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Current research presents a mathematical model of the mechanism of vesicular sound generation, based on the assumption
of significant contribution of the alveolar walls vibration in the generation of noise during the act of respiration. The walls
of the alveoli are presented in the form of membranes, and we show that when the membranes are periodically tensed,
transverse oscillations of the membranes will occur, causing sound vibrations in the parenchyma. The characteristics of

the composite noise signal, which is formed during the simultaneous excitation of a representative ensemble of membranes
with different geometric and mechanical characteristics, are determined. Based on the analysis of the signal, its shape,
spectrum and fractal properties is found to be close enough to the shape, the spectrum and the fractal properties of the
real vesicular breath sound.
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Представлено математичну модель для механiзму генерацiї везикулярних звукiв дихання. В основу моделi покла-

дено припущення про суттєвий внесок у загальний рiвень звукiв складових, що пов’язанi з коливаннями стiнок
альвеол у процесi дихання. Стiнки алвеол у легенях моделюються як пружнi мембрани. Показано, що при перiоди-
чнiй змiнi натягу в мембранi виникають поперечнi коливання, якi i є джерелом звуку в паренхiмi. Запропоновано
оцiнку характеристик композитного звукового сигналу, що формується за рахунок суперпозицiї випромiнювання
ансамблю мембран рiзної геометрiї та з рiзними механiчними властивостями. Аналiз характеристик змодельованого

сигналу, таких як форма, спектр, фрактальна структура, дає достатньо пiдстав для висновку про адекватне моде-
лювання реальних везикулярних звукiв дихання.

КЛЮЧОВI СЛОВА: математична модель, альвеоли, везикулярнi звуки, мембрани, фрактальна модель сигналу,
спектр сингулярностi, паренхiма

Представлена математическая модедь для механизма генерации везикулярных звуков дыхания. В основу модели
положено предположение о существенном вкладе в общий уровень звуков составляющих, которые связаны с ко-
лебаниями стенок альвеол в процессе дыхания. Стенки альвеол в легких моделируются как упругие мембраны.
Показано, что при периодическом изменении натяжения возникают поперечные колебания, которые и являются
источником звука в паренхиме. Предложена оценка характеристик композитного сигнала, который формируется за

счет суперпозиции излучения ансамбля мембран различной геометрии и с различными механическими свойствами.
Анализ характеристик модельного сигнала, таких как форма, спектр, фрактальная структура, дает достаточные
основания для вывода об адекватном моделировании реальных везикулярных звуков.

КЛЮЧЕВЫЕ СЛОВА: математическая модель, альвеолы, везикулярные звуки, мембраны, фрактальная структура
сигнала, спектр сингулярности, паренхима

INTRODUCTION

Research in [1], which is based on the use of
traditional and original methods of recording and
processing of vesicular and tracheal breath sounds
in healthy people, including their fractal analysis, fi-
nds the nature of vesicular and tracheal noises to
be different. It is shown that vesicular sound is li-
kely to be generated as a result of periodic stretching
of parenchyma during respiration, whereas tracheal
noise, as already well-known, is generated due to
pressure pulsationson the inner surface of the trachea
due to unsteady air flow in the glottis. However,
the question about the mechanism of the energy

transformation, stored in the lung parenchyma due
to its deformation, into the sound energy continues
to be controversial.

At the same time, back in 1961, prominent Sovi-
et clinician A.A. Kovalevsky [2] suggested that the
deformation of the parenchyma in the act of respi-
ration should cause fluctuations in the alveolar walls,
and these oscillations in turn excite the sound vibrati-
ons in the lung parenchyma. Later, another promi-
nent clinician A.Y. Gubergrits [3] fully agreed with
Kovalevsky’s assumptions. The authors of the article
"Breath sounds” in the Large Medical Encyclopaedia
[4] also believe that the vesicular sound generated
in the alveoli themselves mainly due to alveolar
wall oscillations, resulting from elastic tension of the
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alveoli when they are tensed during inspiration and
when the strain is relieved during expiration. We are
also impressed with this assumption, and thus the
purpose of this paper is to show, at least in theory,
that the proposed by clinicians mechanism of vesi-
cular breath sound generation in the lungs is quite
believable.

