	—	_
13-5	77,140		—	—	_
710	77,143		—	77,223	0,080*
50-6	77,603			—	
140	77,849		—	—	
3 1–7	78,155			78,125	0,030*
71–2	78,265		—	—	_
23-5	79,018	_	—	—	_
604	79,229			79,141	0,088*
622	79,265				
4 3 3	79,985		—	—	
04-2	80,149			80,114	0,015*
240	80,452				
416	80,528			80,541	0,013*
53-2	80,611				
1 0 -8	82,152				
712	82.352			82.345	0.007*

Τ

_ _

____ ____ ____

____ _ _

Τ

Примечание: (*) — отмечены величины $\Delta = \Theta_{calc} - \Theta_{Press}$.

82,458

008

Высокотемпературная кубическая β-фаза при быстром охлаждении образцов или их получении методом неравновесной конденсации (quench condensed) могла наблюдаться при самых низких температурах. В отдельных экспериментах нами наблюдался перегрев низкотемпературной фазы на несколько градусов. Значительным эффектом переохлаждения можно объяснить наблюдавшуюся в работе [2] сдвижку температуры фазового перехода до 70 К и наличие двухфазной области в интервале 40–70 К.

Нейтронографические исследования [2] позволили получить довольно большое количество относительно интенсивных отражений в гораздо более широком по сравнению с рентгеновскими исследованиями интервале углов дифракции вплоть до $2\Theta = 120^{\circ}$. Это дало нам возможность: во-первых, получить, как уже отмечалось, дополнительные свидетельства правильности нашего выбора типа и параметров ячейки при анализе (индицировании) большого массива отражений, вовторых, на базе проведенного индицирования попытаться установить правила погасаний и предложить возможную пространственную группу симметрии для α-C₂F₆. В результате такого анализа мы пришли к выводу, что наиболее вероятной для структуры низкотемпературной фазы тетрафторэтана является группа симметрии $P2_1 / m (C_{2h}^2)$. Отметим, что такая же группа симметрии для низкотемпературной фазы была ранее предложена авторами работы [3] в результате проведенного ими анализа результатов рентгеновских исследований монокристалла C₂F₆ в камере Вайсенберга.

Полученные нами данные о параметрах решетки для α - и β -фаз вблизи T_c свидетельствуют о том, что ориентационный фазовый переход в C₂F₆ сопровождается значительным скачком объема, достигающим 4,01%. Этим, по-видимому, объясняются наблюдавшиеся нами значительные переохлаждения высокотемпературной и, что крайне необычно, перегревы низкотемпературной фаз.

В табл. 2 приведены структурные и физические характеристики молекул и кристаллических фаз этана и галогенозамещенных этана. Видно, что с увеличением массы и момента инерции молекул сильно изменяются термодинамические характеристики (температура, энтальпия, энтропия, скачок объема и др.) в точках плавления и ориентационных фазовых переходов. Все вещества этой группы кристаллизуются в кубическую ОЦК фазу, в которой элементарная ячейка содержит 2 молекулы, ориентированных вдоль пространственных диагоналей. В твердом состоянии в большинстве этих веществ наблюдаются 2 фазовых перехода. Кроме высокотемпературной ОЦК и низкотемпературной моноклинной фаз, обнаружена орторомбическая фаза в метастабильном (С2Н6) [11,28] или в равновесном (C₂Cl₆, C₂Br₆) [17,18] состояниях. Орторомбическая εфаза в этане проявляется в очень узком температурном интервале 0,1 К и только при проходе (α-β)-фазового перехода в режиме нагрева [11]. При последующем охлаждении є-фаза не обнаруживается.

Свойства	Этан С ₂ Н ₆	Гексафторэтан С ₂ F ₆	Гексахлорэтан C ₂ Cl ₆	Гексабромэтан С ₂ Br ₆
Параметры молекулы	В газе [12,22] C-C = 1,532 Å C-H = 1,095 Å C-C-H = 109,5° H-C-H = 102°	B ra3e [19,20] C-C = 1,545 Å C-F = 1,326 Å C-C-F = 109,75° F-C-F = 109,1°	B ra3e [27,31] C-C = 1,564 Å C-Cl = 1,769 Å C-C-Cl = 110°	B rase [31] C-C = 1,532 Å C-Br = 1,949 Å C-C-Br = 119,9 ° Br-C-Br = 79,2 °
	В кристалле [12,13] C-C = 1,532 Å C-H = 1,095 Å C-C-H = 111,5° H-C-H = 107,4 °	В кристалле [2] C–C = 1,62 Å C–F = 1,45 Å C–C–F = 98,2°	В кристалле [18] C-C = 1,578 Å C-Cl = 1,780 Å C-C-Cl = 109,1°	В кристалле [30] C-C = 1,526 Å C-Br = 1,944 Å C-C-Br = 109,6 Br-C-Br = 60,7°
Молекулярный вес, а. е. м.	30,0694	138,01	236,74	503,445
Температура плавле- ния, <i>T_m</i> , К	90,348 [9] 90,37 [10]	173,09 [1]	458 [1]	484 [16]
Теплота плавле– ния, кал/моль	139,01 ± 0,5 [13,14]	642,5 [29]	?	?
Энтропия плавления, $\Delta S_m/R$	0,78 [34]	1,86 [34]	2,77 [34]	_

