УДК 534.1:629.764.7

НЕЛИНЕЙНАЯ АСИМПТОТИЧЕСКАЯ МОДАЛЬНАЯ ТЕОРИЯ РЕЗОНАНСНЫХ КОЛЕБАНИЙ ЖИДКОСТИ В СРЕЗАННЫХ КОНИЧЕСКИХ БАКАХ

И. А. ЛУКОВСКИЙ, А. В. СОЛОДУН, А. Н. ТИМОХА

Институт математики НАН Украины, Киев

Получено 20.09.2011

Рассматриваются нелинейные резонансные колебания идеальной несжимаемой жидкости в жестком баке в форме срезанного кругового конуса при его поступательных колебаниях с частотой, близкой к основной собственной частоте колебаний жидкости. С использованием техники неконформных отображений построена нелинейная модальная асимптотическая теория. Предложен алгоритм определения коэффициентов соответствующей нелинейной модальной системы. С помощью этой системы проанализированы установившиеся резонансные движения жидкости. Проведено сравнение полученных результатов с экспериментальными данными.

Розглядаються нелінійні резонансні коливання ідеальної нестисливої рідини в жорсткому баці у формі зрізаного кругового конуса при його поступальних коливаннях з частотою, близькою до основної власної частоти коливань рідини. З використанням техніки неконформних відображень побудовано нелінійну модальну асимптотичну теорію. Запропоновано алгоритм визначення коефіцієнтів відповідної нелінійної модальної системи. За допомогою цієї системи проаналізовано усталені резонансні рухи рідини. Проведене порівняння одержаних результатів з експериментальними даними.

The paper deals with considering of nonlinear resonant sloshing of an ideal incompressible liquid in a rigid truncated conical tank at its translatory oscillations with a frequency close to the lowest natural sloshing frequency. A nonlinear asymptotic modal theory is derived by the non-conformal mapping technique. An algorithm for finding of the hydrodynamic coefficients of the corresponding nonlinear modal system is proposed. The system is used to describe the steady-state liquid motions. The obtained results are compared with the experimental data.

введение

Среди множества подвижных технических объектов, имеющих в своем составе жидкие грузы, следует особо выделить твердотельные конструкции с коническими резервуарами, частично заполненными жидкостью. При их проектировании возникает целый комплекс проблем, связанных с безопасной эксплуатацией. На первый план здесь выступают проблемы определения частот и форм свободных колебаний жидкости в конических резервуарах, а также сил взаимодействия между стенками бака и жидкостью. Это крайне важно для прогнозирования динамического поведения конструкций при воздействии на них различных возмущающих факторов вибрационного, сейсмического, ветрового и другого происхождения. Подобные проблемы традиционно возникают в авиации, ракетной и космической технике, при создании морского и железнодорожного транспорта. В настоящее время исследования по динамике твердых тел с жидкостью пополнились новыми постановками задач. Прежде всего, они связаны с проектированием новых наземных жидкостнонаполненных объектов типа водонапорных башен, состоящих из цилиндрических резервуаров с коническим дном, нефтехранилищ в виде срезанных

круговых конусов (рис. 1), а также резервуаров с жидкостью, выступающих в качестве динамических демпферов колебаний высотных домов и протяженных мостов.

В математическом отношении упомянутые проблемы достаточно сложны. Первая трудность возникает уже на стадии построения математической модели, пригодной для описания совместного движения механической системы, состоящей из разнородных физических объектов - твердого тела и жидкости. В большинстве практически важных случаев привлекательной формой их представления оказывается система линейных или нелинейных обыкновенных дифференциальных уравнений. На ее основе методами аналитической механики удается наиболее корректно поставить и решить возникающие проблемы устойчивости, а для управляемых объектов – проблемы, связанные с построением автоматов стабилизации. Вторая трудность связана с решением спектральных задач математической физики, порождаемых в теории колебаний ограниченного объема жидкости со свободной границей. При этом формы (моды) колебаний должны удовлетворять ряду специальных требований, связанных из методологией составления уравнений движения системы (особенно для резервуаров сложной формы [3-8]).

Рис. 1. Типичные конические водоналорные баки (сверху) и нефтехимические резервуары на Аляске и в Огайо (внизу)

Указанные проблемы в значительной степени преодолены при рассмотрении задач о взаимодействии твердого тела с жидкостью в линейном приближении [1, 2, 7, 15, 18]. Однако линейной их трактовки в случае функционирования механической системы "тело – жидкость" в экстремальных условиях (при землетрясениях, в условиях резонансных колебаний и т. п.) совершенно недостаточно, так как при этом многие физические процессы не отражаются в математической модели даже качественно. Поэтому здесь основные усилия были в последние годы направлены на создание и исследование нелинейных математических моделей, адекватно описывающих подавляющее большинство реально происходящих физических процессов.

По нашему мнению, для этой цели наиболее подходит модальный метод Майлса – Луковского, базирующийся на вариационном принципе механики, не использующем классический Лагранжиан в виде разности кинетической и потенциальной энергии [4, 21]. Для жидкой среды в качестве Лагранжиана в этом вариационном принципе выступает некоторый определенный интеграл от давления по области, часть границы которой свободна и подлежит определению в процессе исследования. Из него вытекает вариационная задача с естественными граничными условиями. При этом экстремальные значения соответствующего функционала достигаются на решениях нелинейной краевой задачи для потенциала скоростей, сформулированной для движущейся в пространстве ограниченной области со свободной границей. Оба нелинейных граничных условия этой краевой задачи на свободной поверхности, кинетическое и динамическое, следуют из ее вариационной формулировки. Этого нельзя достичь на основе классического вариационного принципа [6, 8, 14, 22].

При применении упомянутого метода в случае резервуара в виде срезанного кругового конуса возникают типичные для областей сложной геометрии трудности. Прежде всего, отсутствуют точные решения основной спектральной задачи этой теории, позволяющие конструктивно задавать потенциал скоростей и форму свободной поверхности (как это традиционно делается в случае цилиндрических резервуаров). Поэтому требуются специальные приемы, гарантирующие, например, выполнение условия непротекания $(\partial \varphi / \partial \nu = 0)$ на всей твердой стенке полости или, по крайней мере, на той ее части, где может оказаться жидкость в процессе конечных деформаций свободной поверхности [3]. В настоящее время это ограничение удалось снять, построив приближенное решение спектральной задачи, точно удовлетворяющее условию непротекания на всей конической поверхности резервуара [7,9,12].

Важен выбор обобщенных координат, характеризующих положение возмущенной свободной поверхности жидкости в окрестности ее невозмущенного состояния. Для рассмотрения нелинейных проблем колебаний жидкости в конических сосудах потребовалось построить специальную неортогональную систему координат, в которой преобразованная область принимает форму кругового цилиндра, а решение соответствующей задачи можно построить в частично разделенном виде [3,7]. Это позволило сформулировать модальный метод с такой же степенью общности, как и в случае резервуара цилиндрической формы [11, 12, 17, 18].

В разделе 1 этой статьи приведена общая постановка задачи, введены основные физические и геометрические величины. В разделе 2 представлена нелинейная семимодовая модальная система (система обыкновенных дифференциальных уравнений второго порядка), описывающая резонансные колебания жидкости в вертикальном срезанном коническом баке при вынужденных колебани-

Рис. 2. Эскиз рассматриваемой модели

ях системы в одной из плоскостей симметрии бака. В широком диапазоне геометрических параметров бака подсчитаны и затабулированы возникающие здесь безразмерные гидродинамические коэффициенты. В разделе 3 исследованы установившиеся режимы движения рассматриваемой механической системы и их устойчивость в случае гармонических горизонтальных колебаний бака с малой амплитудой. Наконец, в разделе 4 рассмотрен вопрос о силовом взаимодействии жидкости со стенками резервуара. Для подсчета гидродинамических сил использованы известные формулы Луковского [5,6].

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим поступательное движение твердого тела, которое содержит полость (бак) в форме обратного вертикального срезанного кругового конуса с углом полураствора θ_0 , рис. 2. Бак частично заполнен идеальной несжимаемой жидкостью с плотностью ρ и совершает поступательные перемещения со скоростью $\vec{v}_0(t)$. Движение жидкости рассматривается в связанной с баком системе координат Oxyz. Начало координат размещено в условной вершине конуса O. Ось Ox направлена вдоль оси конуса в направлении, противоположном вектору ускорения сил земного тяготения \vec{g} в статическом (неподвижном) положении бака.

Распределение абсолютной скорости жидкости можно представить в виде $\vec{v} = \nabla \Phi(x, y, z, t)$, где потенциал скоростей $\Phi(x, y, z, t)$ – функция координат и времени в неинерциальной (связанной с баком) системе. Согласно [6], $\Phi(x, y, z, t)$ и мгновенное положение свободной поверхности, которое

Рис. 3. Исходная и трансформированная область меридионального сечения

можно задать неявно в виде $\zeta(x, y, z, t) = 0$, являются решением следующей краевой задачи со свободной границей $\Sigma(t)$:

$$\nabla^2 \Phi = 0, \qquad \vec{r} \in Q(t), \tag{1a}$$

$$\frac{\partial \Phi}{\partial \nu} = \vec{v}_0 \cdot \vec{\nu}, \qquad \vec{r} \in S(t), \tag{1b}$$

$$\frac{\partial \Phi}{\partial \nu} = \vec{v}_0 \cdot \vec{\nu} - \frac{\zeta_t}{\left|\nabla \zeta\right|^2}, \qquad \vec{r} \in \Sigma(t), \qquad (1c)$$

$$\frac{\partial \Phi}{\partial t} + \frac{1}{2} |\nabla \Phi|^2 - \nabla \Phi \cdot \vec{v}_0 + U = 0, \qquad \vec{r} \in \Sigma(t),$$
(1d)

$$\int_{Q(t)} dQ = \text{const.}$$
(1e)

Здесь $\vec{\nu}$ – орт внешней нормали к поверхности области Q(t), занятой жидкостью; $S(t) = S_1(t) + S_2$ – смоченная боковая стенка и дно соответственно; $\vec{r} = (x, y, z)$ – радиус-вектор точек объема жидкости Q(t) в связанной с баком системе координат; U – потенциал сил земного тяготения, заданный в неинерциальной системе координат Oxyz. Интегральное соотношение (1е) выражает условие сохранение объема жидкости и является необходимым условием разрешимости задачи Неймана (1a) - (1c).

Используя интеграл Лагранжа–Коши (уравнение Бернулли), который принимает следующий вид в связанной системе координат *Oxyz* [6,8,19]:

$$\frac{\partial \Phi}{\partial t} + \frac{1}{2} |\nabla \Phi|^2 - \nabla \Phi \cdot \vec{v_0} + gx + \frac{p - p_0}{\rho} = 0 \qquad (2)$$

 $(p_0$ – постоянное атмосферное давление газа над свободной поверхностью жидкости), можно найти поле давления в объеме Q(t).

Эволюционная задача со свободной границей (1а) – (1d) требует подчинения ее решения начальным условиям, которые состоят в задании начального профиля свободной поверхности $\Sigma(t_0)$ и распределения скоростей на $\Sigma(t)$ в начальный момент времени $t=t_0$:

$$\begin{split} \zeta(x,y,z,t_0) &= \zeta_0(x,y,z),\\ \left. \frac{\partial \Phi}{\partial \nu} \right|_{\Sigma(t_0)} &= \Phi_0(x,y,z), \end{split}$$

где $\zeta_0(x,y,z)$ и $\Phi_0(x,y,z)$ – известные функции.

Для определения и анализа установившихся решений в случае гармонического возбуждения бака может быть использовано условие периодичности по времени для функций ζ и Ф.

2. НЕЛИНЕЙНЫЕ АСИМПТОТИЧЕСКИЕ МОДАЛЬНЫЕ УРАВНЕНИЯ

2.1. Техника неконформных отображений

В рамках декартовой параметризации невозможно дать подходящее представление свободной поверхности. Поэтому, следуя работам [8,17], с помощью соотношений

$$x = x_1, \quad y = x_1 x_2 \cos x_3, \quad z = x_1 x_2 \sin x_3$$
 (3)

введем в рассмотрение криволинейную систему координат $Ox_1x_2x_3$ – такую, что переменная $x_3 = \eta$ представляет собой полярный угол в плоскости Oyz.

Как показано на рис. 3, преобразование (3) преобразует меридиональное сечение G невозмущенного объема жидкости в меридиональное сечение G^* – прямоугольник в плоскости Ox_1x_2 , имеющий стороны $h=x_{10}-x_0$ и $x_{20}=\operatorname{tg} \theta_0$. Таким образом, усеченный конический объем невозмущенного объема жидкости трансформируется в новой системе в параллелепипед

$$x_0 \le x_1 \le x_{10}, \qquad 0 \le x_2 \le x_{20}, \qquad \le x_3 \le 2\pi.$$

2.2. Собственные частоты и формы

Прежде всего, следует построить приближенное аналитическое решение спектральной краевой задачи о собственных формах и частотах колебаний жидкости:

$$\Delta \varphi = 0, \ \vec{r} \in Q_0,$$

$$\frac{\partial \varphi}{\partial \nu} = 0, \qquad \vec{r} \in S_0,$$

$$\frac{\partial \varphi}{\partial \nu} = \varkappa \varphi, \qquad \vec{r} \in \Sigma_0,$$

$$\int_{\Sigma_0} \frac{\partial \varphi}{\partial \nu} dS = 0.$$
(4)

Нелинейные модальные методы требуют, чтобы такое решение задачи (4) точно удовлетворяло уравнению Лапласа и условию Неймана на стенках сосуда. Кроме того, оно должно быть аналитически продолжаемым за пределы области через невозмущенную свободную границу, причем такое продолжение должно удовлетворять условия непротекания на стенках бака выше Σ_0 . Поскольку мы используем преобразование (3), то приближенное решение задачи необходимо определять в криволинейной системе координат $Ox_1x_2x_3$.

Представим собственную функцию $\varphi(x_1,x_2,x_3)$ в виде

$$\varphi(x_1, x_2, x_3) = \psi_m(x_1, x_2) \left\{ \begin{array}{c} \sin mx_3\\ \cos mx_3 \end{array} \right\}, \qquad (5)$$
$$m = 0, 1, 2, \dots$$

и будем следовать выкладкам работы [17]. Можно убедиться, что трансформированная задача (4) допускает разделение переменных (x_1, x_2) и x_3 , порождая следующее *m*-параметрическое семейство спектральных задач относительно функции $\psi_m(x_1, x_2)$ в двумерной области G^* :

$$p\frac{\partial^{2}\psi_{m}}{\partial x_{1}^{2}} + 2q\frac{\partial^{2}\psi_{m}}{\partial x_{1}\partial x_{2}} + s\frac{\partial^{2}\psi_{m}}{\partial x_{2}^{2}} + d\frac{\partial\psi_{m}}{\partial x_{2}} - m^{2}c\psi_{m} = 0 \quad \mathbf{B} \quad G^{*},$$
(6a)

$$s\frac{\partial\psi_m}{\partial x_2} + q\frac{\partial\psi_m}{\partial x_1} = 0$$
 на L_1^* , (6b)

$$p\frac{\partial\psi_m}{\partial x_1} + q\frac{\partial\psi_m}{\partial x_2} = \varkappa_m p\psi_m \quad \text{Ha} \quad L_0^*, \qquad (6c)$$

$$p\frac{\partial\psi_m}{\partial x_1} + q\frac{\partial\psi_m}{\partial x_2} = 0 \quad \text{Ha} \quad L_2^*, \tag{6d}$$

$$|\psi_m(x_1,0)| < \infty, \qquad m = 0, 1, 2, \dots,$$
 (6e)

$$\int_{0}^{x_{20}} \psi_0 x_2 dx_2 = 0, \tag{6f}$$

где $G^* = \{(x_1, x_2): x_0 \le x_1 \le x_{10}, 0 \le x_2 \le x_{20}\};$ $p = x_1^2 x_2; q = -x_1 x_2^2; s = x_2(x_2^2 + 1); d = 1 + 2x_2^2;$ $c = 1/x_2$, а L_0^*, L_1^* и L_2^* – соответствующие части границы области G^* (см. рис. 3).

Можно также показать, что решение спектральной задачи (6) совпадает с экстремальными точками функционала

$$\mathcal{J}(\psi_m) = \frac{1}{\int p\psi_m^2 dx_2} \times \int_{G^*} \left[p \left(\frac{\partial \psi_m}{\partial x_1} \right)^2 + 2q \frac{\partial \psi_m}{\partial x_1} \frac{\partial \psi_m}{\partial x_2} + s \left(\frac{\partial \psi_m}{\partial x_2} \right)^2 + \frac{m^2}{x_2} \psi_m^2 \right] dx_1 dx_2$$
(7)

для допустимых достаточно гладких функций ψ_m , удовлетворяющих условию (6e).

С использованием описанной в [7] аналитической процедуры в работе [18] продемонстрирована возможность построения собственных функций задачи (6). При этом использован вариационный метод, основанный на функционале (7) и набор базисных функций $\{w_k^{(m)}, \bar{w}_k^{(m)}\}$, которые аналитически удовлетворяют уравнению (6а) в плоскости Ox_1x_2 (кроме начала координат) и краевому условию (6b) для $x_1 > 0$.

