Ультразвуковые исследования эффекта Яна–Теллера в кристалле ZnSe:Fe²⁺

В.В. Гудков^{1,2,3}, А.Т. Лончаков³, И.В. Жевстовских³, В.И. Соколов³, В.Т. Суриков⁴

¹Уральский государственный технический университет, ул. Мира, 19, г. Екатеринбург, 620002, Россия

² Российский государственный профессионально-педагогический университет ул. Машиностроителей, 11, г. Екатеринбург, 620012, Россия

³Институт физики металлов Уральского отделения Российской академии наук ул. Софьи Ковалевской, 18, г. Екатеринбург, 620041, Россия E-mail: gudkov@imp.uran.ru

⁴Институт химии твердого тела Уральского отделения Российской академии наук ул. Первомайская, 91, г. Екатеринбург, 620041, Россия

Статья поступила в редакцию 21 июля 2008 г.

В кристалле ZnSe:Fe²⁺ с концентрацией примеси железа $n = 2,2 \cdot 10^{19}$ см⁻³ исследованы температурные зависимости поглощения и скорости поперечных ультразвуковых волн, распространяющихся в направлении [110], в интервале температур 1,4–100 К на частоте 53 МГц. Обнаружены пик поглощения при температуре 7,3 К и уменьшение фазовой скорости медленной поперечной моды ниже 40 К, в то время как для быстрой моды такие особенности не наблюдались. Эти аномалии интерпретированы как проявление эффекта Яна–Теллера. Смягчение модуля ($C_{11}-C_{12}$)/2 указывало на то, что локальные искажения в ZnSe:Fe²⁺ являются тетрагональными. В рамках предположения о релаксационной природе максимума поглощения была восстановлена температурная зависимость времени релаксации и получены значения высоты потенциального барьера и вибронной частоты.

У кристалі ZnSe:Fe²⁺ з концентрацією домішки заліза $n = 2,2 \cdot 10^{19}$ см⁻³ досліджено температурні залежності поглинання й швидкості поперечних ультразвукових хвиль, що поширюються в напрямку [110], в інтервалі температур 1,4–100 К на частоті 53 МГц. Виявлено пік поглинання при температурі 7,3 К і зменшення фазової швидкості повільної поперечної моди нижче 40 К, у той час як для швидкої моди таких особливостей не спостерігалося. Ці аномалії інтерпетовано як прояв ефекту Яна–Теллера. Зм'якшення модуля ($C_{11}-C_{12}$)/2 вказує на те, що локальні спотворення в ZnSe:Fe²⁺ є тетрагональними. У рамках припущення про релаксаційну природу максимуму поглинання було відновлено температурну залежність часу релаксації й отримано значення висоти потенційного бар'єра й вібронної частоти.

PACS: 43.35.+d Ультразвук, квантовая акустика и физические эффекты звука;

61.72.иј III-V и II-VI полупроводники;

62.20.D- Переход твердое тело-жидкость;

64.70.К- Переход твердое тело-твердое тело.

Ключевые слова: полупроводник, модули упругости, поглощение ультразвука, примесь.

Введение

Ультразвуковые исследования кристаллов ZnSe:Ni²⁺ [1], ZnSe:Cr²⁺ [2], ZnTe:Ni²⁺ [3], ZnSe:V²⁺