Таблица 2. Некоторые структурные и физические характеристики веществ группы этана

Свойства	Этан С ₂ Н ₆	Гексафторэтан С ₂ F ₆	Гексахлорэтан C ₂ Cl ₆	Гексабромэтан C ₂ Br ₆
Температуры фазо- вых переходов, К	89,72 β-α (ОЦК моноклин.) [10] 89,83 ε-β (ромбич. ОЦК) [11,14,15] 89,73 α-ε (моноклинромбич.) [14,15]	103,97 β–α (ОЦК моноклин.) [1,3]	344,1 β-α (ОЦК моноклин.) [18,23] 316,6 α-ε (моноклинромбич.) [6,18]	450 β-ε (ОЦК ромбич.) [16] 413-420 ε-α (ромбичмоноклин.?) [17]
Теплоты переходов, кал/моль	α - β : 538 [14] α - ϵ : 21,5 ± 2,4 [14]	899,3 [29]	?	1300 [16]
Энтропия перехода, $\Delta S_t / R$	3,065 [34]	4,32 [33,34]	2,87 [33,34]	1,45 [33,34]
Вращательный барьер, ккал/моль	3,03 [25]	4,35 [16] 3,8 [24]	10,8 [16]	_
Скачок объема на переходе, △V/V=%	7,1 α–β (моноклин.–ОЦК) [11] 0,5 α–ε (моноклин.–ромбич.) [11]	4,01 α-β (моноклинОЦК) [настоящая работа]	?	?
Тип решетки, группа симметрии фаз	 β-фаза [12,13] кубическая ОЦК, <i>Im3m</i> α-фаза [12,13] моно- клинная P2₁ / m (C²_{2h}) ε-фаза [11,28] ромбическая (метастабильная) 	β-фаза кубическая ОЦК, <i>Im3m</i> [2] α-фаза моноклинная <i>P2</i> ₁ / <i>m</i> (<i>C</i> ² _{2h}) [на- стоящая работа]	 β-фаза [18] кубическая ОЦК, <i>Im3m</i> α-фаза [18] моноклинная ? ε-фаза [18] ромбич., <i>Pnma</i> (D¹⁶_{2h}) 	 β-фаза [16] кубическая ОЦК, <i>Im3m</i> ε-фаза [17] ромбич. [30] <i>Pnma</i> (D¹⁶_{2h}) or <i>Pn2</i>₁a (C⁹_{2v})
Параметры решетки фаз, Å	ОЦК a = 5,304 [12,13] a = 5,3244 [11] ромбич. (89,8 K) a = 4,289 b = 5,660 c = 5,865 [11]; моноклинная a = 4,261 Å, b = 5,620 Å, c = 5,844 Å, $\beta = 90,55^{\circ}$ (84 K) [11];	ОЦК a = 6,141, 110 K [2] a = 6,093, 105 K [4] a = 6,092 Å (настоя- щая работа, 105 K) моноклинная $a = 9,3b = 5,1c = 4,6\beta = 153,7^{\circ}[3]a = 8,972b = 4,955c = 9,394\beta = 95,07^{\circ} [настоя-щая работа, 6 K]$	ОЦК <i>a</i> = 7,50 [18] Моноклинная или триклинная [32] ромбич. (294 К) <i>a</i> = 11,568 <i>b</i> = 10,198 <i>c</i> = 6,409 [18]	ОЦК, 458 К a = 7,80 [16] ромбич., 295 К a = 11,95 b = 10,72 c = 6,72 [16,17] a = 12,043 b = 10,674 c = 6,705 [30]
Плотность, р, г/см ³	0,669 (89,75 K) [11] 0,719 (85 K) 0,713 (77 K) [4]	2,06, 83 К [3] 2,027, 105 К [4] 1,975, 110 К [2] 1,85, 172,6 К [7,8] 2,018, 104,5 К [на- стоящая работа]	1,863 [18] 2,165 (140 K) [18]	3,52 (458 K) [16] 3,823; 3,88 [30]

В гексабромэтане орторомбическая фаза является стабильной в широком интервале температур. Более того, низкотемпературная моноклинная фаза структурными методами не обнаружена, но есть свидетельства оптических наблюдений [17] о существовании второго фазового перехода в области 140–147 К. Скорее всего это переход в моноклинную фазу, который проявляется непостоянно в связи с вероятным переохлаждением ромбической фазы.