Таким образом, удается представить в $Ox_1x_2x_3$ собственные моды в следующей форме:

,

$$\psi_{mn}(x_1, x_2, x_3) = \left[\sum_{k=1}^{q_1} a_k^{(m)} w_k^{(m)} + \sum_{l=1}^{q_2} \bar{a}_k^{(m)} \bar{w}_k^{(m)}\right] \times \times \left\{ \begin{array}{c} \sin mx_3 \\ \cos mx_3 \end{array} \right\}.$$
(8)

Собственные формы на невозмущенной свободной поверхности определяются по формулам

$$f_{mn}(x_2, x_3) = \frac{\sigma_{mn}}{g} \psi_{mn}(x_{10}, x_2, x_3), \qquad (9)$$

где собственные частоты $\sigma_{mn} = \sqrt{g \varkappa_{mn}/r_0}$. Функции $w_k^{(m)}(x_1, x_2)$ и $\bar{w}_k^{(m)}(x_1, x_2)$ представляются в нормированном виде:

$$w_k^{(m)}(x_1, x_2) = N_k^{(m)} x_1^{\nu_{mk}} T_{\nu_{mk}}^{(m)}(x_2),$$

$$\bar{w}_k^{(m)}(x_1, x_2) = \bar{N}_k^{(m)} x_1^{-1-\nu_{mk}} \bar{T}_{\nu_{mk}}^{(m)}(x_2),$$
(10)

где $T_{\nu_{mk}}^{(m)}(x_2)$ и $\bar{T}_{\nu_{mk}}^{(m)}(x_2)$ – функции, базирующиеся на присоединенных функциях Лежандра первого

рода $P_{\nu}^{(m)}(\mu)$ (см. [7]); $N_k^{(m)}$
и $\bar{N}_k^{(m)}$ – нормирующие множители, которые выбираются из условия

$$\|w_k^{(m)}\|_{L_2^*+L_0^*}^2 = \|\bar{w}_k^{(m)}\|_{L_2^*+L_0^*}^2 = N_k^{(m)} = \bar{N}_k^{(m)} = 1$$

2.3. Общая нелинейная модальная система Луковского

В криволинейной системе координат уравнение свободной поверхности допускает вид $x_1 = f^*(x_2, x_3, t)$. Перенумеровывая функции (9), функцию $f^*(x_2, x_3, t)$ можно записать в виде обобщенного ряда Фурье:

$$f^*(x_2, x_3, t) = x_{10} + \beta_0(t) + \sum_{i=1}^{\infty} \beta_i(t) f_i(x_2, x_3).$$
(11)

Здесь $\beta_i(t)$ – коэффициенты Фурье, зависящие от времени и имеющие смысл обобщенных координат задачи (они характеризуют отклонение свободной поверхности жидкости от невозмущенного положения).

Особенность нецилиндрических баков состоит в том, что собственные функции (9) не гарантируют выполнение нелинейного условия сохранения объема (1е). Поэтому в модальном представлении (11) должна содержаться функция $\beta_0(t)$, которая параметрически зависит от β_i , $i \ge 1$ и выбирается из необходимости удовлетворения условия (1е). Процедура определения $\beta_0(t)$ для исследуемого случая описана в приложении.

В криволинейной системе координат потенциал скоростей допускает модальное решение

$$\Phi^*(x_1, x_2, x_3, t) = \vec{v}_0 \cdot \vec{r} + \sum_{j=1}^{\infty} R_j(t) \phi_j(x_1, x_2, x_3),$$
(12)

где ϕ_j – собственные функции (8), перенумерованные относительно одного индекса *j*. В этом модальном решении $R_j(t)$ – обобщенные координаты, которые характеризуют возмущение потенциала скорости.

В работах [6, 12] показано, что использование вариационного принципа Бейтмена – Люка в криволинейной системе координат позволяет получить модальную систему нелинейных обыкновенных дифференциальных уравнений относительно $\beta_i(t)$ и $R_j(t)$:

$$\frac{dA_n}{dt} - \sum_k A_{nk} R_k = 0,$$

$$n = 1, 2, \dots,$$
(13a)

$$\sum_{n} \dot{R}_{n} \frac{\partial A_{n}}{\partial \beta_{i}} + \frac{1}{2} \sum_{nk} \frac{\partial A_{nk}}{\partial \beta_{i}} R_{n} R_{k} +$$

$$+ (\dot{v}_{01} - g_{1}) \frac{\partial l_{1}}{\partial \beta_{i}} + (\dot{v}_{02} - g_{2}) \frac{\partial l_{2}}{\partial \beta_{i}} +$$

$$+ (\dot{v}_{03} - g_{3}) \frac{\partial l_{3}}{\partial \beta_{i}} = 0,$$

$$i = 1, 2, \dots$$
(13b)

Злесь

$$A_{n} = \rho \int_{D} \int_{0}^{f^{*}} \phi_{n} J^{*} dx^{1} dx_{2} dx_{3};$$

$$A_{nk} = \rho \int_{D} \int_{0}^{f^{*}} (\nabla^{*} \phi_{n}^{*}, \nabla^{*} \phi_{k}^{*}) J^{*} dx^{1} dx_{2} dx_{3};$$
(14)

$$\frac{\partial l_1}{\partial \beta_i} = \rho \int_{\Sigma_0^*} f_i^2 J_{x_1=f^*}^* dx_2 dx_3;$$

$$\frac{\partial l_2}{\partial \beta_i} = \rho \int_{\Sigma_0^*} y(x_1, x_2, x_3) f_i J_{x_1=f^*}^* dx_2 dx_3;$$

$$\frac{\partial l_3}{\partial \beta_i} = \rho \int_{\Sigma_*^*} z(x_1, x_2, x_3) f_i J_{x_1=f^*}^* dx_2 dx_3;$$
(15)

 $J^* = x_1^2 x_2 - Якобиан перехода от системы <math>Oxyz$ к системе $Ox_1 x_2 x_3$.

2.4. Конечномерная система нелинейных асимптотических модальных уравнений

Рассмотрим общие модальные уравнения (13)–(15) при условии, что выполняется асимптотика Моисеева – Нариманова [13] относительно обобщенных координат β_i и R_i . Это позволяет упростить исходную систему и перейти к конечномерным нелинейным модальным уравнениям, которые удерживают лишь те формы, которые дают наибольший вклад в движение жидкости [20].

Рассмотрим колебания бака вблизи первой собственной частоты, и с амплитудой, достаточно малой по отношению к его характерному размеру. Имеются две собственные формы, которые характеризуются первой собственной частотой и отличаются лишь азимутальным поворотом на $\pi/2$. В соответствии с работами Моисеева и Нариманова, в дальнейшем предполагаем, что безразмерные амплитуды указанных собственных форм имеют

порядок $O(\epsilon)$, а безразмерная амплитуда возмущений бака имеет порядок $O(\epsilon^3)$, где $\epsilon \ll 1$. Элементарный анализ, основанный на тригонометрических зависимостях по координате x_3 , показывает, что в представлении (5) осесимметричные собственные формы и собственные формы, соответствующие m=2, характеризуются вторым порядком малости $O(\epsilon^2)$. При этом наиболее энергетически важны первые из каждой такой серии мод второго порядка малости. К формам третьего порядка относятся моды с m=3. Предположим, что наиболее энергетически важными среди них будут две моды с n=1.

В результате этих рассуждений получим семь наиболее важных собственных форм первого, второго и третьего порядка. Они соответствуют обобщенным координатам $\beta_i(t)$ и $R_j(t)$, удерживаемым в следующем переписанном модальном решении (11) и (12):

$$f^{*}(x_{2}, x_{3}, t) = \sum_{i=0}^{3} \left(p_{i}(t) \cos(ix_{3}) + r_{i}(t) \sin(ix_{3}) \right) f_{i}(x_{2}) + \beta_{0}(t) + x_{10},$$
(16)
$$\Phi^{*}(x_{1}, x_{2}, x_{3}, t) = \sum_{i=0}^{3} \left(P_{i}(t) \cos(ix_{3}) + r_{10} \right) f_{i}(x_{2}) + r_{10}(t) + r_{$$

$$\Phi^*(x_1, x_2, x_3, t) = \sum_{j=0} \left(P_j(t) \cos(jx_3) + R_j(t) \sin(jx_3) \right) \psi_{j1}(x_2, x_3).$$

Здесь для удобства введены следующие обозначения:

$$\beta_{0} = p_{0}, \qquad \beta_{1} = r_{1}, \qquad \beta_{2} = p_{1},$$
$$\beta_{3} = r_{2}, \qquad \beta_{4} = p_{2},$$
$$\beta_{5} = r_{3}, \qquad \beta_{6} = p_{3},$$
$$Z_{1} = P_{0}, \qquad Z_{2} = R_{1}, \qquad Z_{3} = P_{1},$$
$$Z_{4} = R_{2}, \qquad Z_{5} = P_{2},$$
$$Z_{6} = R_{3}, \qquad Z_{7} = P_{3}.$$

После подстановки уравнений (16) в общую модальную систему (13) и проведения асимптотической процедуры с удержанием только членов порядка $O(\epsilon^3)$ получаем следующую семимодовую модальную систему, описывающую нелинейные колебания в срезанных конических баках:

$$\begin{split} & L_{0} = \ddot{p}_{0} + \sigma_{0}^{2} p_{0} + \mathbf{d}_{8} (\dot{p}_{1}^{2} + \dot{r}_{1}^{2}) + \\ & + \mathbf{d}_{10} (\ddot{p}_{1} p_{1} + \ddot{r}_{1} r_{1}) + \mathbf{g}_{0} (p_{1}^{2} + r_{1}^{2}) \sigma_{0}^{2}) = 0, \end{split}$$
(17a)

$$L_{1} = \ddot{r}_{1} + \sigma_{1}^{2} r_{1} + \mathbf{d}_{5} (\ddot{r}_{1} p_{0} + \dot{r}_{1} \dot{p}_{0}) + \\ & + \mathbf{d}_{1} r_{1} (\ddot{p}_{1} p_{1} + \ddot{r}_{1} r_{1} + \dot{p}_{1}^{2} + \dot{r}_{1}^{2}) + \\ & + \mathbf{d}_{2} (p_{1} (\ddot{r}_{1} p_{1} - \ddot{p}_{1} r_{1}) + 2\dot{p}_{1} (\dot{r}_{1} p_{1} - \dot{p}_{1} r_{1})) + \\ & + \mathbf{d}_{3} (\ddot{p}_{1} r_{2} - \ddot{r}_{1} p_{2} + \dot{p}_{1} \dot{r}_{2} - \dot{p}_{2} \dot{r}_{1}) + \\ & + \mathbf{d}_{3} (\ddot{p}_{1} r_{2} - \ddot{r}_{1} p_{2} + \dot{p}_{1} \dot{r}_{2} - \dot{p}_{2} \dot{r}_{1}) + \\ & + \mathbf{d}_{4} (\ddot{r}_{2} p_{1} - \ddot{p}_{2} r_{1}) + \mathbf{d}_{6} \ddot{p}_{0} r_{1} + \\ & + \sigma_{1}^{2} (\mathbf{g}_{1} p_{0} r_{1} + \mathbf{g}_{2} (p_{1} r_{2} - p_{2} r_{1}) + \\ & + \mathbf{g}_{3} (p_{1}^{2} + r_{1}^{2}) r_{1}) + \Lambda \dot{v}_{03} = 0, \\ \\ L_{2} = \ddot{p}_{1} + \sigma_{1}^{2} p_{1} + \mathbf{d}_{5} (\ddot{p}_{1} p_{0} + \dot{p}_{1} \dot{p}_{0}) + \\ & + \mathbf{d}_{4} (\ddot{p}_{1} p_{1} + \ddot{r}_{1} r_{1} + \dot{p}_{1}^{2} + \dot{r}_{1}^{2}) + \\ & + \mathbf{d}_{2} (r_{1} (\ddot{p}_{1} r_{1} - \ddot{r}_{1} p_{1}) + 2\dot{r}_{1} (\dot{p}_{1} r_{1} - \dot{r}_{1} p_{1})) + \\ & + \mathbf{d}_{3} (\ddot{p}_{1} p_{2} + \ddot{r}_{1} r_{2} + \dot{p}_{1} \dot{p}_{2} + \dot{r}_{1} \dot{r}_{2}) + \\ & + \mathbf{d}_{4} (\ddot{p}_{2} p_{1} + \ddot{r}_{2} r_{1}) + \mathbf{d}_{6} \ddot{p}_{0} p_{1} + \\ & + \sigma_{1}^{2} (\mathbf{g}_{1} p_{0} p_{1} + \mathbf{g}_{2} (p_{1} p_{2} + r_{1} r_{2}) + \\ & + \mathbf{d}_{3} (p_{1}^{2} + r_{1}^{2}) p_{1}) = 0, \\ \\ L_{4} = \ddot{p}_{2} + \sigma_{2}^{2} p_{2} + \sigma_{2}^{2} \mathbf{g}_{4} (p_{1}^{2} - r_{1}^{2}) + \\ & + \mathbf{d}_{7} (\dot{p}_{1}^{2} - \dot{r}_{1}^{2}) + \mathbf{d}_{9} (\ddot{p}_{1} p_{1} - \ddot{r}_{1}^{2}) + \\ & + \mathbf{d}_{7} (\dot{p}_{1}^{2} - \dot{r}_{1}^{2}) + \mathbf{d}_{9} (\ddot{p}_{1} p_{1} - \ddot{r}_{1}^{2}) + \\ & + \mathbf{d}_{7} (\mathbf{g}_{5} (p_{1} r_{2} + p_{2} r_{1}) + \\ & + \sigma_{3}^{2} (\mathbf{g}_{5} (p_{1} r_{2} + p_{2} r_{1}) + \\ & + \mathbf{d}_{11} (\ddot{r}_{1} (p_{1}^{2} - r_{1}^{2}) + 2\dot{p}_{1} \dot{r}_{1} r_{1}) + \\ & + \mathbf{d}_{12} (r_{1} (\dot{p}_{1}^{2} - r_{1}^{2}) + 2\dot{p}_{1} \dot{r}_{1} p_{1}) + \\ \end{cases}$$

$$+ \mathbf{d}_{13}(\ddot{p}_1 r_2 + \ddot{r}_1 p_2) + \mathbf{d}_{14}(\ddot{p}_2 r_1 + \ddot{r}_2 p_1) = 0,$$

Рис. 4. Зависимость коэффициентов d_i , g_j уравнения L_0 от угла θ_0 (m=0, i=8, 10, j=0)

Рис. 5. Зависимость коэффициентов \mathbf{d}_i , \mathbf{g}_j уравнений L_1 , L_2 от угла θ_0 $(m=1, i=1, \ldots, 6, j=1, 2, 3)$

$$\begin{split} & L_6 \!=\! \ddot{p}_3 \!+\! \sigma_3^2 p_3 \!+\! \mathbf{d}_{15} (\dot{p}_1 \dot{p}_2 \!-\! \dot{r}_1 \dot{r}_2) \!+ \\ & +\! \sigma_3^2 (\mathbf{g}_5 (p_1 p_2 \!-\! r_1 r_2) \!+\! \mathbf{g}_6 p_1 (p_1^2 \!-\! 3r_1^2)) \!+ \\ & +\! \mathbf{d}_{11} (\ddot{p}_1 (p_1^2 \!-\! r_1^2) \!-\! 2\ddot{r}_1 p_1 r_1) \!+ \\ & +\! \mathbf{d}_{12} (p_1 (\dot{p}_1^2 \!-\! \dot{r}_1^2) \!-\! 2\dot{p}_1 \dot{r}_1 r_1) \!+ \\ & +\! \mathbf{d}_{13} (\ddot{p}_1 p_2 \!-\! \ddot{r}_1 r_2) \!+\! \mathbf{d}_{14} (\ddot{p}_2 p_1 \!-\! \ddot{r}_2 r_1) \!=\! 0. \end{split}$$

Детали вывода даны в приложении. Коэффициенты модальной системы (17) задаются выражениями (46).

Громоздкая процедура вывода асимптотической модальной требует особой тщательности в выкладках и сравнения полученных результатов с имеющимися в литературе данными для предельных случаев. В их качестве можно рассматривать вертикальный круговой цилиндр ($\theta_0 \rightarrow 0$) или не-

Рис. 7. Зависимость коэффициентов \mathbf{d}_i , \mathbf{g}_j уравнений L_5 , L_6 от угла θ_0 $(m=3, i=11, \ldots, 15, j=5, 6)$

усеченный конус ($\mathbf{r}_1 \rightarrow 0$. Для последнего уравнения (17а) – (17е) переходят в пятимодовую модальную систему, выведенную в работе [17]. Расчеты также показывают, что соответствующие гидродинамические коэффициенты принимают значения, затабулированные в [17].

На рис. 4–7 даны зависимости нормированных величин коэффициентов d_i и g_j от угла θ_0 . Предельные значения на вертикальной оси соответствуют нулевому углу конусности $\theta_0 = 0$. Они должны совпадать с величинами нормированных гидродинамических коэффициентов для кругового цилиндра, полученными в численноаналитическом виде в [10] с использованием точных решений базисной спектральной краевой задачи в терминах функций Бесселя (они обозначены на рисунках как d_i^* и отложены на вертикальной оси). Из графиков видно, что вычисленные предельные значения коэффициентов для кониче-

ских баков действительно совпадают с результатами Луковского [10].

Заметим, что в уравнениях (17) имеются коэффициенты g_j , которые выражают так называемую геометрическую нелинейность, связанную с невертикальностью стенок и отсутствующие в уравнениях для кругового цилиндрического бака. Графики показывают, что значения g_j стремятся к нулю, когда стремится к нулю угол полураствора конуса.

2.5. Безразмерные гидродинамические коэффициенты

Выбрав в качестве характерного линейного размера радиус свободной поверхности \mathbf{r}_0 , все гидродинамические коэффициенты модальных уравнений можно записать в размерном виде, используя формулы

$$\begin{split} \kappa_{m1}^{\star} &= \mathbf{r}_{0} \kappa_{m1}, \quad (\sigma_{m1}^{\star})^{2} = \mathbf{r}_{0} \sigma_{m1}^{2}, \quad m = 0, \dots, 3, \\ \mathbf{d}_{i}^{\star} &= \begin{cases} \mathbf{r}_{0} \mathbf{d}_{i}, & \text{при} \quad i = 1, 2, 9, 10, \\ \mathbf{r}_{0}^{2} \mathbf{d}_{i}, & \text{при} \quad i = 3, \dots, 8, 11, \dots, 15, \end{cases} \\ \mathbf{g}_{i}^{\star} &= \begin{cases} \mathbf{r}_{0} \mathbf{g}_{i}, & \text{при} \quad i = 0, 1, 2, 4, 5, \\ \mathbf{r}_{0}^{2} \mathbf{g}_{i}, & \text{при} \quad i = 3, 6. \end{cases} \end{split}$$

В табл. 1–3 приведены значения безразмерных гидродинамических коэффициентов μ_m , σ_m , d_i и g_j ($m=0,1,2,3, i=1,\ldots,15, j=0,\ldots,6$) при $q_1=q_2=12$ для трех заданных углов полураствора конических полостей.

