
Fizika Nizkikh Temperatur, 2008, v. 34, No. 3, p. 273–277

Thermal conductivity of a quantum spin-1/2

antiferromagnetic chain with magnetic impurities

A.A. Zvyagin

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

47 Lenin Ave., Kharkov 61103, Ukraine

E-mail: zvyagin@ilt.kharkov.ua

Leibniz Institut für Festkörper- und Werkstoffforschung Dresden e.V. Postfach: 270116, D-01171 Dresden, Germany

Received October 15, 2007

We present an exact theory that describes how magnetic impurities change the behavior of the thermal

conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic im-

purities and a large concentration of impurities with similar values of the couplings to the host chain (a weak

disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope

of that behavior becomes smaller, comparing to the homogeneous case. The strong disorder in the distribu-

tion of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity,

compared to the linear in T dependence of the homogeneous chain and the chain with a weak disorder. Re-

cent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin sys-

tems manifest qualitative agreement with our results.

PACS: 75.10.Jm Quantized spin models;
71.10–w Theories and models of many-electron systems;
72.10.Di Scattering by phonons, magnons, and other nonlocalized excitations (including Kondo
effect);
72.15.Eb Electrical and thermal conduction in crystalline metals and alloys.
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Quasi-one-dimensional quantum spin systems have at-

tracted much attention of researchers in recent years.

There are several reasons for that growth of interest. First,

during the last decade many real compounds with the

properties of quasi-one-dimensional quantum spin chains

were synthesized and studied experimentally. On the

other hand, namely quantum spin chains provide physi-

cists with the rare opportunity to compare the experimen-

tal observations with exact theoretical results, since many

exact results have been obtained for one-dimensional

quantum spin chains. And, last but not least, one-dimen-

sional spin models are actively used in many modern ap-

plications, like in the theory of nano-structures,

mesoscopic devices, and, even in the theory of quantum

computations.

One of the main models that is frequently considered

by physicists, is the Heisenberg spin-1/2 chain with

antiferromagnetic interactions, solved exactly by Bethe

in 1931 [1]. Since that time many results have been ob-

tained for the model; for recent review see, e.g., Ref. 2.

However, in most cases theories were developed for ho-

mogeneous spin chains, despite the fact that in nature one

more frequently encounters inhomogeneous situations,

i.e., real spin chains contain defects, for instance, mag-

netic impurities. Impurities in quantum systems can dras-

tically change the behavior of the system, especially in

low-dimensional cases. For example, it is well known that

in the one-dimensional case impurities produce localiza-

tion of wave functions, changing the behavior from me-

tallic to insulating. This is why the study of models with

impurities, especially of systems with strong correlations

between particles, is one of the most important and diffi-

cult tasks of the modern theoretical physics. The study of

the thermal conductivity in systems of weakly coupled

quantum spin chains has become popular in recent years,

because the thermal conductivity can be a strong experi-

mental instrument to investigate magnetic properties of

materials.
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In this paper we study theoretically how magnetic im-

purities can affect the thermal conductivity in quantum

spin chains. For our purpose we choose an integrable spin

chain, because in such chains one can introduce any num-

ber of magnetic impurities, and because for that case one

can obtain exact results. Earlier studies of integrable spin

chains with magnetic impurities manifested a good agree-

ment of theoretical results with experimental data for

quasi-one-dimensional inhomogeneous compounds.

Therefore, we expect that the calculated thermal conduc-

tivity for the integrable model will reveal properties, ge-

neric for inhomogeneous quantum spin chains.

We investigate the thermal conductivity of the

integrable spin-1/2 antiferromagnetic quantum chain

with spin-1/2 magnetic impurities. The Hamiltonian of

the system has the form [2,3]: � � �� �h imp , where the

host part is �h j j jH� � �, 1, with H j j j j, � ��1 1S S (the

host exchange constant J is set to unity). The impurity

part of the Hamiltonian has the special form, necessary

for exact integrability of the model. Suppose the concen-

tration of impurities is such that impurities are not nearest

neighbors. Then for the impurity situated between sites m

and m�1of the host the integrable Hamiltonian reads

�imp imp imp imp� � ��J H Hm m(( ), , 1

� �� �� �2
1 1H i H Hm m m m, , ,[ , ] )imp imp , (1)

where J imp � �1 12/ ( )� , and [., .] denotes the commutator.