1. THEORETICAL MODEL

First of all, let us recall some of the physical
and geometric characteristics of the parenchyma.
Parenchyma is the biological tissue of the lungs,
having mainly a honeycomb structure [5] (in the
first approximation resembling foam). It is these
cells which are randomly oriented air-filled irregular
polyhedrons with the maximum size of the order of
L ≈ 300 · 10−6m that are called alveoli. The amount
alveoli in human lungs is approximately 600 million.
Alveolar walls are quite thin (about h ≈ (6...10) ·
10−6m) and contain tiny blood vessels (capillaries).
The density of the walls of the biological tissue is
close to the density of water, i.e. ρ ≈ 103kg / m3.
The surface of the alveolar walls is wetted with a thin
layer of liquid which tends to flatten alveoli as a result
of surface tension. However, the layer of bio cells li-
ning the wall surface excretes a particular substance,
surfactant, which reduces the surface tension of the
liquid and thus ensures stability of the alveolar shape
[5].

Thus, the alveolar walls, in the absence of respirati-
on, have some initial tension, which, however, cannot
disturb the shape of the alveoli. During inhalation,
parenchyma increases in volume due to workings of
the intercostals and the diaphragm muscles, which
increase the volume of the thorax. Naturally, the
volume of the alveoli increases due to stretching of
their walls. It is understood that during exhalation,
this process is reversed. With this in mind, it is in
the process of respiration, as stated in [2–4], that peri-
odic stretching of the walls transforms into transverse
vibrations of the alveolar walls, that in turn excite
acoustic oscillations recorded on the surface of the
chest as noise vesicular breathing.

We now show that the described mechanism of
transformation of periodic deformation of the alveolar
wall stretching into their transverse vibrations is
possible. To do this, we consider a simple two-
dimensional physical model that can illustrate the
mechanism that leads to the excitation of transverse
vibrations of the alveolar walls under their peri-
odic extension. Since h << L, then it is perfectly
acceptable to use a rectangular membrane, fixed on a

contour (Fig. 1), as the simplest model of an alveolar
wall.

Рис. 1. Fixed contour membrane at time t = 0

Suppose there are a constant (time-independent)
membrane tension F0 and a small, compared with
the dimensions of the membrane, initial transverse
deviation of the centre of the membrane A(0) at ti-
me t = 0. We now apply periodic tension F (t) to the
membrane (which will simulate the tension resulti-
ng in periodic stretching of an alveolar wall during
respiration) and would like to see if this leads to the
transverse vibrations of the membrane.

To solve this problem, we use a well-known di-
fferential equation of membrane oscillations [6],

∂2w (x, y, t)

∂t2
= c2 (t)

[

∂2w (x, y, t)

∂x2
+

∂2w (x, y, t)

∂y2

]

,

(1)
where w(x, y, t) is the transverse deflection of the
membrane from the equilibrium position, c2 (t) =
[F0 + F (t)] /ρ̄; c(t) is the velocity of propagation of
perturbations in the membrane, ρ̄ = ρh is the surface
density of the membrane’s bio tissue.

Given the above assumptions, we can write the
boundary conditions as follows:

w (x, y, t) = 0; 0 ≤ x ≤ Lx, y = 0, y = Ly;

w (x, y, t) = 0; 0 ≤ y ≤ Ly ; x = 0, x = Lx. (2)

We shall focus on the case when the membrane
oscillates only in its first mode, when there are no
sections on the surface of the membrane oscillating
in antiphase. Then, taking into account (2), we get

w (x, y, t) = A (t) sin

(

πx

Lx

)

sin

(

πx

Ly

)

. (3)

Substituting (2) into equation (1) we obtain the
equation for the amplitude of the oscillations A(t).
Assuming for simplicity that Lx = Ly = L, we have

d2A (t)

dt2
+ 2

(π

L

)2 F0 + F (t)

ρ̄
A (t) = 0; (4)
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x = L/2; y = L/2.

In order to proceed with solving equation (3), let
us define the initial conditions as

A (0) = 0.1L;
dA (0)

dt
= 0 (5)

Here the value of the initial deviation A(0) is
chosen taking into account the inequality A(0) << L.
Now we need to set the value of the constant tension
of the membraneF0. Unfortunately, unlike the linear
dimensions of the alveolar walls and their density,
there is no specific information about the magnitude
of tensionF0that we could find in the literature avai-
lable to us. Therefore, in order to estimate it, even
roughly, we used the equation relating the first Ei-
gen frequency f1 of the square membrane with its
geometric and mechanical characteristics [6]:

f1 =
1√
2L

√

F0

ρ̄
, (6)

from where
F0 = 2f2

1 L2ρ̄. (7)

We know from experimental data [1-4,7-9] that the
main energy of vesicular sound lies approximately in
the 50 Hz to 250 Hz range. Assuming, for example, an
average frequency of f1 = 100 Hz and using the above
characteristics of the alveolar walls as well as formula
(6), we can easily demonstrate that the tension F0can
be of the order of ∼ 2 · 10−5 N / m.