3. УСТАНОВИВШИЕСЯ РЕЗОНАНСНЫЕ КОЛЕБАНИЯ ЖИДКОСТИ

3.1. Периодические решения

Рассмотрим вынужденные установившиеся резонансные колебания жидкости при заданном внешнем гармоническом возмущении бака:

$$v_{03} = -H\sigma\cos(\sigma t).$$

Анализ установившихся вынужденных колебаний жидкости связан с отысканием периодических решений системы (17). Представим обобщенные координаты $r_1(t)$ и $p_1(t)$ в виде отрезков ряда Фурье с неопределенными коэффициентами [3,6]:

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

$$r_{1}(t) =$$

$$= \sum_{k=1}^{\infty} (A_{2k-1} \cos k\sigma t + A_{2k} \sin k\sigma t),$$

$$p_{1}(t) =$$

$$= \sum_{k=1}^{\infty} (B_{2k-1} \cos k\sigma t + B_{2k} \sin k\sigma t),$$
(18)

где, в соответствии с выбранной асимптотикой, доминантный вклад дает основная гармоника:

$$r_1(t) = A_1 \cos \sigma t + A_2 \sin \sigma t + o(\epsilon),$$

$$p_1(t) = B_1 \cos \sigma t + B_2 \sin \sigma t + o(\epsilon).$$
(19)

Коэффициенты разложений обобщенных координат $p_0(t)$, $r_2(t)$, $p_2(t)$, $r_3(t)$ и $p_3(t)$ – функции доминантных амплитуд A_1 , A_2 , B_1 и B_2 представлений обобщенных координат $r_1(t)$ и $p_1(t)$. В силу линейности первого и четырех последних уравнений системы (17) относительно $p_0(t)$, $r_2(t)$, $p_2(t)$, $r_3(t)$, $p_3(t)$ для них можно найти явные выражения:

$$p_{0}(t) = -(A_{1}^{2} + A_{2}^{2} + B_{1}^{2} + B_{2}^{2})o_{0}^{(0)} - \frac{1}{2}(A_{1}^{2} - A_{2}^{2} + B_{1}^{2} - B_{2}^{2})o_{0}^{(2)}\cos 2\sigma t - (20a) -(A_{1}A_{2} + B_{1}B_{2})o_{0}^{(2)}\sin 2\sigma t + O(\epsilon^{2});$$

 $\langle \alpha \rangle$

$$r_{2}(t) = -2(A_{1}B_{1} + A_{2}B_{2})o_{2}^{(0)} -$$

$$-(A_{1}B_{1} - A_{2}B_{2})o_{2}^{(2)}\cos 2\sigma t -$$

$$-(A_{1}B_{2} + A_{2}B_{1})o_{2}^{(2)}\sin 2\sigma t + O(\epsilon^{2});$$
(20b)

$$p_{2}(t) = (A_{1}^{2} + A_{2}^{2} - B_{1}^{2} - B_{2}^{2})o_{2}^{(0)} + \frac{1}{2}(A_{1}^{2} - A_{2}^{2} - B_{1}^{2} + B_{2}^{2})o_{2}^{(2)}\cos 2\sigma t + (A_{1}A_{2} - B_{1}B_{2})o_{2}^{(2)}\sin 2\sigma t + O(\epsilon^{2});$$

$$(20c)$$

45

r ₁	μ_0	μ_1	μ_2	μ_3	σ_0	σ_1	σ_2	σ_3							
	$\theta_0 = 30^{\circ}$														
0.0	0.56525	0.65966	0.28056	0.16043	5.76305	3.57717	4.71185	5.58554							
0.1	0.56525	0.65966	0.28056	0.16043	5.76305	3.57717	4.71185	5.58554							
0.2	0.56525	0.65967	0.28056	0.16043	5.76305	3.57714	4.71185	5.58554							
0.3	0.56525	0.65991	0.28056	0.16043	5.76305	3.57670	4.71185	5.58554							
0.4	0.56525	0.66167	0.28057	0.16043	5.76304	3.57345	4.71178	5.58554							
0.5	0.56536	0.66984	0.28076	0.16043	5.76283	3.55848	4.71089	5.58549							
0.6	0.56683	0.69843	0.28232	0.16054	5.75984	3.50735	4.70333	5.58451							
0.7	0.58005	0.78418	0.29180	0.16189	5.73240	3.36515	4.65787	5.57244							
0.8	0.66814	1.03346	0.33860	0.17369	5.54927	3.02679	4.44604	5.46716							
0.9	1.19939	1.93605	0.57636	0.26449	4.64392	2.30658	3.65433	4.77885							
				$\theta_0 = 4$	5°										
0.0	0.48943	0.78540	0.31606	0.17496	5.35814	3.13209	4.16389	4.95715							
0.1	0.48943	0.78542	0.31606	0.17496	5.35814	3.13207	4.16389	4.95715							
0.2	0.48943	0.78597	0.31606	0.17496	5.35814	3.13139	4.16388	4.95715							
0.3	0.48945	0.78971	0.31610	0.17496	5.35811	3.12678	4.16374	4.95715							
0.4	0.48978	0.80375	0.31652	0.17497	5.35752	3.10968	4.16233	4.95704							
0.5	0.49251	0.84281	0.31899	0.17517	5.35256	3.06344	4.15401	4.95578							
0.6	0.50768	0.93635	0.32942	0.17666	5.32476	2.96015	4.11909	4.94620							
0.7	0.57394	1.14905	0.36590	0.18487	5.20605	2.75751	4.00211	4.89322							
0.8	0.83575	1.65940	0.48613	0.22360	4.79903	2.39560	3.67129	4.65960							
0.9	1.95726	3.30702	0.95600	0.42007	3.70339	1.77365	2.86028	3.81735							
				$\theta_0 = 6$	0°										
0.0	0.49908	1.08441	0.41896	0.22673	4.65246	2.57838	3.45161	4.12207							
0.1	0.49908	1.08468	0.41896	0.22673	4.65246	2.57820	3.45160	4.12207							
0.2	0.49910	1.08836	0.41899	0.22673	4.65243	2.57566	3.45155	4.12206							
0.3	0.49941	1.10408	0.41938	0.22674	4.65200	2.56491	3.45078	4.12202							
0.4	0.50176	1.14718	0.42169	0.22689	4.64866	2.53609	3.44623	4.12142							
0.5	0.51316	1.24431	0.43079	0.22798	4.63237	2.47452	3.42836	4.11722							
0.6	0.55643	1.44596	0.45947	0.23327	4.57210	2.35959	3.37345	4.09660							
0.7	0.70643	1.86190	0.54127	0.25447	4.38561	2.16424	3.22978	4.01597							
0.8	1.22954	2.79704	0.77645	0.33492	3.90505	1.85268	2.89929	3.74783							
0.9	3.29627	5.70191	1.61942	0.69100	2.90450	1.35765	2.21177	2.98506							

Табл. 1. Безразмерные гидродинамические коэффициенты μ_m и $\sigma_m~(m\!=\!0,1,2,3)$

$$\begin{aligned} r_{3}(t) &= (A_{1}(A_{1}^{2} + A_{2}^{2} - 3B_{1}^{2} - B_{2}^{2}) - & p_{3}(t) = (B_{1}(3A_{1}^{2} + A_{2}^{2} - B_{1}^{2} - B_{2}^{2}) + \\ &-2A_{2}B_{1}B_{2})o_{3}^{(1)}\cos\sigma t + & +2A_{1}A_{2}B_{2})o_{3}^{(1)}\cos\sigma t + \\ &+ (A_{2}(A_{1}^{2} + A_{2}^{2} - B_{1}^{2} - 3B_{2}^{2}) - & +(B_{2}(A_{1}^{2} + 3A_{2}^{2} - B_{1}^{2} - B_{2}^{2}) + \\ &-2A_{1}B_{1}B_{2})o_{3}^{(1)}\sin\sigma t + & +2A_{1}A_{2}B_{1})o_{3}^{(1)}\sin\sigma t + \\ &+ (A_{1}(A_{1}^{2} - 3A_{2}^{2} - 3B_{1}^{2} + 3B_{2}^{2}) + & +(B_{1}(3A_{1}^{2} - 3A_{2}^{2} - B_{1}^{2} + 3B_{2}^{2}) - \\ &+ 6A_{2}B_{1}B_{2})o_{3}^{(3)}\cos 3\sigma t + & -6A_{1}A_{2}B_{2})o_{3}^{(3)}\cos 3\sigma t + \\ &+ (A_{2}(3A_{1}^{2} - A_{2}^{2} - 3B_{1}^{2} + 3B_{2}^{2}) - & -6A_{1}A_{2}B_{2})o_{3}^{(3)}\sin 3\sigma t + O(\epsilon^{3}); & +6A_{1}A_{2}B_{1})o_{3}^{(3)}\sin 3\sigma t + O(\epsilon^{3}). \end{aligned}$$

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

(20e)

$(i\!=\!1,\ldots,15)$
$\mathbf{d}_{\mathbf{i}}$
коэффициенты
гидродинамические
Безразмерные
5.
Табл.

$\bar{\mathbf{d}}_{15}$		-2.09096	-2.09096	-2.09101	-2.09192	-2.09876	-2.13167	-2.25619	-2.68359	-4.19356	-10.6016		-2.23355	-2.23362	-2.23567	-2.24995	-2.30608	-2.47581	-2.93469	-4.15750	-7.61590	-19.3469		-2.79849	-2.79943	-2.81306	-2.87390	-3.05384	-3.50368	-4.56945	-7.14313	-13.7605	-34.4568
d ₁₄		1.23615	1.23615	1.23615	1.23614	1.23611	1.23569	1.23136	1.19595	0.93805	-0.82751		2.04057	2.04057	2.04060	2.04074	2.04093	2.03846	2.01390	1.86501	1.12771	-2.23436		3.46734	3.46737	3.46769	3.46899	3.47096	3.46383	3.39298	3.02762	1.51931	-4.38058
d ₁₃		2.09172	2.09172	2.09172	2.09170	2.09159	2.09099	2.08732	2.05671	1.79517	-0.28513		3.37971	3.37972	3.38011	3.38278	3.39265	3.41743	3.45531	3.41958	2.77626	-1.21793		5.71520	5.71553	5.72019	5.74002	5.79243	5.89445	6.02487	5.96043	4.64296	-2.53756
d ₁₂		0.04699	0.04699	0.04704	0.04805	0.05562	0.09239	0.23791	0.81412	3.68530	29.0456		-0.10632	-0.10625	-0.10391	-0.08757	-0.02259	0.18536	0.83990	3.17667	13.8202	95.5576		-0.29165	-0.29035	-0.27158	-0.18749	0.07251	0.81501	3.07967	11.02506	45.7406	298.8584
d_{11}		0.59258	0.59258	0.59259	0.59280	0.59435	0.60186	0.63131	0.74553	1.33190	7.69228		1.55725	1.55727	1.55781	1.56154	1.57598	1.61918	1.74066	2.13782	4.13517	24.7245		4.44509	4.44545	4.45069	4.47325	4.53670	4.68879	5.06183	6.23790	12.4192	75.9701
d ₁₀		0.94738	0.94738	0.94738	0.94731	0.94675	0.94403	0.93262	0.88293	0.65623	-0.34231		2.05995	2.05995	2.06000	2.06026	2.06035	2.05421	2.00866	1.80106	1.11954	-0.78501		4.39885	4.39898	4.40077	4.40692	4.41375	4.38788	4.20674	3.55199	1.95742	-1.46562
d9		1.49420	1.49420	1.49420	1.49418	1.49391	1.49183	1.47772	1.39535	0.97647	-1.04805		2.45324	2.45325	2.45356	2.45544	2.46028	2.46209	2.42045	2.17863	1.23471	-2.33431		4.16819	4.16847	4.17223	4.18581	4.21062	4.22256	4.11968	3.59177	1.80870	-4.37143
d ₈	$_{0} = 30^{\circ}$	-0.31082	-0.31083	-0.31085	-0.31139	-0.31538	-0.33393	-0.40016	-0.60774	-1.24051	-3.36192	$_{0} = 45^{\circ}$	-0.11391	-0.11395	-0.11528	-0.12436	-0.15879	-0.25774	-0.50925	-1.11597	-2.49856	-6.11560	$_{0} = 60^{\circ}$	0.21702	0.21638	0.20716	0.16719	0.05273	-0.22627	-0.86477	-2.23318	-4.84466	-11.0530
d7	θ	-0.58151	-0.58151	-0.58155	-0.58224	-0.58734	-0.61114	-0.69595	-0.96010	-1.76572	-4.63566	θ	-0.54021	-0.54026	-0.54183	-0.55256	-0.59303	-0.70771	-0.99201	-1.66804	-3.31352	-8.32834	θ	-0.57367	-0.57440	-0.58489	-0.62980	-0.75461	-1.04391	-1.67133	-3.01657	-6.00810	-14.7245
d ₆		0.81179	0.81179	0.81177	0.81142	0.80879	0.79678	0.75689	0.65310	0.42426	-0.21207		1.28368	1.28365	1.28278	1.27691	1.25551	1.20042	1.08908	0.89962	0.56386	-0.46461		2.02449	2.02407	2.01810	1.99337	1.93052	1.80960	1.61883	1.34767	0.86045	-0.84727
d5		2.15626	2.15626	2.15626	2.15628	2.15641	2.15726	2.16329	2.20527	2.45250	3.74133		2.70932	2.70931	2.70913	2.70797	2.70455	2.70207	2.73038	2.91407	3.64449	6.30983		3.84923	3.84902	3.84621	3.83548	3.81490	3.80583	3.90323	4.38994	5.98019	11.0849
d4		0.63550	0.63550	0.63548	0.63524	0.63347	0.62529	0.59733	0.51923	0.31993	-0.31200		0.98722	0.98720	0.98664	0.98284	0.96887	0.93186	0.85154	0.69375	0.36171	-0.67481		1.61035	1.61008	1.60618	1.58995	1.54777	1.46188	1.30908	1.04415	0.50209	-1.24155
d ₃		1.76564	1.76564	1.76563	1.76556	1.76505	1.76289	1.75731	1.75300	1.79687	2.13607		2.40922	2.40921	2.40905	2.40803	2.40482	2.39944	2.40107	2.44982	2.66483	3.46553		3.66397	3.66388	3.66270	3.65835	3.65031	3.64657	3.68032	3.84219	4.33984	5.88083
d_2		-0.45374	-0.45374	-0.45374	-0.45359	-0.45251	-0.44726	-0.42657	-0.34523	0.04081	3.03007		-0.70638	-0.70638	-0.70615	-0.70453	-0.69789	-0.67499	-0.59601	-0.29957	1.00747	10.2771		-1.49321	-1.49317	-1.49258	-1.48918	-1.47350	-1.40793	-1.15448	-0.19326	3.89469	32.0718
d ₁		-0.31755	-0.31755	-0.31754	-0.31733	-0.31575	-0.30811	-0.27806	-0.16037	0.39082	4.61221		-1.26078	-1.26079	-1.26092	-1.26175	-1.26376	-1.26117	-1.21147	-0.90355	0.74910	13.4906		-3.72048	-3.72104	-3.72901	-3.76109	-3.83539	-3.93956	-3.92603	-3.12845	1.71610	39,8372
r_1		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

r_1	g 0	g 1	g_2	g ₃	g 4	g_5	g 6						
$\theta_0 = 30^{\circ}$													
0.0	0.21045	0.93612	0.82877	-0.37319	0.56156	1.12590	0.07939						
0.1	0.21045	0.93612	0.82877	-0.37319	0.56156	1.12590	0.07939						
0.2	0.21045	0.93611	0.82877	-0.37319	0.56157	1.12590	0.07939						
0.3	0.21045	0.93598	0.82875	-0.37324	0.56161	1.12594	0.07940						
0.4	0.21040	0.93499	0.82856	-0.37365	0.56195	1.12622	0.07946						
0.5	0.21019	0.93055	0.82777	-0.37549	0.56344	1.12758	0.07972						
0.6	0.20938	0.91653	0.82581	-0.38164	0.56803	1.13259	0.08058						
0.7	0.20646	0.88630	0.82431	-0.39756	0.57812	1.14735	0.08280						
0.8	0.19705	0.85642	0.83581	-0.42905	0.59116	1.17817	0.08664						
0.9	0.17778	0.89285	0.88571	-0.47153	0.59266	1.19767	0.08840						
			θ_0	$_{0} = 45^{\circ}$									
0.0	0.42446	1.54818	1.37670	-1.00000	0.96784	1.94148	0.23640						
0.1	0.42446	1.54817	1.37669	-1.00001	0.96785	1.94148	0.23640						
0.2	0.42442	1.54762	1.37657	-1.00037	0.96802	1.94161	0.23645						
0.3	0.42417	1.54394	1.37579	-1.00282	0.96916	1.94255	0.23677						
0.4	0.42317	1.53079	1.37320	-1.01182	0.97316	1.94625	0.23795						
0.5	0.42004	1.49870	1.36798	-1.03560	0.98285	1.95707	0.24107						
0.6	0.41129	1.44312	1.36306	-1.08594	1.00046	1.98259	0.24759						
0.7	0.38972	1.38768	1.37272	-1.17396	1.02327	2.03020	0.25821						
0.8	0.34853	1.40889	1.42753	-1.29822	1.03740	2.08633	0.26877						
0.9	0.30214	1.55926	1.54407	-1.43058	1.02691	2.08182	0.26632						
			θ_0	$_{0} = 60^{\circ}$									
0.0	0.84732	2.53935	2.31937	-2.75254	1.67502	3.36109	0.70893						
0.1	0.84728	2.53899	2.31928	-2.75293	1.67512	3.36116	0.70898						
0.2	0.84678	2.53395	2.31807	-2.75851	1.67656	3.36229	0.70965						
0.3	0.84457	2.51334	2.31338	-2.78196	1.68238	3.36739	0.71250						
0.4	0.83793	2.46279	2.30314	-2.84375	1.69657	3.38218	0.72002						
0.5	0.82120	2.37371	2.28936	-2.97120	1.72249	3.41600	0.73548						
0.6	0.78379	2.26486	2.28567	-3.19322	1.75957	3.48008	0.76171						
0.7	0.71113	2.21586	2.32648	-3.52433	1.79670	3.57677	0.79660						
0.8	0.60375	2.35822	2.45901	-3.93796	1.80857	3.66101	0.82165						
0.9	0.50862	2.69151	2.68346	-4.34660	1.77999	3.61929	0.80277						

Табл. 3. Безразмерные гидродинамические коэффициенты
 $\mathbf{g}_{\mathbf{j}}~(j\!=\!0,1,\ldots,6)$

Здесь величины o_m^k определяются по формулам (49), см. приложение.