The lattice Hamiltonian Eq. (1) describes the impurity

spin coupled to the host with the strength J imp ,

parametrized by the constant �. One can see that the limit

�� 0 corresponds to the simple inclusion of an additional

site coupled with the bulk interaction to the system. On

the other hand, for �� � one obtains an impurity spin to-

tally decoupled from the host. The Hamiltonian also con-

tains additional terms which renormalize the coupling be-

tween the neighboring sites of the host, and three-spin

terms. However, it has been shown [2,3] that in the long-

wave limit such a lattice form of the impurity Hamiltonian

yields the well-known form of the contact impurity-host

interaction, similar to the one of, e.g., the Kondo problem

of a magnetic impurity in a metal. The contact impurity

coupling in that limit is also determined by the same con-

stant �. The advantage of the consideration of the in-

tegrable Hamiltonian � is obvious: One can independ-

ently incorporate any number of magnetic impurities into

the host chain. Each impurity is characterized by its own

coupling to the host, i.e., by own � j . Finally, we like to

note that all considered impurities are elastic scatterers,

i.e., each excitation only changes its phase when scatter-

ing off an impurity, but is not reflected. However, the

same property holds for the standard Kondo impurity in a

free electron host. Equally important to mention is that we

study a lattice model, hence all two-particle scattering

processes, in particular from one Fermi point to the other

(backscattering), are taken into account in the model.

To find the thermodynamic characteristics of our

one-dimensional quantum spin Hamiltonian at finite tem-

perature we use the so-called «quantum transfer matrix»

approach, see, e.g., [3,4]. Let R u
i i

i i
� 	

 
 �1 ( ) be the standard

R-matrix of the Heisenberg spin-1/2 chain [4]. Indices � i

and 	 i denote states of the spin at site i, and 
 denotes

states in the auxiliary space. The «standard» transfer ma-

trices (row-to-row from the viewpoint of statistical 2D

problem) ��
	 ( )u have the form of the trace over the auxil-

iary space of the product of R-matrices

� � ��
	

� 	

 





( ,{ } ) ( , )u R ui
L

i

L

i
i i

i i
�

�

� ���1

1

1 , (2)

where L is the length of the quantum chain and � i are the

inhomogeneity parameters, which are shifts of the spec-

tral parameter. The R-matrices satisfy the Yang–Baxter

equations, hence the transfer matrices with different spec-

tral parameters commute. Conservation laws of the

integrable model can be constructed as derivatives of the

logarithm of the transfer matrix as

A
u

un

n

u� 

�
�
�

�
�

�

�
� �const ln ( )|� 0. (3)

The Hamiltonian of the model corresponds (up to a nones-

sential constant term) to the n � 2 case with const �1. One

can introduce R-matrices of different type, related to the

initial one by an anticlockwise and clockwise rotation

R u R u

R u R u

�	

�

�

�	

�	

�


�
	�

( ) ( ) ,

~
( ) ( ) .

�

� (4)

The transfer matrix � �( ,{ } )u i
L
�1 can be constructed in a

way similar to the case of �. Then we substitute

u J NT� � / (J �1), where N is the Trotter number. We

find

[ ( ) ( )] / ( / )/� �u u T NN 2 1� � �exp ( )� � . (5)

Hence, the partition function of the quantum 1D system is

identical to the partition function of an inhomogeneous

classical vertex model with alternating rows on a square

lattice of size L N� ,

Z u u
N

N�
��

lim [ ( ) ( )] /Tr � � 2 . (6)

The interactions on the 2D lattice are four-spin inter-

actions with coupling parameters depending on ( )NT �1

and interaction parameters � j where j is the number of

the column to which the considered vertex of the lattice

belongs. The corresponding column-to-column transfer

matrices are referred to as «quantum transfer matrices»
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(where an external magnetic field h is included by means

of twisted boundary conditions)

� � �
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In general all «quantum transfer matrices» corresponding

to the L many columns are different. However, all these

operators can be proven to commute pairwise. Therefore,

the free energy per lattice site of our system can be calcu-

lated from just the largest eigenvalues of the «quantum

transfer matrices» (corresponding to only one eigenstate).