и ZnSe:Mn²⁺[4], имеющих структуру цинковой обманки, показали, что наличие в кристалле 3d-примеси замещения, обладающей орбитально вырожденными состояниями, приводит к смягчению одного из симметрийных упругих модулей C, а именно $C_s = (C_{11} - C_{11})$ $-C_{12})/2$ или C_{44} , и к существованию низкотемпературного максимума поглощения α ультразвуковой волны той поляризации, фазовая скорость которой определяется смягчающимся модулем. Обнаруженные аномалии на зависимостях C(T) и $\alpha(T)$ в этих кристаллах интерпретированы как проявление эффекта Яна-Теллера. Теоретическое описание этого эффекта можно найти в работе [5]. При этом вокруг примеси, имеющей октаэдрическое или тетраэдрическое окружение, возникают локальные искажения решетки, понижающие энергию кристалла и снимающие вырождение электронных состояний. В некоторых соединениях переходных металлов эти искажения приводят к существованию фазовых переходов. В исследованных нами разбавленных полупроводниках наблюдается лишь тенденция к таким фазовым переходам, которая проявляется в смягчении какого-либо из упругих модулей. При этом аномалии на температурных зависимостях комплексного модуля $C_{44}(T)$, определяющего скорость быстрой поперечной моды, указывают на тригональный тип локальных ян-теллеровских искажений решетки, а аномалии модуля С, связанного с медленной поперечной модой, — на тетрагональный тип искажений. В большинстве исследованных нами ранее кристаллов [1-4] выявлены тригональные локальные искажения, и только в кристалле ZnSe:Cr²⁺ искажения были тетрагональными. Однако величина поглощения в области максимума оказалась настолько велика, что не удалость провести измерения на медленной поперечной моде. В связи с этим представлялось интересным исследовать кристалл ZnSe:Fe²⁺, в котором основное состояние иона Fe^{2+} — ${}^{5}E(e^{3}t^{3})$ [6], и следует ожидать тетрагональных локальных искажений.

Эксперимент

Монокристалл ZnSe:Fe²⁺ выращен в Институте физики твердого тела РАН методом Бриджмена из расплава в условиях избыточного давления инертного газа [7]. Концентрация примеси железа, определенная методом масс-спектроскопии (Spectromass 2000) с индуктивно связанной плазмой, составляла $2,2 \cdot 10^{19}$ см⁻³.

Температурные измерения поглощения и скорости поперечных ультразвуковых волн выполнены на установке, работающей по принципу высокочастотного моста, обеспечивающей точность измерения изменения поглощения не менее 0,02 дБ и скорости порядка 10^{-6} . Ультразвуковые радиоимпульсы длительностью 0,7 мкс распространялись вдоль направления [110]. В этом направлении образец имел длину 4,71 мм. Поперечные ультразвуковые волны возбуждались и регистрировались пьезопреобразователями из ниобата

Рис. 1. Температурные зависимости упругих модулей в кристалле ZnSe:Fe²⁺: светлые кружки относятся к модулю C_s , темные — к модулю C_{44} ; $\Delta C = C(T) - C(T_0)$, $T_0 = 90$ К.

лития, имеющими резонансную частоту приблизительно 53 МГц.

На рис. 1 представлены результаты измерений динамических (т.е. частотно-зависимых) упругих модулей C_s и C_{44} . Видно, что ниже 40 К модуль C_s показывает значительное смягчение, в то время как C_{44} таких изменений не обнаруживает. Поглощение обеих мод возрастает с повышением температуры, при этом медленная мода имеет максимум при T = 7,3 К (рис. 2). Обнаруженные аномалии на температурных зависимостях C(T) и $\alpha(T)$ связаны с наличием малой примеси железа, так как проведенные ранее исследования на чистом кристалле селенида цинка [8] таких особенностей не выявили.

Рис. 2. Температурная зависимость поглощения ультразвука для медленной поперечной волны, распространяющейся в ZnSe:Fe²⁺ вдоль оси [110] на частоте 53 МГц. $\Delta \alpha = \alpha(T) - \alpha(T_0), T_0 = 1,4$ К.

Обсуждение

Интерпретация обнаруженных в кристалле ZnSe:Fe²⁺ низкотемпературного максимума поглощения и смягчения упругого модуля, связанного с медленной поперечной модой, основана на том, что мы имеем дело с проявлением эффекта Яна–Теллера. В рамках этого предположения смягчение модуля C_s указывает на то, что локальные искажения решетки в кристалле ZnSe:Fe²⁺ являются тетрагональными. Эта информация важна, поскольку вид локальных искажений, связанный с определенным типом вибронных мод, не всегда выявляется при исследовании эффекта Яна–Теллера традиционными методами, такими как оптическое поглощение, люминесценция.