После подстановки выражений (19), а также найденных для $p_0(t)$, $r_2(t)$, $p_2(t)$, $r_3(t)$ и $p_3(t)$ решений (20) в уравнение Бубнова – Галеркина

$$\int_{0}^{2\pi/\sigma} L_{1} \cos \sigma t \, dt = 0, \qquad \int_{0}^{2\pi/\sigma} L_{1} \sin \sigma t \, dt = 0,$$

$$\int_{0}^{2\pi/\sigma} L_{2} \cos \sigma t \, dt = 0, \qquad \int_{0}^{2\pi/\sigma} L_{2} \sin \sigma t \, dt = 0,$$
(21)

получим систему четырех алгебраических уравнений, из которой определяются доминантные амплитуды A_i, B_i (i = 1, 2) в представлении (19):

$$(m_1(A_1^2 + A_2^2 + B_1^2) + m_2 B_2^2)A_1 + + m_3 A_2 B_1 B_2 + (\bar{\sigma}_1^2 - 1)A_1 = H\Lambda,$$

$$(m_1(A_1^2 + A_2^2 + B_2^2) + m_2B_1^2)A_2 +$$

$$+m_3A_1B_1B_2 + (\bar{\sigma}_1^2 - 1)A_2 = 0,$$

$$(m_1(A_1^2 + B_1^2 + B_2^2) + m_2A_2^2)B_1 +$$

$$+m_3A_1A_2B_2 + (\bar{\sigma}_1^2 - 1)B_1 = 0,$$
(22)

$$(m_1(A_2^2 + B_1^2 + B_2^2) + m_2A_1^2)B_2 + + m_3A_1A_2B_1 + (\bar{\sigma}_1^2 - 1)B_2 = 0,$$

где

$$\begin{split} m_1 &= -\frac{\mathbf{d}_1}{2} + \mathbf{d}_3 \left(o_2^{(0)} - \frac{o_2^{(2)}}{4} \right) + \\ &+ \mathbf{d}_4 o_2^{(2)} + \mathbf{d}_5 \left(o_0^{(0)} - \frac{o_0^{(2)}}{4} \right) + \mathbf{d}_6 o_0^{(2)} + \\ &+ \left[\frac{3\mathbf{g}_3}{4} - \mathbf{g}_1 \left(o_0^{(0)} + \frac{o_0^{(2)}}{4} \right) - \mathbf{g}_2 \left(o_2^{(0)} + \frac{o_2^{(2)}}{4} \right) \right] \bar{\sigma}_1^2; \\ m_2 &= \frac{\mathbf{d}_1}{2} - 2\mathbf{d}_2 - \mathbf{d}_3 \left(o_2^{(0)} + \frac{3o_2^{(2)}}{4} \right) + \\ &+ 3\mathbf{d}_4 o_2^{(2)} + \mathbf{d}_5 \left(o_0^{(0)} + \frac{o_0^{(2)}}{4} \right) - \mathbf{d}_6 o_0^{(2)} + \\ &+ \left[\frac{\mathbf{g}_3}{4} - \mathbf{g}_1 \left(o_0^{(0)} - \frac{o_0^{(2)}}{4} \right) + \mathbf{g}_2 \left(o_2^{(0)} - \frac{3o_2^{(2)}}{4} \right) \right] \bar{\sigma}_1^2; \\ m_3 &= m_1 - m_2; \qquad m_4 = m_1 + m_2; \qquad \bar{\sigma}_i^2 = \frac{\sigma_i^2}{\sigma}. \end{split}$$

Анализ системы (22) при условии ненулевого действия внешних возмущающих сил $(H \neq 0)$ показывает, что $A_2 = B_1 = 0$, т.е. имеются лишь две ненулевые доминантные амплитуды, которые определяются из системы двух алгебраических уравнений:

$$m_1 A_1^3 + m_2 A_1 B_2^2 + (\bar{\sigma}_1^2 - 1) A_1 = H\Lambda,$$

$$m_1 B_2^3 + m_2 A_1^2 B_2 + (\bar{\sigma}_1^2 - 1) B_2 = 0,$$
(23)

аналогичной системе уравнений, полученной в работе [17]. Ее решения зависят от коэффициентов m_i , которые являются функциями $\bar{\mathbf{r}}_1$, $\bar{\sigma}_1(\bar{\mathbf{r}}_1)$ и θ_0 . С физической точки зрения эти решения определяют два типа установившихся режимов. При условии $B_2 = 0$ они соответствует плоским установившимся резонансным режимам колебаний жидкости, а при $B_2 \neq 0$ – так называемой круговой волне. Это разделение полностью аналогично хорошо известной классификации для круговых вертикальных цилиндрических и неусеченных конических баков [17].

Плоские установившиеся движения $(A_1 \neq 0, A_2 = B_1 = B_2 = 0)$ определяются приближенным ре-

шением модальных уравнений вида

$$p_{1} = r_{2} = p_{3} = 0,$$

$$p_{0} = -A_{1}^{2}o_{0}^{(0)} - \frac{1}{2}A_{1}^{2}o_{0}^{(2)}\cos 2\sigma t + o(\epsilon^{2}),$$

$$p_{2} = A_{1}^{2}o_{2}^{(0)} + \frac{1}{2}A_{1}^{2}o_{2}^{(2)}\cos 2\sigma t + o(\epsilon^{2}),$$

$$r_{1} = A_{1}\cos \sigma t + o(\epsilon),$$

$$r_{3} = A_{1}^{3}o_{3}^{(1)}\cos \sigma t + A_{1}^{3}o_{3}^{(3)}\cos 3\sigma t + o(\epsilon^{3}),$$
(24)

где A_1 – решение кубического уравнения

$$m_1 A_1^3 + (\bar{\sigma}_1^2 - 1)A_1 - H\Lambda = 0.$$
 (25)

Установившаяся круговая волна $(A_1\!\neq\!0,\,B_2\!\neq\!0,\,B_1\!=\!A_2\!=\!0)$ приближается решением

$$r_{1}(t) = A_{1} \cos \sigma t + o(\epsilon),$$

$$p_{1}(t) = B_{2} \sin \sigma t + o(\epsilon),$$

$$p_{0}(t) = -(A_{1}^{2} + B_{2}^{2})o_{0}^{(0)} - \frac{1}{2}(A_{1}^{2} - B_{2}^{2})o_{0}^{(2)} \cos 2\sigma t + o(\epsilon^{2}),$$

$$r_{2}(t) = -A_{1}B_{2}o_{2}^{(2)} \sin 2\sigma t + o(\epsilon^{2}),$$

$$p_{2}(t) = (A_{1}^{2} - B_{2}^{2})o_{2}^{(0)} + \frac{1}{2}(A_{1}^{2} + B_{2}^{2})o_{2}^{(2)} \cos 2\sigma t + o(\epsilon^{2}),$$

$$r_{3}(t) = A_{1}(A_{1}^{2} - B_{2}^{2})o_{3}^{(1)} \cos \sigma t + A_{1}(A_{1}^{2} + 3B_{2}^{2})o_{3}^{(3)} \cos 3\sigma t + o(\epsilon^{3}),$$
(26)

$$p_3(t) = B_2(A_1^2 - B_2^2)o_3^{(1)}\sin\sigma t + B_2(3A_1^2 + B_2^2)o_3^{(3)}\sin 3\sigma t + o(\epsilon^3)$$

где A_1 и B_2 находятся из системы кубических уравнений

$$m_6 A_1^3 + m_5 (\bar{\sigma}_1^2 - 1) A_1 - H\Lambda = 0;$$

$$B_2^2 = \frac{m_1 A_1^2 - (\bar{\sigma}_1^2 - 1)}{m_2} > 0;$$
(27)

 $m_5 = m_3/m_1; m_6 = m_4 m_5.$ Последнее неравенство в системе (27) существенно, поскольку амплитуда не может быть мнимым числом.

3.2. Неустойчивость установившихся режимов

Определим области неустойчивости приближенных решений (24) и (26) с помощью первого метода Ляпунова. Для этого вместе с приближенными установившимися периодическими решениями (отмеченными значком тильды) рассмотрим близкие к ним решения с малыми возмущениями $\alpha, \beta, \eta, \gamma, \delta, \mu$ и ν :

$$p_{0}(t) = \tilde{p}_{0}(t) + \eta(t),$$

$$p_{1}(t) = \tilde{p}_{1}(t) + \beta(t), \quad r_{1}(t) = \tilde{r}_{1}(t) + \alpha(t),$$

$$p_{2}(t) = \tilde{p}_{2}(t) + \delta(t), \quad r_{2}(t) = \tilde{r}_{2}(t) + \gamma(t),$$

$$p_{3}(t) = \tilde{p}_{3}(t) + \nu(t), \quad r_{3}(t) = \tilde{r}_{3}(t) + \mu(t),$$
(28)

и выведем линейные дифференциальные уравнения в вариациях относительно α , β , η , γ , δ , μ , ν :

$$\mathcal{L}_{0} = \ddot{\eta} + \sigma_{0}^{2} \eta + \mathbf{d}_{10} (\ddot{r}_{1} \alpha + \ddot{p}_{1} \beta + \ddot{\alpha} r_{1} + \ddot{\beta} p_{1}) + + 2 \mathbf{d}_{8} (\dot{\alpha} \dot{r}_{1} + \dot{\beta} \dot{p}_{1}) + 2 \sigma_{0}^{2} \mathbf{g}_{0} (\alpha r_{1} + \beta p_{1});$$

$$(29a)$$

$$\mathcal{L}_{1} = \ddot{\alpha} + \sigma_{1}^{2} \alpha + \mathbf{d}_{1} \left(\alpha \left(\dot{p}_{1}^{2} + \dot{r}_{1}^{2} + \ddot{p}_{1} p_{1} + 2 \dot{\beta} \dot{p}_{1} + 2 \dot{\beta} \dot{p}_{1} + 2 \dot{\alpha} \dot{r}_{1} \right) + r_{1} \left(\ddot{\beta} p_{1} + \ddot{\alpha} r_{1} + \ddot{p}_{1} \beta + 2 \dot{\beta} \dot{p}_{1} + 2 \dot{\alpha} \dot{r}_{1} \right) \right) + \mathbf{d}_{2} \left(p_{1} \left(\ddot{\alpha} p_{1} - \ddot{\beta} r_{1} + 2 \dot{\alpha} \dot{p}_{1} \right) + \beta \left(2 \dot{p}_{1} \dot{r}_{1} + 2 p_{1} \ddot{r}_{1} - r_{1} \ddot{p}_{1} \right) - \alpha \left(\ddot{p}_{1} p_{1} + 2 \dot{p}_{1}^{2} \right) + 2 \dot{\beta} \left(\dot{r}_{1} p_{1} - 2 \dot{p}_{1} r_{1} \right) \right) + \mathbf{d}_{3} \left(\ddot{\beta} r_{2} - \ddot{\alpha} p_{2} + \dot{\beta} \dot{r}_{2} - \alpha \dot{p}_{2} + \dot{\gamma} \dot{p}_{1} - \dot{\delta} \dot{r}_{1} + \gamma \ddot{p}_{1} - \delta \ddot{r}_{1} \right) + \mathbf{d}_{4} \left(\beta \ddot{r}_{2} - \alpha \ddot{p}_{2} + \dot{\gamma} \dot{p}_{1} - \dot{\delta} \dot{r}_{1} + \gamma \ddot{p}_{1} - \delta \ddot{r}_{1} \right) + \mathbf{d}_{4} \left(\beta \ddot{r}_{2} - \alpha \ddot{p}_{2} + \ddot{\gamma} p_{1} - \ddot{\delta} r_{1} \right) + \mathbf{d}_{5} \left(\ddot{\alpha} p_{0} + \dot{\alpha} \dot{p}_{0} + \dot{\eta} \dot{r}_{1} + \eta \ddot{r}_{1} \right) + \mathbf{d}_{6} \left(\alpha \ddot{p}_{0} + \ddot{\eta} r_{1} \right) + \sigma_{1}^{2} \left(\mathbf{g}_{1} \left(\alpha p_{0} + \eta r_{1} \right) + \mathbf{g}_{2} \left(\beta r_{2} - \alpha p_{2} + \gamma p_{1} - \delta r_{1} \right) + \mathbf{g}_{3} \left(2 \beta p_{1} r_{1} + \alpha \left(p_{1}^{2} + 3 r_{1}^{2} \right) \right) \right);$$

$$\mathcal{L}_{2} = \ddot{\beta} + \sigma_{1}^{2}\beta + \mathbf{d}_{1} \left(\beta \left(\dot{p}_{1}^{2} + \dot{r}_{1}^{2} + 2\ddot{p}_{1}p_{1} + \\ + \ddot{r}_{1}r_{1} \right) + p_{1} \left(\ddot{\beta}p_{1} + 2\dot{\beta}\dot{p}_{1} + \ddot{\alpha}r_{1} + 2\dot{\alpha}\dot{r}_{1} + \\ + \alpha\ddot{r}_{1} \right) \right) + \mathbf{d}_{2} \left(r_{1} \left(\ddot{\beta}r_{1} + 2\dot{\beta}\dot{r}_{1} - \ddot{\alpha}p_{1} \right) + \\ + \alpha \left(2\ddot{p}_{1}r_{1} + 2\dot{p}_{1}\dot{r}_{1} - \ddot{r}_{1}p_{1} \right) - \beta \left(\ddot{r}_{1}r_{1} + 2\dot{r}_{1}^{2} \right) + \\ + 2\dot{\alpha} \left(\dot{p}_{1}r_{1} - 2\dot{r}_{1}p_{1} \right) \right) + \mathbf{d}_{3} \left(\ddot{\beta}p_{2} + \dot{\beta}\dot{p}_{2} + \ddot{\alpha}r_{2} + \\ + \dot{\alpha}\dot{r}_{2} + \dot{\delta}\dot{p}_{1} + \delta\ddot{p}_{1} + \dot{\gamma}\dot{r}_{1} + \gamma\ddot{r}_{1} \right) + \mathbf{d}_{4} \left(\ddot{\delta}p_{1} + \\ + \ddot{\gamma}r_{1} + \alpha\ddot{r}_{2} + \beta\ddot{p}_{2} \right) + \mathbf{d}_{5} \left(\ddot{\beta}p_{0} + \dot{\beta}\dot{p}_{0} + \dot{\eta}\dot{p}_{1} + \\ + \eta\ddot{p}_{1} \right) + \mathbf{d}_{6} \left(\beta\ddot{p}_{0} + \ddot{\eta}p_{1} \right) + \sigma_{1}^{2} \left(\mathbf{g}_{1} \left(\beta p_{0} + \\ + \eta p_{1} \right) + \mathbf{g}_{2} \left(\alpha r_{2} + \beta p_{2} + \gamma r_{1} + \delta p_{1} \right) + \\ + \mathbf{g}_{3} \left(2\alpha p_{1}r_{1} + \beta \left(3p_{1}^{2} + r_{1}^{2} \right) \right) \right);$$

$$(29c)$$

$$\mathcal{L}_{3} = \ddot{\gamma} + \sigma_{2}^{2} \gamma + \mathbf{d}_{9} \left(\ddot{p}_{1} \alpha + \ddot{r}_{1} \beta + \ddot{\alpha} p_{1} + \ddot{\beta} r_{1} \right) + + 2 \mathbf{d}_{7} \left(\dot{\alpha} \dot{p}_{1} + \dot{\beta} \dot{r}_{1} \right) + 2 \sigma_{2}^{2} \mathbf{g}_{4} \left(\alpha p_{1} + \beta r_{1} \right);$$
(29d)

$$\mathcal{L}_{4} = \ddot{\delta} + \sigma_{2}^{2} \delta + \mathbf{d}_{9} \left(\ddot{r}_{1} \alpha - \ddot{\beta} p_{1} - \ddot{\alpha} r_{1} - \ddot{p}_{1} \beta \right) + + 2 \mathbf{d}_{7} \left(\dot{\beta} \dot{p}_{1} - \dot{\alpha} \dot{r}_{1} \right) + 2 \sigma_{2}^{2} \mathbf{g}_{4} \left(\beta p_{1} - \alpha r_{1} \right);$$
(29e)

$$\mathcal{L}_{5} = \ddot{\mu} + \sigma_{3}^{2} \mu + \mathbf{d}_{11} \Big(\ddot{\alpha} \big(p_{1}^{2} - r_{1}^{2} \big) + 2\ddot{\beta} p_{1} r_{1} + + 2\alpha \big(\ddot{p}_{1} p_{1} - \ddot{r}_{1} r_{1} \big) + 2\beta \big(\ddot{p}_{1} r_{1} + \ddot{r}_{1} p_{1} \big) \Big) + + \mathbf{d}_{12} \Big(2\dot{\alpha} \big(p_{1} \dot{p}_{1} - r_{1} \dot{r}_{1} \big) + \alpha \big(\dot{p}_{1}^{2} - \dot{r}_{1}^{2} \big) + + 2\dot{\beta} \big(p_{1} \dot{r}_{1} + r_{1} \dot{p}_{1} \big) + 2\beta \dot{p}_{1} \dot{r}_{1} \Big) + \mathbf{d}_{13} \big(\ddot{\alpha} p_{2} + + \ddot{\beta} r_{2} + \delta \ddot{r}_{1} + \gamma \ddot{p}_{1} \big) + \mathbf{d}_{14} \big(\alpha \ddot{p}_{2} + \beta \ddot{r}_{2} + \ddot{\gamma} p_{1} + + \ddot{\delta} r_{1} \big) + \mathbf{d}_{15} \big(\dot{\alpha} \dot{p}_{2} + \dot{\beta} \dot{r}_{2} + \dot{\gamma} \dot{p}_{1} + \dot{\delta} \dot{r}_{1} \big) + + \sigma_{3}^{2} \Big(\mathbf{g}_{5} \big(\alpha p_{2} + \beta r_{2} + \delta r_{1} + \gamma p_{1} \big) + + 3\mathbf{g}_{6} \big(\alpha \big(p_{1}^{2} - r_{1}^{2} \big) + 2\beta p_{1} r_{1} \big) \Big);$$