The partition function of the model is determined by

the following nonlinear integral equation for the «energy

density» functions a, a, A a� �1 and A a� �1 in relation

to the spectral parameter u:

[ ( ) ln ( ) ( ) ln ( )]� � � � � � �k u A k u i i A dv v v v v� �

� � �ln ( )
cosh

a u
T u

h

T

Fv

2
, (8)

with vF � � / 2 being the Fermi velocity of low-energy ex-

citations of the chain (spinons) (in what follows we con-

sider the case h � 0), with infinitesimally small �, and the

kernel function being defined as

k x d
i x

( )
cosh ( )

( | | )

� �
� �1

2

2

�
�

��

�� �e
. (9)

The equation for a follows from Eq. (8) with the formal

changes h h� � , i i� � , a a� and vice versa.

In the linear response theory the Kubo formulas [5]

yield the thermal conductivity � relating the thermal cur-

rent to the temperature gradient �T as � E T� �� , where

� � � ��( ) ( )

/

� � � � ��
�

� �
1

0 0

1

T
dt d t ii t

E E T

T

e � � , (10)

and brackets denote thermal average. It was pointed out

[6,7] that for the homogeneous quantum spin chain, i.e.,

in the limit � j � 0, the operator of the thermal current is

equal to the operator of the third conservation current.

Following the logic of Refs. 6, 7, we denote the operator

of the thermal current, �J E , for the integrable model of a

spin chain with magnetic impurities (i.e., for possible

nonzero � j ) as A3 (up to a nonessential constant term)

with const � i [7]. Then, by construction, the operator of

the thermal current for the integrable model with mag-

netic impurities commutes with the Hamiltonian. It is

easy to check that such a definition of the thermal current

respects the continuity equation for the considered mo-

del; cf. [7]. Hence, one finds

� �
� �

�( )
( )

|� �
� �

�
� �i

T i

E T�
2

2 0 . (11)

Therefore the real part of the conductivity can be written

as

Re � � �� �( ) ( ) /� � �� E T T2 2. (12)

This means that the thermal conductivity in our integrable

model of the antiferromagnetic quantum spin-1/2 chain

with magnetic impurities is infinite at zero frequency, as

for the homogeneous model, without impurities. Natu-

rally, it is the consequence of the exact integrability of the

model considered, i.e., of the infinite number of conser-

vation laws. To calculate � �� E T
2 for our model we use the

trick, proposed in [7]. We define some modified partition

function

Z T f J E� � �Tr exp [ ( / ) � ]1 � . (13)

Using that partition function one can easily find that

� � �� E T 0, and

� � �
�
�

�

�
��

�

�
�� �� E T f

f
Z2

2

0ln | . (14)

The eigenvalue of the modified partition function per site

 ( )u is given by

ln ( )
( ) ln[ ( ) ( )]

cosh ( )
 u

e u

T

A v A v dv

u v
� �

��0 1

2�
, (15)

where e0 is the ground-state energy (defined for the sys-

tem with the partition function Z). The eigenfunction of

the modified partition function of the total chain with im-

purities is

  tot � ��
j

ju( / )�� 2 , (16)

where the product is taken over all the sites (for sites

without impurities we get  ( )u � 0 ). Equations (8) are

easily solved numerically for arbitrary temperatures. For

the spin chain with the disordered ensemble of magnetic

impurities the random distribution of the values � j can be

described by a distribution function P j( )� .