Next we need to set a variable tension F (t) of
the membrane. For simplicity, we choose a periodic
function

F (t) =
F̄

2

(

1 + sin
(

2πf̃t − π/2 + ϕ
))

, (8)

which will model the tension impacting an alveolar
wall during respiration. Here fixed frequency f̃ =
0.345 Hz (period T̃ = 1/f̃ is thus 2.9 s) approximately
corresponds to the real frequency of respiration, ϕ is
the initial phase and F̄ is the amplitude. Note that
function F (t) does not go negative for any value of t.

We now need to set specific values for parameters
F0, ρ̄, L and ϕ. It is apparent that if we assign some
specific numbers to these parameters, we can simulate
the mechanism of oscillation excitation only in one
alveolar on one frequency. In reality, as we know from
[2–4], walls of multiple alveoli vibrate simultaneously.
These alveoli have different shapes, sizes, initial tensi-
ons and, consequently, different Eigen frequencies. In
addition, the alveolar walls in the parenchyma obvi-
ously cannot oscillate synchronously with the same
phase. Moreover, the distance from different alveoli to

the point where the sound is registered, is different,
which causes a different phase delay. It is precisely
due to the superposition of this multitude of osci-
llations with different frequencies and phases that a
noise signal characteristic to vesicular breathing is
generated.

In order to take this into account, at least to
some extent, we proceed as follows. We assume
that we have some fairly representative ensemble of
membranes. To use some specific numbers, assume
their quantity M to be 250. Each time we compute
a numerical solution of the equation (4), we choose
parameters F0,ρ̄,Land ϕrandomly within the followi-
ng ranges1:
3 · 10−6 ≤ F0 ≤ 60 · 10−6 N/m,
4 · 10−3 ≤ ρ̄ ≤ 16 · 10−3 kg/m2,
2, 5 · 10−4 ≤ L ≤ 3, 5 · 10−4m, 0 ≤ ϕ ≤ π.
Let F̄be 6 · 10−6 N/m. Then the total number of
numerical solutions of the equation (4) will be M =
250(m = 1, 2, 3....M). As a result, we get 250 different
values of amplitudes of the membrane centre deviati-
ons, which we average out and then assume that the
sound pressure developed in the environment (i.e., in
the parenchyma) at some time ti is proportionate to
this average amplitude.

We computed the numerical solution of the di-
fferential equation (4) over the observation time
interval equal to 32 seconds. At a sampling frequency
fd = 2048 Hz the number of partitioning points of
the observation interval was N = 59440. Accordi-
ngly, the set of values ti = i/fd(i = 1, 2, ..., N)
defined the current discrete point of the observati-
on time interval. Thus, the equation (4) was solved
250 time sat each point ti. Thereafter, at each time
interval point tiwe computed average amplitude of
the membrane centre deviation.

Ã(ti) =
1

M

M
∑

m=1

Am(ti). (9)

Finally, let us point to one very important fact. As
shown in [7], the lung parenchyma has the property of
significantly absorbing sound vibrations propagating
there. Moreover, the level of absorption increases as
the frequency of sound oscillations increases. One can
roughly assume that the presence of absorption leads
to the decrease in the level of sound oscillations as
the frequency increases proportionate to ∼ 1/f2. In
order to account for this property of the parenchyma,
the calculated signal Ã(t) was passed through a low

1Though the ranges were selected randomly, but so that, the

first Eigen frequencies of the walls were to be in the range from

∼ 50 to ∼250 Hz. Any other information about real parameters

range of the F0, ρ̄, L and ϕ are absent today.
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frequency filter Φ(f)with a cut-off frequency of about
50 Hz, and a slope of about ∼ 12 dB per octave.
Therefore, the final form of the above simulated signal
can be represented as

Ã(t, f) = Ã(t)Φ(f). (10)

Thus, within the framework of the adopted model,
we obtained the model signal (essentially a time seri-
es), imitating, to some extent, vesicular breath sound,
recorded on the surface of the thorax. In this case,
the signal source is the membranes whose transverse
vibrations are caused solely by their periodic tension.

2. ANALYSIS OF THE NUMERICAL RESULTS

First of all, let us see which frequency range Ei-
gen frequencies of the membranes belong to. As an
example, Fig. 2 shows the values of Eigen frequencies
of the membranes obtained as a result of one random
sampling of its parameters within abovementioned
ranges. As is evident from the figure, the values of Ei-
gen frequencies lie in the ∼40 Hz to ∼270 Hz range.
This range of Eigen frequencies roughly corresponds
to the frequency range where the major portion of
the energy of vesicular sounds is concentrated.