$$(29f)$$

$$\mathcal{L}_{6} = \ddot{\nu} + \sigma_{3}^{2} \nu + \mathbf{d}_{11} \left(\ddot{\beta} \left(p_{1}^{2} - r_{1}^{2} \right) - 2\ddot{\alpha} p_{1} r_{1} + 2\beta \left(p_{1} \ddot{p}_{1} - r_{1} \ddot{r}_{1} \right) - 2\alpha \left(r_{1} \ddot{p}_{1} + p_{1} \ddot{r}_{1} \right) \right) + \mathbf{d}_{12} \left(2\dot{\beta} \left(p_{1} \dot{p}_{1} - r_{1} \dot{r}_{1} \right) - 2\dot{\alpha} \left(r_{1} \dot{p}_{1} + p_{1} \dot{r}_{1} \right) \right) + \mathbf{d}_{12} \left(2\dot{\beta} \left(p_{1} \dot{p}_{1} - r_{1} \dot{r}_{1} \right) - 2\dot{\alpha} \left(r_{1} \dot{p}_{1} + p_{1} \dot{r}_{1} \right) + \mathbf{d}_{12} \left(2\dot{\beta} \left(p_{1} \dot{p}_{1} - r_{1} \dot{r}_{1} \right) - 2\dot{\alpha} \left(r_{1} \dot{p}_{1} + p_{1} \dot{r}_{1} \right) \right) + \mathbf{d}_{12} \left(\dot{\beta} \dot{p}_{2} - \alpha \dot{p}_{1} \dot{r}_{1} \right) + \mathbf{d}_{13} \left(\ddot{\beta} p_{2} - \alpha \ddot{r}_{2} + \ddot{\delta} p_{1} - - \ddot{\alpha} r_{2} + \delta \ddot{p}_{1} - \gamma \dot{r}_{1} \right) + \mathbf{d}_{15} \left(\dot{\beta} \dot{p}_{2} - \dot{\alpha} \dot{r}_{2} + \dot{\delta} \dot{p}_{1} - \dot{\gamma} \dot{r}_{1} \right) + \mathbf{d}_{15} \left(\dot{\beta} \dot{p}_{2} - \alpha r_{2} + \delta p_{1} - \gamma \dot{r}_{1} \right) + \mathbf{d}_{3} \mathbf{g}_{6} \left(\beta \left(p_{1}^{2} - r_{1}^{2} \right) - 2\alpha p_{1} r_{1} \right) \right).$$

Уравнения в вариациях (29) упрощаются в случае плоских колебаний (24), становясь линейными дифференциальными уравнениями с периодическими коэффициентами. Тогда их общее решение может быть получено в рамках теории Флоке. Анализируя его, можно выделить неустойчивые установившиеся режимы, для которых α , β , η , γ , δ , μ и ν неограниченно возрастают при $t \to \infty$, а также (если возможно) асимптотически устойчивые установившиеся решения, для которых α , β , η , γ , δ , μ и ν экспоненциально стремятся к нулю при $t \to \infty$. Кроме того, система (29) может иметь ограниченные решения, не стремящиеся к нулю на бесконечности. Фундаментальное решение уравнений в вариациях с периодическими коэффициен-

тами имеет вид

$$\alpha(t) = e^{\lambda t} \psi_1(t), \quad \beta(t) = e^{\lambda t} \psi_2(t),$$

$$\gamma(t) = e^{\lambda t} \psi_3(t), \quad \delta(t) = e^{\lambda t} \psi_4(t),$$

$$\eta(t) = e^{\lambda t} \psi_5(t), \quad \mu(t) = e^{\lambda t} \psi_6(t),$$

$$\nu(t) = e^{\lambda t} \psi_7(t),$$

(30)

где λ – характеристический показатель системы; $\psi_i - 2\pi/\sigma$ -периодические функции. Как следует из выражений (30), неустойчивость установившихся решений (24) и (26) зависит от значений характеристического показателя λ . Если все характеристические показатели имеют ненулевые отрицательные действительные части, то установившиеся периодические решения асимптотически устойчивы. Если же среди характеристических показателей появляется хотя бы один с положительной действительной частью, то периодическое решение становится неустойчивым.

Чтобы получить уравнение для определения характеристических показателей, периодические функции $\psi_1(t)$ и $\psi_2(t)$ представляем в виде рядов Фурье и удерживаем только первые гармоники:

$$\psi_1(t) = a_1 \cos \sigma t + a_2 \sin \sigma t,$$

$$\psi_2(t) = b_1 \cos \sigma t + b_2 \sin \sigma t,$$
(31)

где a_1, a_2, b_1, b_2 – некоторые постоянные коэффициенты.

Подставим выражения (31) и (30) в систему уравнений в вариациях (29). При этом из первого и четырех последних уравнений системы возмущения $\beta(t), \gamma(t), \delta(t), \mu(t)$ и $\nu(t)$ можно явно выразить через a_1, a_2, b_1 и b_2 . Использовав метод Бубнова – Галеркина, для определения последних получим следующую однородную систему линейных алгебраических уравнений:

$$\mathbb{C}_{11}a_1 + \mathbb{C}_{12}a_2 + \mathbb{C}_{13}b_1 + \mathbb{C}_{14}b_2 = 0,$$

$$\mathbb{C}_{21}a_1 + \mathbb{C}_{22}a_2 + \mathbb{C}_{23}b_1 + \mathbb{C}_{24}b_2 = 0,$$

$$\mathbb{C}_{31}a_1 + \mathbb{C}_{32}a_2 + \mathbb{C}_{33}b_1 + \mathbb{C}_{34}b_2 = 0,$$

$$\mathbb{C}_{41}a_1 + \mathbb{C}_{42}a_2 + \mathbb{C}_{43}b_1 + \mathbb{C}_{44}b_2 = 0.$$

(32)

Здесь $\bar{\lambda} = \lambda/\sigma$. Коэффициенты \mathbb{C}_{ij} (i, j = 1, ..., 4) линейной алгебраической системы (32) выражаются через коэффициенты d_i (i = 1, ..., 15) и g_j (j = 0, ..., 6) системы нелинейных дифференциальных уравнений (17), $\bar{\lambda}$ и амплитуды A_1 , B_2 обобщенных

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

координат $p_1(t), r_1(t)$ следующим образом:

$$C_{11} = A_1^2 C_7 + B_2^2 C_8 + C_{14};$$

$$C_{12} = A_1^2 C_1 + B_2^2 C_2 + C_{13};$$

$$C_{13} = A_1 B_2 C_5; \quad C_{14} = A_1 B_2 C_9;$$

$$C_{21} = A_1^2 C_3 + B_2^2 C_4 - C_{13};$$

$$C_{22} = A_1^2 C_{10} + B_2^2 C_{11} + C_{14};$$

$$C_{23} = A_1 B_2 C_{12}; \quad C_{24} = A_1 B_2 C_6;$$

$$C_{31} = -A_1 B_2 C_6; \quad C_{32} = A_1 B_2 C_{12};$$

$$C_{33} = A_1^2 C_{11} + B_2^2 C_{10} + C_{14};$$

$$C_{34} = -A_1^2 C_4 - B_2^2 C_3 + C_{13};$$

$$C_{41} = A_1 B_2 C_9; \quad C_{42} = -A_1 B_2 C_5;$$

$$C_{43} = -A_1^2 C_2 - B_2^2 C_1 - C_{13};$$

$$C_{44} = A_1^2 C_8 + B_2^2 C_7 + C_{14}.$$
(33)

Полный вид коэффициентов C_j (j=1,...,14) приведен в приложении (см. формулы (50)).

Так как система линейных алгебраических уравнений (32) относительно постоянных a_i , b_i (i=1,2)должна иметь отличное от нуля решение, приравняем ее определитель к нулю:

$$\mathbf{D}(\lambda) = \begin{vmatrix} \mathbb{C}_{11} & \mathbb{C}_{12} & \mathbb{C}_{13} & \mathbb{C}_{14} \\ \mathbb{C}_{21} & \mathbb{C}_{22} & \mathbb{C}_{13} & \mathbb{C}_{24} \\ \mathbb{C}_{31} & \mathbb{C}_{32} & \mathbb{C}_{33} & \mathbb{C}_{34} \\ \mathbb{C}_{41} & \mathbb{C}_{42} & \mathbb{C}_{43} & \mathbb{C}_{44} \end{vmatrix} = 0.$$
(34)

Полученное после раскрытия выражения (34) характеристическое уравнение – полином высокой степени относительно $\bar{\lambda}$. Поэтому с учетом выражений для C_j его получение в явном виде – достаточно трудоемкая процедура. В связи с этим исследование значений характеристических показателей $\bar{\lambda}$ удобнее свести к численному нахождению всех корней характеристического определителя (34). Напомним, что неустойчивым движениям соответствует наличие показателей с **Re** $\bar{\lambda} > 0$.

3.3. Амплитудно-частотные характеристики

Амплитудно-частотные характеристики нелинейных установившихся колебаний жидкости с точностью до членов более высокого порядка малости можно характеризовать зависимостями между доминантными амплитудами и частотой возбуждения. На рис. 8 и 9 изображены такие зависимости, построенные для достаточно типи-

Рис. 8. Амплитудно-частотные кривые плоской и круговой вол
н для бака с геометрией $\theta_0=30^\circ,$ $\mathbf{r}_0=1$ и
 $\mathbf{r}_1=0.5$ при внешнем возмущении H=0.01для продольных
 A_1 и поперечных B_2 амплитуд

Рис. 9. Амплитудно-частотные кривые круговой волны для бака с геометрией $\theta_0 = 45^\circ$, $\mathbf{r}_0 = 1$ и $\mathbf{r}_1 = 0.4$ при внешнем возмущении H = 0.01 для продольных A_1 и поперечных B_2 амплитуд

Рис. 10. Амплитудно-частотные кривые плоской и круговой вол
н для бака с геометрией $\theta_0=30^\circ,$ $\mathbf{r}_0=1$ и
 $\mathbf{r}_1=0.7427$ при внешнем возмущени
иH=0.00125для продольных A_1 и поперечных
 B_2 амплитуд

чных с практической точки зрения геометрических пропорций. Сплошными кривыми изображены устойчивые установившиеся колебания, а штриховыми – неустойчивые. Из графиков видно, что амплитудно-частотные характеристики остаются подобными тем, которые известны из работ Луковского для кругового вертикального цилиндра с конечной глубиной заполнения. Так, плоский установившийся режим (ветви $K^1 K^2$ и $M^{1}M^{2}$) неустойчив в окрестности основного резонанса $\sigma/\sigma_1 \approx 1$ между точками K и M. При этом К – точка возврата, а М – точка бифуркации Пуанкаре, из которой возникает ветвь MM^3 , соответствующая неустойчивой резонансной круговой волне. Вторая ветвь $N^2 N^1$, соответствующая круговой волне, разделяется точкой бифуркации Хопфа N на устойчивую NN^1 и неустойчивую NN^2 части.

Учитывая расположение указанных ветвей для плоской и круговой волн, можно выделить диапазоны устойчивости и неустойчивости. Они также аналогичны случаю вертикального кругового бака. Так, устойчивые плоские волны ожидаются для частот, лежащих левее точки К. Правее точки М могут реализоваться как плоская, так и круговая волны (см. рис. 8). На отрезке между N и M существуют лишь устойчивые круговые волны, а в диапазоне между К и N отсутствуют любые устойчивые установившиеся режимы и поэтому могут возникать иррегулярные движения. Как и для цилиндра кругового сечения, ветви, соответствующие плоской волне, характеризуются так называемой мягкой нелинейностью, а для круговой волны существуют критические значения геометрических параметров, когда характер амплитудно-частотных характеристик меняется от мягкого к жесткому. Для кругового цилиндра такое критическое значение соответствует безразмерной глубине 0.5059. Однако для усеченных конических баков ситуация сложнее, поскольку здесь вводятся в рассмотрение два входных параметра – угол полураствора и безразмерная глубина r₁, которые могут влиять на характер амплитудно-частотных характеристик. Рис. 9 демонстрирует расположение амплитудночастотных характеристик круговой волны для критической комбинации этих двух параметров. Видно, что амплитуда круговой волны в поперечном направлении становится теоретически бесконечной примерно в середине диапазона NM. Это говорит о том, что построенная теория может быть в этом случае применима лишь частично, поскольку она предусматривает малость B_2 . В случае подобных критических входных параметров необходимо строить так называемые адаптивные асимптотические модальные теории, которые позволяют найти и учесть в модальном разложении несколько высших мод, имеющих доминантный характер.

В следующем параграфе будут сравниваться теоретические и экспериментальные (взятые из работы [16]) величины установившихся амплитуд продольных сил. Расчетные амплитудночастотные характеристики для этого случая приведены на рис. 10. Из графиков видно, что амплитудно-частотные характеристики для круговой волны достаточно близки к случаю критических комбинаций входных геометрических параметров, а следовательно, мы не можем требовать от нашей теории количественного соответствия для экспериментальных замеров силового отклика, порождаемого круговой волной.

4. ГИДРОДИНАМИЧЕСКИЕ СИЛЫ

Для подсчета результирующей гидродинамической силы воспользуемся формулой Луковского [6], в соответствии с которой при поступательном движении бака компоненты гидродинамической силы определяются так:

$$P_x = -mg - \ddot{l}_1, \quad P_y = -\ddot{l}_2, \quad P_z = -m\ddot{u} - \ddot{l}_3.$$
 (35)

Здесь m – масса жидкости; $l_i(t)/m$ – координаты центра массы жидкости.

Использование нелинейной модальной системы позволяет явно найти выражения для вектора \vec{l} , вычисленные по формулам (43), которые с точностью до третьего порядка малости представлены соотношениями (44). Для установившихся режимов движения вторая производная для горизонтальных компонент имеет вид

$$\ddot{l}_{2} = -(\lambda_{211}B_{2} + \lambda_{2131}B_{2}^{3} + \lambda_{2132}B_{2}A_{1}^{2}) \times \\
\times \sigma^{2} \sin \sigma t - \lambda_{233}B_{2}(A_{1}^{2} - B_{2}^{2})\sigma^{2} \sin 3\sigma t, \\
\ddot{l}_{3} = -(\lambda_{311}A_{1} + \lambda_{3131}A_{1}^{3} + \lambda_{3132}A_{1}B_{2}^{2}) \times \\
\times \sigma^{2} \cos \sigma t - \lambda_{333}A_{1}(A_{1}^{2} - B_{2}^{2})\sigma^{2} \cos 3\sigma t,$$
(36)

где коэффициенты λ_{ijk} определены формулами (45). Таким образом, имеем следующие выражения для нахождения амплитуды силы:

$$P_{y} = (\lambda_{211}B_{2} + \lambda_{2131}B_{2}^{3} + \lambda_{2132}B_{2}A_{1}^{2}) \times \\ \times \sigma^{2} \sin \sigma t + \lambda_{233}B_{2}(A_{1}^{2} - B_{2}^{2})\sigma^{2} \sin 3\sigma t,$$

$$P_{z} = (mH + \lambda_{311}A_{1} + \lambda_{3131}A_{1}^{3} + \lambda_{3132}A_{1}B_{2}^{2}) \times \\ \times \sigma^{2} \cos \sigma t + \lambda_{333}A_{1}(A_{1}^{2} - B_{2}^{2})\sigma^{2} \cos 3\sigma t.$$
(37)

5. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ И СРАВНІ НИЕ С ЭКСПЕРИМЕНТОМ

Формула (37) дает возможность оценить силвой отклик жидкости в случае, когда имеется вн шнее гармоническое возбуждение и вклад, внос мый в горизонтальную проекцию суммарной г дродинамической силы инерционными силами:

$$|P_z^{if}| = \pi \rho \sigma^2 \frac{H}{3} \left(\mathbf{r}_0^3 - \mathbf{r}_1^3 \right) \operatorname{ctg} \theta_0, \qquad (33)$$

а также волновыми движениями на свободной пверхности жидкости:

$$|P_z^{vm}| = \max[\sigma^2(\lambda_{311}A_1 + \lambda_{3131}A_1^3)\cos\sigma t + \sigma^2\lambda_{333}A_1^3\cos3\sigma t].$$
(39)

Теоретические и экспериментальные оценки силового отклика жидкости можно сравнить, пользуясь результатами экспериментальных исследований Кастиатти и др. [16]. Описанная в этой работе экспериментальная установка состоит из жесткого конического бака с датчиками нагрузок, прикрепленного к платформе. Бак характеризуется следующими геометрическими параметрами: $\theta_0 = \pi/6$ и $\mathbf{r}_1 = 0.1$ м. Он частично заполнен жидкостью, глубина которой варьировалась. Установка размещалась на вибростенде, движущемся гармонически в горизонтальной плоскости. Рассматриваемый силовой отклик системы тело-жидкость представляет собой сумму сил инерции жесткого бака и платформы, а также стационарных гидродинамическая сил, связанных с колебаниями жидкости. Экспериментальные результаты представлены в безразмерной форме $|P_z|/(mH\sigma^2)$, характеризующей передаточную функцию для амплитуды силы P_z . Используем третью формулу (35). Заметим, что фигурирующая здесь масса *m* равна сумме масс жидкости m_l и бака с платформой тс. Учтя дополнительно представление обобщенных координат $p_0(t)$, $r_1(t)$ и $p_2(t)$ (24), для стационарной гидродинамической силы получим выражение

$$P_z = -(m_c + m_l)\ddot{u} - \ddot{l}_3.$$
(40)

Тогда безразмерная сила (37) приобретет вид

$$\left|\frac{P_z}{m_l H \sigma^2}\right| = \max\left|\left(1 + \frac{m_c}{m_l} + \frac{\lambda_{311} A_1}{m_l H} + \frac{\lambda_{3131} A_1^3}{m_l H}\right)\cos\sigma t - \frac{\lambda_{333} A_1^3}{m_l H}\cos3\sigma t\right|,\tag{41}$$

где $m_l = \rho V_l$ – масса жидкости; V_l – объем жидкости; m_c – общая масса платформы и жесткого бака

Рис. 11. Силовой отклик колебаний жидкости. Точки, соответствующие *K*, *M* и *N* с рис. 10, находятся за пределами диапазона: сплошная – устойчивые плоские ветви, штриховая – неустойчивые круговые ветви

(при испытаниях Кастиатти и др. [16] она составила $m_c = 10.5$ кг).