At low energies the behavior of each impurity depends

on the energy scale [2]

T jK F j! �v exp ( | | )� � , (17)

which plays the same role as the Kondo temperature for a

magnetic impurity in a metal. The magnetic impurity be-

haves asymptotically free for T T jK"" , while it is

strongly coupled to the spin chain for T T jK## . In other

words, � j measures the shift off the Kondo resonance

(higher values of | |� j correspond to lower values on the

Kondo scale) of the impurity level with host spin excita-

tions, similar to the standard picture of the Kondo effect
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in a metallic host. It has been shown [8] that the low-en-

ergy thermodynamic characteristics of the considered

quantum spin chain with magnetic impurities are deter-

mined, in fact, by the distribution of those effective Kon-

do temperatures. At low temperatures one can replace the

functions a, a, A and A by the scaling functions, intro-

duced as

a x a x T TjK$ % $ $( ) [ ln ( / )]� (18)

(� being some constant), etc. [3,7]. For those functions

integral equations are transformed in such a way that for

that new set of scaling functions the only asymptotic be-

havior of A $ and A $ enters. We obtain that each site of

the chain contributes to the low-temperature thermal cur-

rent as

� � & �� jE T
jKT T

O T2
3

4

3

�
( ) , (19)

where for sites without impurities one gets T jK F� v . It

means that the contribution from each site to the thermal

conductivity is linear in temperature at low T ,

Re � � �
�

j
jKT T

& ( )
3

. (20)

For a single impurity one has P T T TjK jK K( ) ( )' �� .

Hence, at low temperatures a single magnetic impurity

does not change the linear in T dependence of the thermal

conductivity of the spin chain.

Consider ensembles of magnetic impurities with a

weak disorder (i.e., for ensembles with random distribu-

tions of the impurity-host couplings, for which those cou-

plings, and, hence, their effective Kondo temperatures,

are similar to each other). Let those Kondo temperatures

are close to some TK . Hence, the total thermal conductiv-

ity for integrable spin chains with weakly disordered

magnetic impurities can be estimated as

Re tot� � � �
�

� &� dT P T
T T

jK jK j
K( ) ( )
3

. (21)

This formula implies that for integrable spin systems with

weakly disordered ensembles of magnetic impurities the

thermal conductivity is finite. It is proportional to T at

low temperatures, but the slope is smaller than the one for

the homogeneous integrable chain, because for magnetic

impurities, antiferromagnetically coupled to the chain

(and we consider here only such impurities) the effective

Kondo temperature is smaller than the Fermi veloc-

ity of spinons (vF J� � / 2), i.e., one has TK F' �v

� � � #exp ( ( ) / )� J J J Fimp imp v . Notice that in our mo-

del 0 ( (J Jimp , and the case without impurities corre-

sponds to J Jimp � . Obviously, one should expect a

similar behavior for the thermal conductivity of a spin

chain with a single antiferromagnetic impurity (or with a

small concentration of such impurities).

The situation becomes very different for integrable spin

chains with strongly disordered ensembles of magnetic

impurities. For those ensembles the distribution function

for effective Kondo temperatures is wide. Hence, for a

fixed temperature, for a large fraction of the impurities

their effective Kondo temperatures are lower than the

temperature of the system, and, hence, they remain un-

screened. This effect produces the divergency of the mag-

netic susceptibility and the Sommerfeld coefficient of the

specific heat for such chains [2]. It implies that the con-

sidered spin chain manifests the Griffiths’-phase-like be-

havior [9]. Let us consider the realistic distribution of

Kondo temperatures for magnetic impurities in the spin

chain [2,8,10], which starts from the term

P T G TjK jK( ) ( )! � �) ) 1 (22)

() # 1), valid till some energy scale G for the lowest values

of T jK . This distribution was shown to pertain to real dis-

ordered quantum spin chains [10,11]. Averaging the ther-

mal conductivity with this distribution, we obtain

Re ( )
( )

� � �
�

)

)

)tot '
�

�T

G

2

3 1
. (23)

Hence, for integrable spin chains with ensembles of

strongly disordered magnetic impurities the thermal con-

ductivity is also finite, but it grows with T at low tempera-

tures much faster, than for the homogeneous chain, or for

the chain with weakly disordered magnetic impurities.

We can solve nonlinear integral equations analytically

also at high temperatures, using the asymptotic form of

«energy density» functions a, a, A and A, cf. [7]. At high

temperatures for our integrable chain with magnetic im-

purities the thermal conductivity decays with the temper-

ature as

Re ( ) ( )� � � �'
3

2 2T
. (24)

Obviously, at high temperatures, larger than the coupling

constants, the system behaves as a gas of noninteracting

spins 1/2, and the result does not depend on the parame-

ters of the impurity-host couplings, as must be the case.