Вызывает удивление последовательность изменения симметрии кристаллов гексахлорэтана с понижением температуры: ОЦК-моноклинная-ромбическая (табл. 2). Естественным в приведенной последовательности был бы обмен местами двух последних фаз. По крайней мере, нам не известны случаи, когда в простых молекулярных веществах с понижением температуры на низкотемпературном ориентационном переходе происходит повышение симметрии кристаллов.

Представляется также странным отсутствие ромбической фазы и второго фазового перехода в гексафторэтане. Возможно, это связано с тем, что устойчивость и область существования промежуточной фазы заметно меньше, чем в этане.

В рассматриваемом ряду этанов выделяется твердый этан удивительно низкой температурой плавления и предельно узкой 0,5 К областью существования высокотемпературной ОЦК фазы. Как видно из данных табл. 2, ориентационный фазовый переход в этане сопровождается значительными величинами скачка объема и теплоты перехода. В результате при переходе происходит разрушение не только ориентационного порядка, но и сильное ослабление центрального вандер-ваальсового межмолекулярного взаимодействия, что вскоре приводит к плавлению кристалла. Об этом свидетельствует почти в 4 раза меньшая величина энергии и энтальпии плавления относительно соответствующих значений для ориентационного фазового перехода (табл. 2).

Некоторые физические величины, особенно для хлор- и бромэтанов, нам не удалось найти в литературе (в табл. 2 отмечены знаком вопроса), однако это не повлияло на основные выводы, следующие из анализа приведенных характеристик рассматриваемой группы молекулярных веществ.

Выводы

1. В результате проведенных рентгеновских дифрактометрических исследований поликристаллов установлена моноклинная ячейка низкотемпертурной фазы C₂F₆, имеющая при 6 К параметры: a = 8,9725 Å, e = 4,9546 Å, c = 9,3936 Å, $\beta = 95,07$ град., и содержащая 4 молекулы.

2. Показано, что в рамках установленной моноклинной решетки довольно хорошо индицируется полученная ранее при T = 20 К нейтронограмма в работе [2]. На базе совместного анализа рентгеновских и нейтронографических массивов отражений для низкотемпературной фазы C_2F_6 предложена в соответствии с наблюдаемыми посасаниями пространственная группа симметрии $P2_1 / m (C_{2h}^2)$. Последнее согласуется с монокристаллическими данными работы [3].

3. Полученные структурные результаты для C_2F_6 и проведенный совместный анализ этанового ряда (C_2H_6 , C_2F_6 , C_2Cl_6 , C_2Br_6) кристаллов позволяют предположить изоструктурность их высокотемпературной ОЦК и низкотемпературной моноклинной фаз.

4. Установлено, что ориентационный фазовый структурный переход моноклинной решетки в кубическую объемно центрированную сопровождается большим скачком объема $\Delta V/V = 4,01\%$. Последнее приводит при быстром изменении температуры кристаллов к значительным эффектам переохлаждения и перегрева фаз.

Авторы выражают благодарность В.А. Константинову за дискуссию и полезные советы.