На рис. 11 представлен график безразмерного силового отклика, полученный с помощью формулы (41), и приведены экспериментальные данные [16] для глубины h=6 см (радиус дна $\mathbf{r}_1=10$ см, радиус невозмущенной свободной поверхности $\mathbf{r}_0=13.46$ см) и при внешнем возмущении H=1.25 мм для плоских колебаний. Напомним, что амплитудно-частотные характеристики для данного случая приведены на рис. 10.

выводы и дискуссия

На основе развития метода неконформных отображений Луковского [6] для полостей конической формы построена семимодовая модальная система, описывающая резонансные нелинейные колебания жидкости в V-образных усеченных конических баках. Она базируется на асимптотике третьего порядка Нариманова – Моисеева, предполагающей, что бак совершает близкие к гармоническим колебания с частотой, близкой к первой собственной частоте колебаний жидкости. При этом учитываются две обобщенные координаты, соответствующие возмущениям двух первых доминантных мод, три основные обобщенные координаты второго порядка, а также две обобщенные координаты третьего порядка. Пять первых уравнений этой модальной системы совпадают по форме с пятимодовой системой [17], построенной для случая неусеченного конуса.

Особенность исследуемой геометрии бака состоит в том, что она в одном из предельных случаев (нулевой угол раствора) стремится к круговому цилиндру. Показано, что при этом гидродинамические коэффициенты построенной модальной системы стремятся к известным затабулированным значениям, полученным для систем, описывающих колебания жидкости в вертикальном круговом цилиндрическом сосуде [10].

Особо следует отметить, что при построении нелинейной модальной системы использовались приближенно-аналитические собственные формы колебаний жидкости, точно удовлетворяющие уравнению Лапласа и условиям непротекания на боковых стенках для любого допустимого положения свободной границы. Это позволяет гарантировать точное (до членов третьего порядка малости) удовлетворение условия сохранения объема и энергии для любых решений задачи, связанных с решениями выводимой модальной системы. Укажем, что ее модальные уравнения описывают строго консервативные динамические процессы.

Основное внимание уделялось анализу установившихся движений жидкости при строгом гармоническом резонансном возбуждении бака. Как и в случае цилиндрической геометрии, построенные нелинейные модальные уравнения позволяют выделить плоские и круговые волновые установившиеся резонансные движения свободной поверхности и определить диапазоны их неустойчивости.

Амплитудно-частотные характеристики также остаются подобными ранее построенным для установившихся резонансных режимов движения жидкости в вертикальном цилиндрическом баке. Однако наличие наклонной стенки оказывает существенное количественное влияние на распределение диапазонов неустойчивости установившихся режимов в усеченных конических баках. Кроме того, в отличие от цилиндра, для которого характер амплитудно-частотных характеристик зависел лишь от глубины заполнения бака, в исследуемом случае расположение ветвей амплитудночастотных характеристик может меняться от угла наклона боковых стенок. В частности, имеются критические соотношения угла наклона и глубины заполнения, при которых в рамках рассматриваемых теоретических предположений круговая волна может достигать в окрестности основного резонанса бесконечной амплитуды.

Такие критические комбинации геометрических параметров требуют специального целенаправленного изучения. Мы не исключаем, что для более качественного описания соответствующих установившихся и переходных процессов потребуется уточнение модальных уравнений путем учета большего количества собственных мод и коррекции гипотез об их асимптотическом вкладе.

Проведено сравнение полученных данных о силовом резонансном отклике жидкости с известными из литературы экспериментальными результатами. Теоретические значения оказались достаточно близки к экспериментальным.

- Докучаев Л. В. К решению краевой задачи о колебаниях жидкости в конических полостях // Прикл. мат. мех. – 1964. – 28, вып. 1. – С. 151–154.
- 2. Фещенко С. Ф., Луковский И. А., Рабинович Б. И. Докучаев Л. В. Методы определения присоединенных масс жидкости в подвижных полостях.– К.: Наук. думка, 1969.– 250 с.
- Луковский И. А. Нелинейные колебания жидкости в сосудах сложной геометрической формы.– К.: Наук. думка, 1975.– 136 с.
- Луковский И. А. Вариационный метод в нелинейных задачах динамики ограниченного объема жидкости со свободной поверхностью // Колебания упругих конструкций с жидкостью. М.: Волна. – 1976. – С. 260–264.
- Луковский И. А. Определение сил взаимодействия между телом и жидкостью, в нелинейной задаче движения тела с полостью, содержащей жидкость // Нелинейные краевые задачи.– К.: Ин-т мат. АН УССР.– 1980.– С. 181–190.
- 6. Луковский И. А. Введение в нелинейную динамику тел с полостями, частично заполненными жидкостью. – К.: Наук. думка, 1990. – 296 с.
- Луковський І. О. До розв'язування спектральних задачах лінійної теорії коливання рідини в конічних баках // Доп. НАН України.– 2002.– № 5.– С. 53–58.
- Луковский И. А. Математические модели нелинейной динамики твердых тел с жидкостью. – К.: Наук. думка, 2010. – 407 с.
- Луковский И. А., Билык А.Н. Вынужденные нелинейные колебания жидкости в подвижных осесимметричных конических полостях // Численноаналитические методы исследования динамики и устойчивости многомерных систем.– К.: Ин-т мат. АН УССР.– 1985.– С. 12–26.
- Луковский И. А., Солодун О. В. Дослідження вимушених нелінійних коливань рідини в кругових циліндричних ємностях на основі семимодової моделі третього порядку // Праці Ін-ту мат. НАН України.– 2003.– 47.– С. 18–36.
- Луковский И. А., Солодун А. В., Тимоха А. Н. Собственные частоты колебаний жидкости в усеченных конических баках // Акуст. вісн..– 2006.– 9, № 3.– С. 18–34.
- Луковский И. А., Тимоха А. Н. Модальное моделироание нелинейных плесканий жидкости в баках с невертикальными стенками. Методика неконформных отображений // Прикл. гидромех.– 2000.– 2(74),№ 4.– С. 32–47.
- Моисеев Н. Н. К теории нелинейных колебаний ограниченного объема жидкости // Прикл. мат. мех.– 1958.– 22.– С. 612–621.
- Петров А. А. Вариационная формулировка задачи о движении жидкости в сосуде конечных размеров // Прикл. мат. мех.– 28, № 4.– 1964.– С. 754– 758.

- 15. Bauer H. F. Sloshing in conical tanks // Аста где коэффициенты k_i имеют вид Mechanica.
– 1982.– 43, № 3-4.– Р. 185–200.
- Casciati F., De Stefano A., Matta E. Simulating a conical tuned liquid damper // Sim. Model. Pract. Theory.- 2003.- 11.- P. 353-370.
- Gavrilyuk I., Lukovsky I., Timokha A. Linear and nonlinear sloshing in a circular conical tank // J. Fluid Dyn. Res..- 2005.- 35.- P. 399–429.
- Gavrilyuk I., Hermann, M., Lukovsky I., Solodun A., Timokha A. N. Natural sloshing frequency in rigid truncated conical tank // J. Eng. Comp.– 2008.– 25, № 6.– P. 518–540.
- 19. Faltinsen O. M., Timokha A. N. Sloshing.– Cambridge: Cambridge Univ. Press, 2009.– 608 p.
- Lukovsky I., Timokha A. Combining Narimanov Moiseev and Lukovsky – Miles schemes for nonlinear liquid sloshing // J. Numer. Applied Math. – 2011. – 2(105). – P. 69–82.
- Miles J. W. Nonlinear surface waves in closed basins // J. Fluid Mech.– 1976.– 75.– P. 419–448.
- Whitham G. B. Variational method and applications to water waves // Proc. Poy. Soc. Lond.– 1967.– A299, № 1456.– P. 6–25.

ПРИЛОЖЕНИЕ

Собственные моды имеют вид

$$\varphi_1 = \psi_0,$$

$$\varphi_2 = \sin x_3 \psi_1, \qquad \varphi_3 = \cos x_3 \psi_1,$$

$$\varphi_4 = \sin 2x_3 \psi_2, \qquad \varphi_5 = \cos 2x_3 \psi_2,$$

$$\varphi_6 = \sin 3x_3 \psi_2, \qquad \varphi_7 = \cos 3x_3 \psi_2.$$

В теории третьего порядка малости свободная поверхность принимает представление

$$f(x_2, x_3) = \beta_0 + f_0(x_2)p_0 +$$

+ $f_1(x_2)p_1 \cos x_3 + f_1(x_2)r_1 \sin x_3 +$
+ $f_2(x_2)p_2 \cos 2x_3 + f_2(x_2)r_2 \sin 2x_3 +$
+ $f_3(x_2)p_3 \cos 3x_3 + f_3(x_2)r_3 \sin 3x_3.$

Зависящая от времени константа $\beta_0(t)$, входящая в уравнение свободной поверхности относительно $p_0(t)$, $r_1(t)$, $p_1(t)$, $r_2(t)$ и $p_2(t)$, определяется с точностью до $O(\epsilon^6)$ с тем, чтобы на финальном этапе получить полную последовательность третьего порядка малости:

$$\begin{aligned} \beta_0 &= k_1 p_0^2 + k_2 (p_1^2 + r_1^2) + k_3 p_0 (r_1^2 + p_1^2) + \\ &+ k_4 (2 p_1 r_1 r_2 - p_2 (r_1^2 + p_1^2)) + \\ &+ k_5 (p_2^2 + r_2^2) + k_6 (p_3^2 + r_3^2) + \\ &+ k_7 (p_1 r_2 r_3 + p_1 p_2 p_3 - r_1 r_2 p_3 + r_1 p_2 r_3), \end{aligned}$$

$$\begin{split} k_1 &= -\frac{2e_{00}}{h_t x_{20}^2} \,; \qquad k_2 = -\frac{e_{11}}{x_{20}^2 h_t} \,; \\ k_3 &= -\frac{e_{011}}{h_t^2 x_{20}^2} \,; \qquad k_4 = -\frac{e_{112}}{2h_t^2 x_{20}^2} \,; \\ k_5 &= -\frac{e_{22}}{h_t x_{20}^2} \,; \qquad k_6 = -\frac{e_{33}}{h_t x_{20}^2} \,; \\ k_7 &= -\frac{e_{123}}{h_t^2 x_{20}^2} \,; \qquad k_8 = \frac{\pi}{4} (h_t^4 - h_b^4) x_{20}^2 \,; \\ k_9 &= \frac{\pi}{2} h_t^2 e_{11} \,; \qquad k_{10} = \pi h_t^2 e_{00} \,; \\ k_{11} &= \frac{\pi}{2} h_t^2 e_{22} \,; \qquad k_{12} = \frac{\pi}{2} h_t^2 e_{33} \,; \\ k_{13} &= 2\pi h_t e_{011} \,; \qquad k_{14} = \pi h_t e_{112} \,; \\ k_{15} &= 2\pi h_t e_{123} \,; \qquad k_{17} = \frac{\pi}{4} e_{1113} \,; \\ k_{16} &= \frac{3\pi}{2} \left(\frac{e_{1111}}{8} - \frac{e_{11}^2}{x_{20}^2} \right) \,, \end{split}$$

в которых через e_j обозначены следующие квадратуры:

$$e_{00} = \int_{0}^{x_{20}} x_2(f_0(x_2))^2 dx_2;$$

$$e_{11} = \int_{0}^{x_{20}} x_2(f_1(x_2))^2 dx_2;$$

$$e_{22} = \int_{0}^{x_{20}} x_2(f_2(x_2))^2 dx_2;$$

$$e_{33} = \int_{0}^{x_{20}} x_2(f_3(x_2))^2 dx_2;$$

$$e_{011} = \int_{0}^{x_{20}} x_2f_0(x_2)(f_1(x_2))^2 dx_2;$$

$$e_{112} = \int_{0}^{x_{20}} x_2(f_1(x_2))^2 f_2(x_2) dx_2;$$

$$e_{123} = \int_{0}^{x_{20}} x_2f_1(x_2)f_2(x_2)f_3(x_2) dx_2,$$

(42)

находящиеся из условия сохранения объема

$$\int_{0}^{2\pi x_{20}} \int_{0}^{2\pi x_{20}} x_2 \left(x_{10}^2 f + x_{10} f^2 + \frac{1}{3} f^3 \right) dx_2 dx_3 = 0.$$

Координаты вектора \vec{l} (15)

$$l_{1} = \rho \int_{0}^{2\pi x_{20}f + h_{t}} \int_{0}^{2\pi x_{20}f + h_{t}} x_{1}^{3}x_{2}dx_{1}dx_{2}dx_{3},$$

$$l_{2} = \rho \int_{0}^{2\pi x_{20}f + h_{t}} \int_{0}^{2\pi x_{20}f + h_{t}} x_{1}^{3}x_{2}^{2}\cos x_{3}dx_{1}dx_{2}dx_{3},$$

$$l_{3} = \rho \int_{0}^{2\pi x_{20}f + h_{t}} \int_{0}^{2\pi x_{20}f + h_{t}} x_{1}^{3}x_{2}^{2}\sin x_{3}dx_{1}dx_{2}dx_{3}$$
(43)

с точностью до третьего порядка малости приобретают следующий вид:

$$\begin{split} l_1 &= \lambda_{10} + \lambda_{11} (p_1^2 + r_1^2), \\ l_2 &= \lambda_{21} p_1 + \lambda_{22} p_1 (p_1^2 + r_1^2) + \\ &+ \lambda_{23} p_0 p_1 + \lambda_{24} (p_1 p_2 + r_1 r_2), \\ l_3 &= \lambda_{31} r_1 + \lambda_{32} r_1 (p_1^2 + r_1^2) + \\ &+ \lambda_{33} p_0 r_1 + \lambda_{34} (p_1 r_2 - p_2 r_1), \end{split}$$

где $\lambda_{10} = k_8$; $\lambda_{11} = k_9$; $\lambda_{21} = \lambda_{31} = \lambda_{i1}$; $\lambda_{22} = \lambda_{32} = \lambda_{i2}$; $\lambda_{23} = \lambda_{33} = \lambda_{i3}$; $\lambda_{24} = \lambda_{34} = \lambda_{i4}$. Последние коэффициенты определяются следующими выражениями:

$$\lambda_{i1} = \pi \rho h_t^3 s_{0100}^2;$$

$$\lambda_{i2} = \frac{3\pi \rho h_t}{4x_{20}^2} (x_{20}^2 s_{0300}^2 - 4s_{0200}^1 s_{0100}^2); \qquad (44)$$

$$\lambda_{i3} = 3\pi\rho h_t^2 s_{1100}^2; \qquad \lambda_{i4} = \frac{3}{2}\pi\rho h_t^2 s_{0110}^2,$$

причем $s_{0200}^1 = e_{11}$, а квадратуры s_{ijkl}^2 (i, j, k, l = 0, 1, 2, 3) имеют вид

$$s_{0110}^{2} = \int_{0}^{x_{20}} x_{2}^{2} f_{1}(x_{2}) dx_{2};$$

$$s_{1100}^{2} = \int_{0}^{x_{20}} x_{2}^{2} f_{0}(x_{2}) f_{1}(x_{2}) dx_{2};$$

$$s_{0300}^{2} = \int_{0}^{x_{20}} x_{2}^{2} f_{1}(x_{2})^{3} dx_{2};$$

$$s_{0110}^{2} = \int_{0}^{x_{20}} x_{2}^{2} f_{1}(x_{2}) f_{2}(x_{2}) dx_{2}.$$

Коэффициенты λ_{ijk} из выражения (36) опреде-

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

ляются формулами

$$\lambda_{211} = \lambda_{311} = \lambda_{i1},$$

$$\lambda_{2131} = \lambda_{3131} = \frac{1}{4} \left(3\lambda_{i2} - (4o_0^{(0)} + o_0^{(2)})\lambda_{i3} - (4o_2^{(0)} + o_2^{(2)})\lambda_{i4}), \right),$$

$$\lambda_{2132} = \lambda_{3132} = \frac{1}{4} (\lambda_{i2} - (4o_0^{(0)} - o_0^{(2)})\lambda_{i3} + (4o_2^{(0)} - 3o_2^{(2)})\lambda_{i4}),$$

$$\lambda_{233} = \lambda_{333} = \frac{9}{4} (\lambda_{i2} - o_0^{(2)}\lambda_{i3} - o_2^{(2)}\lambda_{i4}).$$
(45)

Расширенное представление вертикальной координаты вектора l_1 (43), фигурирующей в (13b), имеет вид

$$\begin{split} l_1 &= k_8 + k_9(p_1^2 + r_1^2) + k_{10}p_0^2 + k_{11}(p_2^2 + r_2^2) + \\ &+ k_{12}(p_3^2 + r_3^2) + k_{14}(2p_1r_1r_2 + p_2(p_1^2 - r_1^2)) + \\ &+ k_{13}p_0(r_1^2 + p_1^2) + k_{16}(2p_1^2r_1^2 + p_1^4 + r_1^4) + \\ &+ k_{15}(r_1(p_2r_3 - p_3r_2) + p_1(r_2r_3 + p_2p_3)) + \\ &+ k_{17}(p_1p_3(p_1^2 - 3r_1^2) + r_1r_3(3p_1^2 - r_1^2)). \end{split}$$