Рис. 2. One of the outcomes of random sampling of the
Eigen frequencies of the membrane

Next, consider the model signal Ã(t, f) obtained
from calculations and simulating vesicular breath
sound. We then compare it with the real signal R(t) of
vesicular sound recorded on the surface of the thorax
of a healthy person at a point slightly below the right
clavicle (see Fig. 3).

As might be expected, the overall shape of the
model signal does not exactly repeat the shape of
the real vesicular sound signal. The model signal
does not show pronounced signal separation into
phases of growth and decayof the membrane tensi-
on force (corresponding to the phases of inhalation

and exhalation, which are more pronounced in the
real vesicular sound signal).

Рис. 3. Ã(t, f) – the model signal; R(t) – the real signal

of the vesicular breath sound; R̃(t) – the real signal
generated by periodically increasing the chest volume, in

the absence of air flow in the bronchial tree (in
accordance with the method proposed in [1])

Now, referring to Fig. 4, it is interesting to compare
spectra of these three signals. As can be seen, the
behavior of all three spectra is virtually identical,
at least in the frequency range from about 60 Hz
to 300 Hz. The model signal outside this frequency
range simply does not exist. The values of the Ei-
gen frequencies of the membranes are limited by the
adopted ranges of the physical parameters of the
alveolar walls see Fig. 2. This fact directly indicates
that the real dispersion of geometric and mechanical
parameters of the alveolar walls is much wider than
the one we adopted for calculations. It is also possi-
ble that during respiration it is not only the alveolar
walls that oscillate, but also the alveolar duct walls
and the walls of small respiratory bronchioles.

Above, we have compared the obtained model si-
gnal and the real signal of the vesicular sound using
their general enough characteristics such as waveform
and spectrum. Now it is important to investigate and
compare the finer structure of these signals, namely,
the existence and nature of the correlated sequence
of alternating members of their time series. The most
expedient approach is to analysis the fractal properti-
es of these signals. As in [1], we conduct the fractal
analysis of signals based on MF-DFA (Multifractal
Detrended Fluctuation Analysis) [10]. Therefore, we
will not provide a detailed description of the algori-
thm for this method, and immediately turn to the
analysis of the results.

We turn to Fig. 5, which shows all spectra of si-
ngularities for all considered signals. As can be seen,
all singularity spectra are rather close to each other.
This result leads to the conclusion that a rather
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representative ensemble of elementary membranes
whose transverse vibrations are caused by their peri-
odic stretching can generate multifractal noise-like si-
gnal sufficiently close to the vesicular sound.

Fig. 5 also shows the three singularity spectra
(curves 1’–3’), which were obtained after randomly
mixing members of series describing the signals under
consideration (curves 1–3). Mixing procedure is a
standard test, which is designed to confirm the
presence or absence of long-range correlations in the
set of values of the time series.

Рис. 4. Spectra of: 1 – the vesicular breath sound signal,
2 – the model signal, 3 – the signal arising due to the
periodic increase in the chest volume in the absence of

air flow in the bronchial tree

The most expedient approach is to analyze the
fractal properties of these signals. As in [1], we
conduct the fractal analysis of signals based on MF-
DFA (Multifractal Detrended Fluctuation Analysis)
[10]. Therefore, we will not provide a detailed descri-
ption of the algorithm for this method, and immedi-
ately turn to the analysis of the results.

As follows directly from Fig. 5, mixing led to the
fact that the multifractal properties of the signal di-
sappeared and the initial series almost turned into
monofractal signals with properties similar to white
noise. Recall that white noise is a uniform signal wi-
th the value of the index of singularityα = 0, 5. This
suggests significant influence of the original series of
long-range correlations on the multifractal properti-
es.

CONCLUSION

We proposed a model of the alveolar walls in
the form of a membrane. It is shown that with
its periodic tension transverse vibrations arise, whi-
ch generate sound propagating into the environment
(the parenchyma). A complex noise signal, which can
be formed during simultaneous excitation of a suffici-

Рис. 5. Singularity spectra of: 1 – the vesicular sound
signal; 2 – the model signal, 3 – the signal arising due to
the periodic increase in the chest volume in the absence
of air flow in the bronchial tree; 1’– 3’ – respectively for

cases where the terms of the series, describing these
signals, are randomly mixed

ently representative ensemble of membranes with di-
fferent geometric and mechanical characteristics, was
modelled based on the solution of the problem of
parametric vibrations of the membrane. Analysis of
such model signal showed that its shape, spectrum
and fractal properties are close enough to the shape,
spectrum and fractal properties of the real vesicular
sound. This result allows us to conclude that that the
vesicular sound mainly occurs due to mechanical vi-
brations of the alveolar walls in their periodic tension
during respiration.
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