- 1. E.L. Pace and J.G. Aston, J. Am. Chem. Soc. 70, 566 (1948).
- B.M. Powell, W. Press, G. Dolling, and V.F. Sears, *Mol. Phys.* 53, 941 (1984).
- 3. A. Lewis and E.L. Pace, J. Chem. Phys. 58, 3661 (1973).
- S.X. Zeng, R.O. Simmons, D.N. Timms, and A.C. Evans, J. Chem. Phys. 110, 1650 (1999).
- 5. P. Gerlach and W. Prandl, *Acta Crystallogr* A44, 128 (1988).
- P. Gerlach, B. Dorner, W. Prandl, and J. Lefebvre, *Acta Crystallogr.* A44, 251 (1988)
- O. Ruff and O. Bretschneider, Z. Anog.Allg. Chem. 210, 173 (1933).
- 8. G.T. Andrews, H. Kiefte, M.J. Clouter, and J. Zuk, J. Chem. Phys. 99, 5430 (1993).
- 9. G.C. Stray and R. Tsumura, J. Chem. Phys. 64, 859 (1976).
- P.L. Gevens and W.D. McCormick, J. Chem. Phys. 67, 1150 (1977).
- Н.А. Клименко, Н.Н. Гальцов, А.И. Прохватилов, ФНТ 34, 1319 (2008) [Low Temp. Phys. 34, 1038 (2008)].
- 12. G. J. H van Nes and A. Vos, *Acta Crystalogr.* **B34**, 1947 (1978).
- 13. J.P. Amoureus, M. Foulon, M. Muller, and M. Bec, *Acta Crystalogr.* B42, 78 (1986).
- 14. F. Pevese, J. Chem. Thermodynamics 10, 369 (1978).
- M.H.M. Schutte, K.O. Prins, and N.J. Trappeniers, *Physica* B153, 7 (1988).
- T. Koide, M. Tsujino, K. Sawada, and T. Oda, *Bul. Chem.* Soc. 47, 2998 (1974).
- G.J. Snaauw and E.H. Wienbenga, *Rec. Transv. Chim.*, *Pays-Bas*, **61**, 253 (1942).
- D. Hohlwein, W. Nagle, and W. Prandl, *Acta Crystalogr.* B35, 2975 (1979).
- R.W. Zoellner, C.D. Latham, J.P. Goss, W.G. Golden, R. Jones, and P.R. Briddon, *J. Fluor. Chem.* **121**, 193 (2003).
- K.L. Galaher, A. Yokozeki, and S.H. Bauer, J. Chem. Phys. 78, 2389 (1974).
- 21. *Термические константы веществ*, В.П. Глушко (ред.), Изд.-во ВИНИТИ, Москва (1970), ч. 1.
- 22. K. Kuchitsu, J. Chem. Phys. 49, 4456 (1968).

- 23. P. Gerlach and W. Prandl, *Acta Crystallogr.* A44, 128 (1988).
- 24. U. Rothlisberger, K. Laasonen, M.L. Klein, and M. Sprik, *J. Chem. Phys.* **104**, 3692 (1996).
- 25. R. Lide, Jr., J. Chem. Phys. 29, 142 (1958).
- 26. J.H. Smith and E.L. Pace, J. Phys. Chem. 73, 2368 (1969).
- Thermodynamic Properties of Individual Substances, L.V. Gurvich, I.V. Veyts, and C.B. Alcock (eds.), Hemisphere Pub. Corp, New York (1991).
- 28. A.W.M. Braam and A. Vos, *Acta Crystallogr.* **B36**, 2688 (1980).
- 29. *Таблицы Физических Величин,* И.К. Кикоин (ред.), Атомиздат, Москва (1976).
- G. Mandel and J. Donohue, *Acta Crystallogr.* B28, 1313 (1972).
- L.J. Sutton, Tables of Interatomic Distances and Configuration in Moleculas and Ions, Special Publ. N18, Chem. Soc., London (1965).
- 32. K. Yardley, Proc. R. Soc. London A118, 449 (1928).
- В.А. Константинов, В.П. Ревякин, В.В. Саган, ΦΗΤ 33, 1378 (2007) [Low Temp. Phys. 33, 1378 (2007)].
- Н. Парсонидж, Л. Стейвли, Беспорядок в кристаллах, Мир, Москва (1982).

Structure of low-temperature phase of C₂F₆

N.A. Klymenko, N.N. Galtsov, and A.I. Prokhvatilov

The x-ray investigations of polycrystalline C₂F₆ are carried out in the temperature range 6-140 K. It is found that the C₂F₆ has a monoclinic structure with the lattice parameters a = 8,9725 Å, b = 4,9546 Å, $c = 9,393_6$ Å, $\beta = 95,07$ deg at 6 K. The unit cell consists of 4 molecules. The complex analysis of the x-ray and the previously obtained neutron data is performed and a symmetry space group $P2_1 / m(C_{2h}^2)$ is proposed for the C₂F₆ low temperature phase. It is shown that the orientational structure phase transition from the monoclinic lattice to bcc one is accompanied by a significant volume jump $\Delta V/V = 4.01\%$ at 103.97 K. This explains the effects of overcooling and overheating of the phases in solid C₂F₆. The detailed comparative analysis of crystal structure and physical properties of solid phases of ethane and its halogen replaced C₂F₆, C₂Cl₆, C₂Br₆ is carried out.

PACS: 61.50.-f Structure of bulk crystals;
61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling;
61.41.+e Polymers, elastomers, and plastics;
61.05.C- X-ray diffraction and scattering.

Keywords: low temperature phase, monoclinic structure, C₂F₆, x-ray investigations.