Выражения для безразмерных гидродинамических коэффициентов μ_m , σ_m , d_{ij} и g_j ($m=0, 1, 2, 3, i=1, \ldots, 15, j=0, \ldots, 6$) уравнения (17) определяются следующими соотношениями:

$$\sigma_{mn}^{2} = g\kappa_{mn}; \quad \sigma_{0}^{2} = \frac{2gk_{10}}{\mu_{0}}; \quad \sigma_{1}^{2} = \frac{2gk_{9}}{\mu_{1}}; \\ \sigma_{2}^{2} = \frac{2gk_{11}}{\mu_{2}}; \quad \sigma_{3}^{2} = \frac{2gk_{12}}{\mu_{3}}; \\ d_{1} = \frac{d_{1}}{\mu_{1}}; \quad d_{2} = \frac{d_{2}}{\mu_{1}}; \quad d_{3} = \frac{d_{3}}{\mu_{1}}; \\ d_{4} = \frac{d_{4}}{\mu_{1}}; \quad d_{5} = \frac{d_{5}}{\mu_{1}}; \quad d_{6} = \frac{d_{6}}{\mu_{1}}; \\ d_{7} = \frac{d_{7}}{\mu_{2}}; \quad d_{8} = \frac{d_{8}}{\mu_{0}}; \quad d_{9} = \frac{d_{9}}{\mu_{2}}; \\ d_{10} = \frac{d_{10}}{\mu_{0}}; \quad d_{11} = \frac{d_{11}}{\mu_{3}}; \quad d_{12} = \frac{d_{12}}{\mu_{3}}; \\ d_{13} = \frac{d_{13}}{\mu_{3}}; \quad d_{14} = \frac{d_{14}}{\mu_{3}}; \quad d_{15} = \frac{d_{15}}{\mu_{3}}; \\ g_{0} = \frac{k_{13}}{\kappa_{01}\mu_{0}}; \quad g_{1} = \frac{2k_{13}}{\kappa_{11}\mu_{1}}; \quad g_{2} = \frac{2k_{14}}{\kappa_{11}\mu_{1}}; \\ g_{3} = \frac{4k_{16}}{\kappa_{11}\mu_{1}}; \quad g_{4} = \frac{k_{14}}{\kappa_{21}\mu_{2}}; \quad g_{5} = \frac{k_{15}}{\kappa_{31}\mu_{3}}; \\ g_{6} = \frac{k_{17}}{\kappa_{31}\mu_{3}}; \quad \Lambda = \frac{\lambda}{\mu_{1}}. \end{cases}$$

57

Здесь μ_i и d_k (k = 1, ..., 15) определяются следующими выражениями:

$$\begin{split} \mu_0 &= b_2 c_1; \quad \mu_1 = b_8 c_3; \quad \mu_2 = b_{14} c_{11}; \\ \mu_3 &= b_{20} c_{13}; \quad d_2 = b_9 c_3 + b_8 c_{10} + 2 b_{15} c_{12}; \\ d_1 &= 2 b_3 c_2 + 3 b_9 c_3 + b_8 c_9 + 2 b_{15} c_{12}; \\ d_2 &= b_9 c_3 + b_8 c_{10} + 2 b_{15} c_{12}; \\ d_3 &= b_{10} c_3 + b_8 c_7; \quad d_4 = b_8 c_6 + 2 b_{15} c_{11}; \\ d_5 &= b_{11} c_3 + b_8 c_5; \quad d_6 = 2 b_3 c_1 + b_8 c_4; \\ d_7 &= b_{14} c_{12} - (b_{39} c_3^2)/2; \quad d_8 = b_2 c_2 + (b_{38} c_3^2)/2; \\ d_9 &= b_{10} c_3 + b_{14} c_{12}; \quad d_{10} = b_2 c_2 + b_{11} c_3; \\ d_{11} &= b_{13} c_3 + b_{18} c_{12} + b_{20} c_{16}; \\ d_{12} &= b_{18} c_{12} - (b_{42} c_3^2)/2 - b_{45} c_3 c_{12} + 2 b_{20} c_{16}; \\ d_{13} &= b_{12} c_3 + b_{20} c_{15}; \\ d_{14} &= b_{18} c_{11} + b_{20} c_{14}; \\ d_{15} &= -b_{45} c_3 c_{11} + b_{20} c_{14} + b_{20} c_{15}. \end{split}$$

Асимптотическое разложение (14) дает следующие представления:

$$\begin{split} A_{1} &= b_{1} + b_{2}p_{0} + b_{3}(p_{1}^{2} + r_{1}^{2}) + b_{4}p_{0}^{2} + \\ &+ b_{5}(r_{2}^{2} + p_{2}^{2}) + b_{6}p_{0}(p_{1}^{2} + r_{1}^{2}) + \\ &+ b_{7}(p_{1}^{2}p_{2} + 2p_{1}r_{1}r_{2} - p_{2}r_{1}^{2}); \\ A_{2} &= b_{8}r_{1} + b_{9}r_{1}(p_{1}^{2} + r_{1}^{2}) + b_{11}p_{0}r_{1} + \\ &+ b_{10}(p_{1}r_{2} - r_{1}p_{2}) + b_{12}(p_{2}r_{3} - r_{2}p_{3}) + \\ &+ b_{13}(r_{3}(p_{1}^{2} - r_{1}^{2}) - 2p_{1}r_{1}p_{3}); \\ A_{3} &= b_{8}p_{1} + b_{9}p_{1}(p_{1}^{2} + r_{1}^{2}) + b_{11}p_{0}p_{1} + \\ &+ b_{10}(p_{1}p_{2} + r_{1}r_{2}) + b_{12}(p_{2}p_{3} + r_{2}r_{3}) + \\ &+ b_{13}(p_{3}(p_{1}^{2} - r_{1}^{2}) + 2p_{1}r_{1}r_{3}); \\ A_{4} &= b_{14}r_{2} + 2b_{15}p_{1}r_{1} + b_{16}p_{0}r_{2} + \\ &+ b_{18}(p_{1}r_{3} - p_{3}r_{1}); \\ A_{4} &= b_{14}p_{2} + b_{15}(p_{1}^{2} - r_{1}^{2}) + b_{16}p_{0}p_{2} + \\ &+ b_{17}p_{2}(p_{1}^{2} + r_{1}^{2}) + b_{18}(p_{1}p_{3} + r_{1}r_{3}) + \\ &+ b_{19}p_{0}(p_{1}^{2} - r_{1}^{2}); \\ A_{6} &= b_{20}r_{3} + b_{21}r_{1}(3p_{1}^{2} - r_{1}^{2}) + b_{24}p_{0}r_{3} + \\ &+ b_{22}(r_{1}p_{2} + p_{1}r_{2}) + b_{23}r_{3}(p_{1}^{2} + r_{1}^{2}); \\ A_{7} &= b_{20}p_{3} + b_{21}p_{1}(p_{1}^{2} - 3r_{1}^{2}) + b_{23}p_{3}(p_{1}^{2} + r_{1}^{2}); \\ \end{split}$$

 $A_{11} = b_{25} + b_{26}p_0 + b_{27}(p_1^2 + r_1^2);$ $A_{12} = b_{28}r_1 + b_{29}p_0r_1 + b_{30}(p_1r_2 - r_1p_2) +$ $+b_{31}r_1(p_1^2+r_1^2);$ $A_{13} = b_{28}p_1 + b_{29}p_0p_1 + b_{30}(p_1p_2 + r_1r_2) +$ $+b_{31}p_1(p_1^2+r_1^2);$ $A_{14} = b_{32}r_2 + 2b_{33}p_1r_1 + b_{34}(p_1r_3 - r_1p_3);$ $A_{15} = b_{32}p_2 + b_{33}(p_1^2 - r_1^2) + b_{34}(p_1p_3 + r_1r_3);$ $A_{16} = b_{35}r_3 + b_{36}(p_1r_2 + r_1p_2);$ $A_{17} = b_{35}p_3 + b_{36}(p_1p_2 - r_1r_2);$ $A_{22} = b_{37} + b_{38}p_0 + b_{39}p_2 + b_{40}p_1^2 + b_{41}r_1^2 +$ $+b_{42}(p_1p_3+r_1r_3);$ $A_{23} = -b_{39}r_2 + b_{43}p_1r_1 + b_{42}(r_1p_3 - p_1r_3);$ $A_{24} = b_{44}p_1 + b_{45}p_3 + b_{46}p_0p_1 + b_{47}p_1p_2 + b_{47}p_1p_2 + b_{47}p_1p_2 + b_{47}p_1p_2 + b_{46}p_1p_1 + b_{47}p_1p_2 + b_{46}p_1p_1 + b_{47}p_1p_2 + b_{46}p_1p_1 + b_{47}p_1p_2 + b_{47}p_1p_2 + b_{46}p_1p_1 + b_{47}p_1p_2 + b_{47}p_2 + b_{47}p_1p_2 + b_{47}p_2 + b_{47}p_1p_2 + b_{47}p_2 + b$ $+b_{48}r_1r_2 + b_{49}p_1(p_1^2 + r_1^2);$ $A_{25} = -b_{44}r_1 - b_{45}r_3 - b_{46}p_0r_1 - b_{47}p_1r_2 +$ $+b_{48}r_1p_2 - b_{49}r_1(p_1^2 + r_1^2);$ $A_{26} = b_{50}p_2 + b_{51}(p_1^2 - r_1^2) + b_{52}p_1p_3 + b_{5$ $+b_{53}r_1r_3;$ $A_{27} = -b_{50}r_2 - 2b_{51}p_1r_1 - b_{52}p_1r_3 + b_{53}r_1p_3;$ $A_{33} = b_{37} + b_{38}p_0 - b_{39}p_2 + b_{40}r_1^2 + b_{41}p_1^2 - b_{41}r_1^2 + b_{41}r_1^2 - b_{41}r_1^2 -$ $-b_{42}(p_1p_3+r_1r_3);$ $A_{34} = b_{44}r_1 - b_{45}r_3 + b_{46}p_0r_1 - b_{47}r_1p_2 +$ $+b_{48}p_1r_2 + b_{49}r_1(p_1^2 + r_1^2);$ $A_{35} = b_{44}p_1 - b_{45}p_3 + b_{46}p_0p_1 + b_{47}r_1r_2 +$ $+b_{48}p_1p_2 + b_{49}p_1(p_1^2 + r_1^2);$ $A_{36} = b_{50}r_2 + 2b_{51}p_1r_1 - b_{52}r_1p_3 + b_{53}p_1r_3;$ $A_{37} = b_{50}p_2 + b_{51}(p_1^2 - r_1^2) + b_{52}r_1r_3 + b_{53}p_1p_3;$ $A_{44} = b_{54} + b_{55}p_0 + b_{56}(p_1^2 + r_1^2) +$ $+b_{57}(p_1p_3-r_1r_3);$ $A_{45} = -b_{57}(r_1p_3 + p_1r_3);$ $A_{46} = b_{58}p_1 + b_{59}p_0p_1 + b_{60}(p_1p_2 + r_1r_2) +$ $+b_{61}p_1(p_1^2+r_1^2);$ $A_{47} = -b_{58}r_1 - b_{59}p_0r_1 + b_{60}(r_1p_2 - p_1r_2) +$ $+b_{61}r_1(r_1^2-p_1^2);$ $A_{55} = b_{54} + b_{55}p_0 + b_{56}(p_1^2 + r_1^2) +$ $+b_{57}(r_1r_3-p_1p_3);$ (48a)

$$\begin{aligned} A_{56} &= b_{58}r_1 + b_{59}p_0r_1 + b_{60}(p_1r_2 - r_1p_2) + \\ &+ b_{61}r_1(p_1^2 + r_1^2); \\ A_{57} &= b_{58}p_1 + b_{59}p_0p_1 + b_{60}(p_1p_2 + r_1r_2) + \\ &+ b_{61}p_1(p_1^2 + r_1^2); \\ A_{66} &= b_{62} + b_{63}p_0 + b_{64}(p_1^2 + r_1^2); \\ A_{77} &= b_{62} + b_{63}p_0 + b_{64}(p_1^2 + r_1^2); \\ A_{67} &= 0. \end{aligned}$$
(48b)

Решая (13а) как систему линейных уравнений относительно Z_{j+1} , с учетом (47) и (48), с точностью до $O(\epsilon^3)$ получаем:

$$Z_{1} = c_{1}p'_{0} + c_{2}p_{1}p'_{1} + c_{2}r_{1}r'_{1};$$

$$Z_{2} = c_{3}r'_{1} + c_{4}r_{1}p'_{0} + c_{5}p_{0}r'_{1} + c_{6}p_{1}r'_{2} - -c_{6}r_{1}p'_{2} + c_{7}r_{2}p'_{1} - c_{7}p_{2}r'_{1} + c_{8}p_{1}r_{1}p'_{1} + +c_{9}r_{1}^{2}r'_{1} + c_{10}p_{1}^{2}r'_{1};$$

$$Z_{2} = c_{9}p'_{1} + c_{4}p_{3}p'_{1} + c_{7}p_{9}p'_{1} + c_{6}p_{1}p'_{1} + c_{1}p_{1}p'_{1} + c_{1}p'_{1}p'_{1} + c_{1}p''_{1}p'_{1} + c_{1}p''_{1}p''_{1} + c_{1}p'''_{1}p''_{1} + c_{1}p''_{1}p''_{1} + c_{1}p''_{1}p''_{1} +$$

$$\begin{aligned} z_3 &= c_3 p_1 + c_4 p_1 p_0 + c_5 p_0 p_1 + c_6 p_1 p_2 + \\ &+ c_6 r_1 r_2' + c_7 p_2 p_1' + c_7 r_2 r_1' + c_8 p_1 r_1 r_1' + \\ &+ c_9 p_1^2 p_1' + c_{10} r_1^2 p_1'; \end{aligned}$$

$$\begin{aligned} Z_4 &= c_{11}r'_2 + c_{12}r_1p'_1 + c_{12}p_1r'_1; \\ Z_5 &= c_{11}p'_2 + c_{12}p_1p'_1 - c_{12}r_1r'_1; \\ Z_6 &= c_{13}r'_3 + c_{14}p_1r'_2 + c_{14}r_1p'_2 + c_{15}p_2r'_1 + \\ &+ c_{15}r_2p'_1 + c_{16}p_1^2r'_1 + 2c_{16}p_1r_1p'_1 - c_{16}r_1^2r'_1; \\ Z_7 &= c_{13}p'_3 + c_{14}p_1p'_2 - c_{14}r_1r'_2 + c_{15}p_2p'_1 - \\ &- c_{15}r_2r'_1 + c_{16}p_1^2p'_1 - 2c_{16}p_1r_1r'_1 - c_{16}r_1^2p'_1, \end{aligned}$$

где c_j определяются соотношениями

$$c_{1} = \frac{b_{2}}{b_{25}}; \qquad c_{2} = \frac{1}{b_{25}} \left(2b_{3} - \frac{b_{8}b_{28}}{b_{37}} \right);$$

$$c_{3} = \frac{b_{8}}{b_{37}}; \qquad c_{4} = \frac{1}{b_{37}} \left(b_{11} - \frac{b_{2}b_{28}}{b_{25}} \right);$$

$$c_{5} = \frac{1}{b_{37}} \left(b_{11} - \frac{b_{8}b_{38}}{b_{37}} \right);$$

$$c_{6} = \frac{1}{b_{37}} \left(b_{10} - \frac{b_{14}b_{44}}{b_{54}} \right);$$

$$c_{7} = \frac{1}{b_{37}} \left(b_{10} - \frac{b_{8}b_{39}}{b_{37}} \right);$$

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

$$\begin{split} c_8 &= \frac{1}{b_{37}} \left(2 \left(b_9 - \frac{b_3 b_{28}}{b_{25}} \right) - \frac{b_8}{b_{37}} \left(b_{43} - \frac{b_{28}^2}{b_{25}} \right) \right); \\ c_9 &= \frac{1}{b_{37}} \left(3b_9 - \frac{2b_{28}}{b_{25}} \left(b_3 - \frac{b_8 b_{28}}{b_{37}} \right) - \right. \\ &\left. - \frac{b_8}{b_{37}} \left(b_{41} + \frac{b_{28}^2}{b_{25}} \right) - \frac{b_{44}}{b_{54}} \left(2b_{15} - \frac{b_8 b_{44}}{b_{37}} \right) \right); \\ c_{10} &= \frac{1}{b_{37}} \left(b_9 - \frac{2b_{15} b_{44}}{b_{54}} - \frac{b_8}{b_{37}} \left(b_{40} - \frac{b_{44}^2}{b_{54}} \right) \right); \\ c_{11} &= \frac{b_{14}}{b_{54}}; \qquad c_{12} = \frac{1}{b_{54}} \left(2b_{15} - \frac{b_8 b_{44}}{b_{37}} \right); \\ c_{13} &= \frac{b_{20}}{b_{62}}; \qquad c_{14} = \frac{1}{b_{62}} \left(b_{22} - \frac{b_1 b_{54}}{b_{54}} \right); \\ c_{15} &= \frac{1}{b_{62}} \left(3b_{21} - \frac{b_8 b_{50}}{b_{37}} \right); \\ c_{16} &= \frac{1}{b_{62}} \left(3b_{21} - \frac{b_8}{b_{37}} \left(b_{51} + \frac{b_4 4 b_{58}}{b_{54}} \right) - \right. \\ &\left. - \frac{2b_{58}}{b_{54}} \left(b_{15} - \frac{b_8 b_{44}}{b_{37}} \right) \right). \end{split}$$