Наблюдаемый максимум поглощения опишем в рамках предположения о его релаксационной природе. Тогда вклад релаксационного процесса в полное поглощение ультразвука можно записать в виде (см., например, [9])

$$\alpha_r = \frac{1}{2} k_0 \frac{C^U - C^R}{C_0} \frac{\omega \tau}{1 + \omega^2 \tau^2}, \qquad (1)$$

здесь ω — круговая частота ультразвуковой волны; $k_0 = \omega / v_0, v_0$ — фазовая скорость при некоторой температуре $T_0; C_0 = \rho v_0^2$ — динамический модуль упругости, связанный с рассматриваемой модой; ρ плотность материала; C^U и C^R — соответственно нерелаксированный и релаксированный модули упругости; τ — время релаксации. Следующее предположение связано с зависимостью $(C^U - C^R) / C_0$ от температуры. На основе рассмотрения конкретных механизмов поглощения [9] можно сделать вывод о том, что эта зависимость сводится к обратной от температуры. Поэтому заменим $(C^U - C^R) / C_0$ на $E / \kappa T$, где E — константа размерности энергии, а к — постоянная Больцмана. Таким образом, уравнение (1) примет вид

$$\alpha_r = \frac{1}{2} k_0 \frac{E}{\kappa T} \frac{\omega \tau}{1 + \omega^2 \tau^2}.$$
 (2)

Если T > 10 К, то выражение в правой части уравнения (2) имеет максимум при $\omega \tau \approx 1$ и, определив величину пика поглощения (α_m) и его положение по температуре (T_m), можно получить

$$E = \frac{4\alpha_m \kappa T_m}{k_0} \,. \tag{3}$$

Подставляя выражение для *E* в уравнение (2) и решив его относительно времени релаксации, получим

$$\tau = \frac{1}{\omega} \left(\frac{\alpha_m T_m}{\alpha T} \pm \sqrt{\left(\frac{\alpha_m T_m}{\alpha T}\right)^2 - 1} \right).$$
(4)

Рис. 3. Температурные зависимости поглощения медленной поперечной моды, распространяющейся вдоль оси [110] (O), и функции $f(T) = \Delta \alpha T$ (•). $\Delta \alpha = \alpha(T) - \alpha(T_0)$, $T_0 = 1,4$ K.

Подобный подход к определению $\tau(T)$ был применен при обработке данных, полученных для кристалла Al₂O₃:Ni³⁺, пик поглощения ультразвука в котором наблюдался при $T \approx 20$ К [10]. Если пик поглощения расположен при T < 10 К, как в кристалле ZnSe:Fe²⁺, то необходимо учитывать влияние фактора 1/*T* на положение максимума поглощения. В этом случае условие $\omega \tau = 1$ будет соответствовать $T = T_1$, при которой наблюдается максимум функции $f(T) = \alpha_r(T) \cdot T$. Вводя обозначение $\alpha_1 = \alpha_r(T_1)$, можно показать, что

$$\tau = \frac{1}{\omega} \left(\frac{\alpha_1 T_1}{\alpha T} \pm \sqrt{\left(\frac{\alpha_1 T_1}{\alpha T}\right)^2 - 1} \right).$$
(5)

Корректные с физической точки зрения решения обеспечиваются знаком «+» перед квадратным корнем при $T < T_1$ и знаком «-» при $T > T_1$. Далее будем считать, что при низких температурах вклад других механизмов, кроме релаксационного, в суммарное поглощение является постоянным и $\alpha_r = \alpha(T) - \alpha(T_0) \equiv \Delta \alpha$.

На рис. 3 показаны зависимости $\Delta\alpha(T)$ и $\Delta\alpha(T)T$. Видно, что учет фактора 1/*T* приводит к поправке в определении условия $\omega \tau = 1$, равной 0,7 К ($T_1 = 8$ К, а $T_m = 7,3$ К). Результат обработки экспериментальных данных с помощью уравнения (5) показан на рис. 4. Изменение наклона кривой $\tau(T)$ можно интерпретировать как смену механизма релаксации. При низких температурах время релаксации определяется квантовым туннелированием через потенциальный барьер V_0 , а при высоких температурах — термической активацией, описываемой выражением [10]

$$\tau^{-1} = 2\nu_0 \exp(-V_0 / \kappa T), \qquad (6)$$

Puc. 4. Время релаксации в кристалле ZnSe:Fe²⁺ как функция обратной температуры.