Hence, the thermal conductivity of the integrable spin

chain with magnetic impurities, as a function of tempera-

ture, grows with T at low temperatures, manifests a maxi-

mum, and then decays with T , as the homogeneous chain.

The main differences, caused by magnetic impurities, are

present at low temperatures.

In summary, in the framework of the integrable quan-

tum spin model we have calculated the thermal conduc-

tivity for a spin chain with magnetic impurities. Previous

theoretical studies of thermodynamic characteristics for

the model considered [2,8,10] have shown that the model

exhibits generic features of disordered quantum spin sys-
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tems, e.g., the Griffiths’-phase-like behavior, and the re-

sults of those studies well agree with the data of experi-

ments on quasi-one-dimensional antiferromagnetic

quantum spin-1/2 systems with magnetic impurities, see,

e.g., [11,12]. Our investigation has shown that the pres-

ence of magnetic impurities in an integrable quantum

chain does not destroy the most exciting property of an

integrable spin chain — the infinite thermal conductivity

at zero frequency. The �-function dependence of the ther-

mal conductivity, obtained in this work (as well as for

spin chains without impurities), is related to the infinite

number of integrals of motion in the integrable model

considered, which, in turn, is based on the special choise

of the interaction (only elastic scatterings, absence of re-

flections). In a more realistic situation one should, natu-

rally, take into account the finite value of the width of the

frequency dependence of the thermal conductivity, which

is present there because of inelastic processes and reflec-

tions off impurities. However, we expect that our model

reproduces the generic features of the thermal conductiv-

ity of a quantum spin chain with impurities.

Our model permits one to include any number of mag-

netic impurities in the spin chain. Therefore, it permitted

us to obtain results for small concentration of impurities,

when each impurity behaves as a single one, and for large

concentration of impurities. The important conclusion

from our study is that the presence of magnetic impurities

mostly affects the low-temperature behavior of the zero-

frequency thermal conductivity. Single magnetic impuri-

ties and a large concentration of impurities with similar

values of the couplings to the host chain (a weak disorder)

do not change the linear-in-temperature low-T behavior

of the thermal conductivity, but the slope of that behavior

becomes smaller, compared to the homogeneous case. On

the other hand, the strong disorder in the distribution of

the impurity-host couplings (when the chain manifests

the Griffiths’-phase-like behavior) produces essential

changes in the temperature behavior of the low-T thermal

conductivity, with the growth with temperature becom-

ing more rapid as compared to the linear temperature de-

pendence of the homogeneous chain and the chain with a

weak disorder. We believe that such a behavior of the

thermal conductivity for integrable quantum spin chains

with impurities has generic features. Similar situation

was recently observed in quasi-one-dimensional compo-

unds Sr Ca Cu O14 24 41�x x [13], Sr Ca CuO1 2�x x [14], and

Sr Cu Zn O14 24 41�x x [15], where the introduction of Ca or

Zn impurities reduced the slopes of the low-temperature

linear-in-T behavior of the magnetic thermal conductiv-

ity. It is possible that ions of Zn and Ca, introduced in

those compounds, produce local changes in the spin-spin

antiferromagnetic coupling between Cu ions. Hence, the

situation can be modelled by the magnetic spin-1/2 chain

with impurities. Then experiment [15] has revealed that

for systems with doped Zn the low-temperature thermal

conductivity is linear in temperature, as in the undoped

cases. However, the slopes of the linear temperature

dependence of the thermal conductivity really became

smaller with the doping impurities, which qualitatively

agree with our theory. The results of our theory can

be also applied, e.g., to quasi-one-dimensional antifer-

romagnetic systems with magnetic impurities, like

(Sr,Ca,La) 14Cu 24O 41, BaCu2(Si 1�xGe x)2O7 [12], or or-

ganic materials with the properties of inhomogeneous

quantum spin chains, see, e.g., [11].
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