где v₀ — вибронная частота. Подгонка выражения (6) к зависимости $\tau(T)$, показанной на рис. 4, дает следующие значения: $V_0 = 24 \text{ см}^{-1}$ и v₀ = 10^{10} Гц.

Заключение

В результате ультразвуковых исследований кристалла ZnSe:Fe²⁺ на частоте 53 МГц обнаружен пик релаксационного поглощения при температуре 7,3 К, обусловленный эффектом Яна–Теллера. Восстановлена температурная зависимость времени релаксации, моделирование которой позволило определить величину потенциального барьера $V_0 = 24 \text{ см}^{-1}$ и вибронную частоту $v_0 = 10^{10}$ Гц.

При понижении температуры ниже 40 К упругий модуль C_s , определяющий фазовую скорость медленной поперечной моды, обнаружил значительное смягчение, в то время как для модуля C_{44} такого смягчения не наблюдалось. Это свидетельствует о тетрагональных искажениях решетки кристалла ZnSe:Fe²⁺ вблизи примеси железа.

Работа выполнена по плану РАН (тема № г.р. 01.2.006 13395).

- V.V. Gudkov, A.T. Lonchakov, V.I. Sokolov, I.V. Zhevstovskikh, and N.B. Gruzdev, *Phys. Status Solidi* (b) 242, R30 (2005).
- V.V. Gudkov, A.T. Lonchakov, V.I. Sokolov, and I.V. Zhevstovskikh, *Phys. Rev.* B73, 035213 (2006).
- 3. V.V. Gudkov, A.T. Lonchakov, V.I. Sokolov, and I.V. Zhevstovskikh, 13th International Conference on II-VI

Compounds, Handbook & Abstract, September 10-14, Jeju, Korea (2007), p. 77.

- V.V. Gudkov, A.T. Lonchakov, V.I. Sokolov, I.V. Zhevstovskikh, and V.T. Surikov, *Phys. Rev.* B77, 155210 (2008).
- 5. I.B. Bersuker, *The Jahn–Teller Effect in Solid State, Cambridge University Press*, Cambridge (2006).
- 6. K.A. Kikoin and V.N. Flerov, in: *Transition Metal Impurities in Semiconductor: Electronic Structure and Physical Properties*, Singapore, New Jersey, London, Hong Kong, World Scientific (1994), p. 163.
- 7. М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников, *Изв. АН СССР, Неорганические материалы* **22**, 39 (1986).
- V.V. Gudkov, A.T. Lonchakov, A.V. Tkach, I.V. Zhevstovskikh, V.I. Sokolov, and N.B. Gruzdev, *J. Electron. Mater.* 33, 815 (2004).
- 9. M. Pomerants, Proc. IEEE 53, 1438 (1965).
- M.D. Sturge, *The Jahn–Teller Effect in Solids*, in: F. Seitz et al. (eds.), *Solid State Physics*, Vol. 20, New York, London: Academic Press (1967).

Ultrasonic investigation of the Jahn–Teller effect in ZnSe:Fe²⁺ crystal

V.V. Gudkov, A.T. Lonchakov, I.V. Zhevstovskikh, V.I. Sokolov, and V.T. Surikov

Temperature dependences of absorption and phase velocity of transverse ultrasonic waves propagating along the [110] axis were investigated in the ZnSe:Fe²⁺ crystal (with dopant concentration $n = 2.2 \cdot 10^{19}$ cm⁻³) at the frequency 53 MHz in the interval of 1.4–100 K. A peak of absorption at 7.3 K and a decrease of phase velocity below 40 K were observed for a slow transverse mode while the fast mode did not display such anomalies. These anomalies were interpreted as a manifestation of the Jahn–Teller effect. The local distortions in ZnSe:Fe²⁺ have a tetragonal character. Within the assumption that the absorption peak has a relaxation origin, the temperature dependence of relaxation time was reconstructed and the potential barrier and the vibronic frequency were estimated.

- PACS: 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound;
 61.72.uj III-V and II-VI semiconductors;
 62.20.D- Solid-liquid transitions;
 64.70.K- Solid-solid transitions.
- Keywords: semiconductors, elastic moduli, ultrasonic attenuation, impurity.