Коэффициенты b_i (i = 1, ..., 64) выражаются следующими формулами:

$$\begin{split} b_1 &= 2 \, g_{001}; \ b_3 &= g_{0211} + 2 \, k_2 \, g_{01}; \\ b_2 &= 2 \, g_{010}; \ b_4 &= 2 \, g_{0200} + 2 \, k_1 \, g_{01}; \\ b_5 &= g_{0222} + 2 \, k_5 \, g_{01}; \ b_8 &= g_{111}; \\ b_6 &= 3 \, g_{03011} + 4 \, k_2 \, g_{020} + 2 \, k_3 \, g_{01}; \\ b_7 &= 3 \, g_{03112}/2 + 2 \, k_4 \, g_{01}; \ b_{10} &= g_{1212}; \\ b_9 &= 3 \, g_{13111}/4 + 2 \, k_2 \, g_{121}; \ b_{11} &= 2 \, g_{1201}; \\ b_{12} &= g_{1223}; \ b_{13} &= 3 \, g_{13113}/4; \ b_{14} &= g_{212}; \\ b_{15} &= g_{2211}/2; \ b_{16} &= 2 \, g_{2202}; \ b_{18} &= g_{2213}; \\ b_{17} &= 3 \, g_{23112}/2 + 2 \, k_2 \, g_{222}; \ b_{19} &= 3 \, g_{23011}/2; \\ b_{20} &= g_{313}; \ b_{21} &= g_{33111}/4; \ b_{22} &= g_{3212}; \\ b_{23} &= 3 \, g_{33113}/2 + 2 \, k_2 \, g_{323}; \ b_{24} &= 2 \, g_{3203}; \\ b_{25} &= 2 \, q_{000}; \ b_{26} &= 2 \, q_{0010}; \ b_{28} &= q_{0111}; \\ b_{27} &= q_{00211} + 2 \, k_2 \, q_{0012}; \ b_{29} &= 2 \, q_{01201}; \\ b_{30} &= q_{01212}; \ b_{31} &= 2 \, k_2 \, q_{0121}; \ b_{32} &= q_{0212}; \\ b_{33} &= q_{02211}/2; \ b_{34} &= q_{02213}; \ b_{35} &= q_{0313}; \\ b_{36} &= q_{03212}; \ b_{37} &= q_{110}; \ b_{38} &= q_{1110}; \\ b_{39} &= q_{1112}/2; \ b_{40} &= k_2 \, q_{111} + q_{11211}/4; \\ b_{41} &= k_2 \, q_{111} + q_{11211}/4; \ b_{42} &= q_{11213}/2; \\ b_{43} &= q_{1121}/2; \ b_{44} &= q_{1211}; \ b_{45} &= q_{1213}; \end{split}$$

Квадратуры g_i
и q_j принимают вид

$$g_{01} = \pi \int_{0}^{x_{20}} x_2 B_1^0(x_2) dx_2;$$

$$g_{010} = \pi \int_{0}^{x_{20}} x_2 B_2^0(x_2) (f_1(x_2))^2 dx_2;$$

$$g_{0211} = \pi \int_{0}^{x_{20}} x_2 B_2^1(x_2) f_1(x_2) dx_2;$$

$$g_{111} = \pi \int_{0}^{x_{20}} x_2 B_1^1(x_2) f_1(x_2) dx_2;$$

$$g_{121} = \pi \int_{0}^{x_{20}} x_2 B_2^1(x_2) f_0(x_2) f_1(x_2) dx_2;$$

$$g_{1212} = \pi \int_{0}^{x_{20}} x_2 B_2^1(x_2) f_2(x_2) f_3(x_2) dx_2;$$

$$g_{1223} = \pi \int_{0}^{x_{20}} x_2 B_2^1(x_2) f_2(x_2) f_3(x_2) dx_2;$$

$$g_{13111} = \pi \int_{0}^{x_{20}} x_2 B_3^1(x_2) (f_1(x_2))^2 f_3(x_2) dx_2;$$

$$g_{212} = \pi \int_{0}^{x_{20}} x_2 B_1^2(x_2) f_2(x_2) dx_2;$$

$$g_{13113} = \pi \int_{0}^{x_{20}} x_2 B_1^2(x_2) f_2(x_2) dx_2;$$

$$g_{211} = \pi \int_{0}^{x_{20}} x_2 B_1^2(x_2) f_2(x_2) dx_2;$$

$$g_{2211} = \pi \int_{0}^{x_{20}} x_2 B_2^2(x_2) (f_1(x_2))^2 dx_2;$$

$$g_{2213} = \pi \int_{0}^{x_{20}} x_2 B_2^2(x_2) f_1(x_2) f_3(x_2) dx_2;$$

$$\begin{split} g_{313} &= \pi \int_{0}^{x_{20}} x_{2} B_{1}^{3}(x_{2}) f_{3}(x_{2}) dx_{2}; \\ g_{3212} &= \pi \int_{0}^{x_{20}} x_{2} B_{2}^{3}(x_{2}) f_{1}(x_{2}) f_{2}(x_{2}) dx_{2}; \\ g_{33111} &= \pi \int_{0}^{x_{20}} x_{2} B_{3}^{3}(x_{2}) (f_{1}(x_{2}))^{3} dx_{2}; \\ q_{000} &= \pi \int_{0}^{x_{20}} F_{0}^{00}(x_{2}) dx_{2}; \\ q_{0111} &= \pi \int_{0}^{x_{20}} F_{1}^{01}(x_{2}) f_{1}(x_{2}) dx_{2}; \\ q_{110} &= \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{0}^{11}(x_{2}) dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{1}^{11}(x_{2}) f_{0}(x_{2}) dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{1}^{11}(x_{2}) f_{0}(x_{2}) dx_{2}; \\ q_{1112} &= \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{1}^{11}(x_{2}) f_{2}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{1}^{11}(x_{2}) dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{1}^{11}(x_{2}) dx_{2}; \\ q_{1111} &= \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{2}^{11}(x_{2}) f_{1}(x_{2}) dx_{2}; \\ q_{1112} &= \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{2}^{11}(x_{2}) f_{2}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{1}^{11}(x_{2}) dx_{2}; \\ q_{11213} &= \pi \int_{0}^{x_{20}} \frac{1}{x_{2}} B_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} - \\ &\quad - \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) f_{1}(x_{2}) f_{3}(x_{2}) dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_{2} + \\ &\quad + \pi \int_{0}^{x_{20}} F_{2}^{11}(x_{2}) (f_{1}(x_{2}))^{2} dx_$$

$$\begin{split} q_{112112} &= \pi \int_{0}^{x_{20}} \frac{1}{x_2} B_2^{11}(x_2) \left(f_1(x_2)\right)^2 dx_2 + \\ &\quad + 3\pi \int_{0}^{x_{20}} F_2^{11}(x_2) \left(f_1(x_2)\right)^2 dx_2; \\ q_{1211} &= \pi \int_{0}^{x_{20}} \frac{1}{x_2} B_1^{12}(x_2) f_1(x_2) dx_2 + \\ &\quad + \frac{\pi}{2} \int_{0}^{x_{20}} F_1^{12}(x_2) f_1(x_2) dx_2; \\ q_{1213} &= \pi \int_{0}^{x_{20}} \frac{1}{x_2} B_1^{12}(x_2) f_3(x_2) dx_2 - \\ &\quad - \frac{\pi}{2} \int_{0}^{x_{20}} F_1^{12}(x_2) f_3(x_2) dx_2; \\ q_{1312} &= 3\pi \int_{0}^{x_{20}} \frac{1}{x_2} B_1^{13}(x_2) f_2(x_2) dx_2 + \\ &\quad + \pi \int_{0}^{x_{20}} F_1^{13}(x_2) (f_1(x_2))^2 dx_2 + \\ &\quad + \pi \int_{0}^{x_{20}} F_2^{13}(x_2) (f_1(x_2))^2 dx_2; \\ q_{220} &= 4\pi \int_{0}^{x_{20}} \frac{1}{x_2} B_0^{22}(x_2) dx_2 + \\ &\quad + \pi \int_{0}^{x_{20}} F_2^{12}(x_2) dx_2 + \\ &\quad + \pi \int_{0}^{x_{20}} F_0^{22}(x_2) dx_2 + \\ &\quad + \pi \int_{0}^{x_{20}} \frac{1}{x_2} B_1^{23}(x_2) f_1(x_2) dx_2 + \\ &\quad + \frac{\pi}{2} \int_{0}^{x_{20}} F_1^{23}(x_2) f_1(x_2) dx_2; \\ q_{330} &= 9\pi \int_{0}^{x_{20}} \frac{1}{x_2} B_0^{33}(x_2) dx_2 + \\ &\quad + \pi \int_{0}^{x_{20}} F_0^{33}(x_2) dx_2. \end{split}$$

Подынтегральные функции $F_k^{ij}(x_2)$, $B_k^{ij}(x_2)$ и $B_k^i(x_2)$, входящие в эти коэффициенты, зависят от $b_k^{(m)}(x_2)$ и $\bar{b}_k^{(m)}(x_2)$.

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

Функции $F_k^{ij}(x_2)$ задаются соотношениями

$$F_i^{nk}(x_2) = x_2 D_i^{nk} - x_2^2 (E_i^{nk} - E_i^{kn}) + x_2 (1 + x_2^2) C_i^{nk}.$$

Функци
и $B_l^{nk},\,C_l^{nk},\,D_l^{nk},\,E_l^{nk}$ и E_l^{kn} определяются так:

$$\begin{aligned} X_{l,l_k}^{nk}(x,y) &= k_l \left(\sum_{i=l_k}^{q_1} \sum_{j=l_k}^{q_1} s_l^{11} xy + \sum_{i=l_k}^{q_1} \sum_{j=l_k}^{q_2} s_l^{12} x \bar{y} + \right. \\ &+ \sum_{i=l_k}^{q_2} \sum_{j=l_k}^{q_1} s_l^{21} \bar{x} y + \sum_{i=l_k}^{q_2} \sum_{j=l_k}^{q_2} s_l^{22} \bar{x} \bar{y} \right), \\ &k_l &= \begin{cases} 1, \ l=0, 1, \\ 1/2, \ l=2, \end{cases} \quad l_k = 0, 1, \end{aligned}$$

где

$$\begin{split} s_{0}^{11} &= \frac{h_{t}^{1+\nu_{ni}+\nu_{kj}} - h_{b}^{1+\nu_{ni}+\nu_{kj}}}{1+\nu_{ni}+\nu_{kj}};\\ s_{0}^{12} &= \frac{h_{t}^{\nu_{ni}-\nu_{kj}} - h_{b}^{\nu_{ni}-\nu_{kj}}}{\nu_{ni}-\nu_{kj}};\\ s_{0}^{21} &= \frac{h_{t}^{\nu_{kj}-\nu_{ni}} - h_{b}^{\nu_{kj}-\nu_{ni}}}{\nu_{kj}-\nu_{ni}};\\ s_{0}^{22} &= \frac{h_{t}^{-1-\nu_{ni}-\nu_{kj}} - h_{b}^{-1-\nu_{ni}-\nu_{kj}}}{-1-\nu_{ni}-\nu_{kj}};\\ s_{1}^{11} &= h_{t}^{\nu_{ni}+\nu_{kj}}; \qquad s_{1}^{12} &= h_{t}^{-1+\nu_{ni}-\nu_{kj}};\\ s_{1}^{21} &= h_{t}^{-1-\nu_{ni}+\nu_{kj}}; \qquad s_{1}^{22} &= h_{t}^{-2-\nu_{ni}-\nu_{kj}};\\ s_{2}^{11} &= h_{t}^{-1+\nu_{ni}+\nu_{kj}}(\nu_{ni}+\nu_{kj});\\ s_{2}^{12} &= h_{t}^{-2+\nu_{ni}-\nu_{kj}}(\nu_{ni}-\nu_{kj}-1);\\ s_{2}^{21} &= h_{t}^{-3-\nu_{ni}-\nu_{kj}}(\nu_{ni}+\nu_{kj}+2), \end{split}$$

причем

$$\begin{split} B_l^{nk} &= X_{l,0}^{nk}(b_i^n, b_j^k), \qquad C_l^{nk} = X_{l,1}^{nk}(c_i^n, c_j^k), \\ D_l^{nk} &= X_{l,1}^{nk}(d_i^n, d_j^k), \qquad E_l^{nk} = X_{l,1}^{nk}(d_i^n, c_j^k), \end{split}$$

$$E_l^{\kappa n} = X_{l,1}^{n\kappa}(c_i^n, d_j^\kappa)$$

Функции B^m_i определяются с помощью следующего выражения:

$$B_i^m(x_2) = \sum_{k=0}^{q_1} s_i^1 b_k^m + \sum_{n=0}^{q_2} s_i^2 \bar{b}_n^m, \qquad i = 0, \dots, 3.$$

61

Здесь

$$s_{0}^{1} = \frac{h_{t}^{\nu_{km}+3} - h_{b}^{\nu_{km}+3}}{\nu_{km}+3}; \qquad s_{1}^{1} = h_{t}^{\nu_{km}+2};$$

$$s_{0}^{2} = \frac{h_{t}^{2-\nu_{nm}} - h_{b}^{2-\nu_{nm}}}{2-\nu_{nm}}; \qquad s_{1}^{2} = h_{t}^{1-\nu_{nm}};$$

$$s_{2}^{1} = h_{t}^{\nu_{km}+1}(\nu_{km}+2)/2; \qquad s_{2}^{2} = \frac{1-\nu_{nm}}{2h_{t}^{\nu_{nm}}};$$

$$s_{3}^{1} = h_{t}^{\nu_{km}}(\nu_{km}+1)(\nu_{km}+2)/6;$$

$$s_{3}^{2} = h_{t}^{-\nu_{nm}-1}(\nu_{nm}-1)\nu_{nm}/6.$$

Для примера выпишем полное выражения для функции E_1^{nk} :

$$E_{1}^{nk} = \sum_{j=1}^{q_{1}} \sum_{i=1}^{q_{1}} h_{t}^{\nu_{ni} + \nu_{kj}} d_{i}^{n} c_{j}^{k} + \sum_{i=1}^{q_{1}} \sum_{j=1}^{q_{2}} h_{t}^{-1 + \nu_{ni} - \nu_{kj}} d_{i}^{n} \bar{c}_{j}^{k} + \sum_{j=1}^{q_{1}} \sum_{i=1}^{q_{2}} h_{t}^{-1 - \nu_{ni} + \nu_{kj}} \bar{d}_{i}^{n} c_{j}^{k} + \sum_{j=1}^{q_{2}} \sum_{i=1}^{q_{2}} h_{t}^{-2 - \nu_{ni} - \nu_{kj}} \bar{d}_{i}^{n} \bar{c}_{j}^{k}.$$

Здесь

$$\begin{aligned} d_i^n &= \nu_{ni} b_i^n; \qquad \qquad d_j^k &= \nu_{kj} b_j^k; \\ \bar{d}_i^n &= (-1 - \nu_{ni}) \bar{b}_i^n; \qquad \bar{d}_j^k &= (-1 - \nu_{kj}) \bar{b}_j^k; \\ c_i^n &= \frac{\partial b_i^n}{\partial x_2}; \qquad \qquad \bar{c}_i^n &= \frac{\partial \bar{b}_i^n}{\partial x_2}; \\ c_j^k &= \frac{\partial b_j^k}{\partial x_2}; \qquad \qquad \bar{c}_j^k &= \frac{\partial \bar{b}_j^k}{\partial x_2}. \end{aligned}$$

Коэффициенты

$$b_k^{(m)}(x_2) = a_{1k}^{(m)} v_{\nu_{mk}}^{(m)}(x_2),$$

$$\bar{b}_k^{(m)}(x_2) = \bar{a}_{1k}^{(m)} \bar{v}_{\nu_{mk}}^{(m)}(x_2),$$

$$m = 0, 1, 2, 3,$$

входят в разложения для поверхностных собственных форм

$$f_m(x_2) = a_{10}^{(m)} + \sum_{k=1}^{q_1} b_k^{(m)}(x_2) + \bar{a}_{10}^{(m)} + \sum_{k=1}^{q_1} \bar{b}_k^{(m)}(x_2),$$
$$m = 0, 1, 2, 3,$$

причем

$$a_{10}^{(0)} \neq 0, \qquad \bar{a}_{10}^{(0)} \neq 0, \qquad v_{\nu_{00}}^{(0)} = \bar{v}_{\nu_{00}}^{(0)} = 1,$$

 $a_{10}^{(i)} = \bar{a}_{10}^{(i)} = 0, \qquad i = 1, 2, 3,$

и в разложения для собственных мод

$$\psi_{mn}(x_1, x_2) = \sum_{k=0}^{q_1} x_1^{\nu_{mk}} b_{\nu_{mk}}^{(m)}(x_2) + \sum_{k=0}^{q_2} x_1^{-1-\nu_{mk}} \bar{b}_{\nu_{mk}}^{(m)}(x_2).$$

Отметим, что собственные векторы

$$a_{nk}^{(m)} = \hat{a}_{nk}^{(m)} / N_{mn}, \qquad \bar{a}_{nk}^{(m)} = \hat{\bar{a}}_{nk}^{(m)} / N_{mn},$$

включают нормировку решения

$$N_{mn} = \psi_{mn}(x_{10}, x_{20}) = 1$$

Определение использованных выше функций $v_{\nu_{mk}}^{(m)}(x_2)$ и $\bar{v}_{\nu_{mk}}^{(m)}(x_2)$ было дано в работе [18]. Неизвестные o_m^k , входящие в периодические ре-

шения (20), принимают вид

$$\begin{split} o_{0}^{(0)} &= \frac{\mathbf{d}_{8} - \mathbf{d}_{10} + \mathbf{g}_{0}\bar{\sigma}_{0}^{2}}{2\bar{\sigma}_{0}^{2}}, \\ o_{0}^{(2)} &= \frac{\mathbf{d}_{8} + \mathbf{d}_{10} - \mathbf{g}_{0}\bar{\sigma}_{0}^{2}}{4 - \bar{\sigma}_{0}^{2}}, \\ o_{2}^{(0)} &= \frac{\mathbf{d}_{7} - \mathbf{d}_{9} + \mathbf{g}_{4}\bar{\sigma}_{2}^{2}}{2\bar{\sigma}_{2}^{2}}, \\ o_{2}^{(2)} &= \frac{\mathbf{d}_{7} + \mathbf{d}_{9} - \mathbf{g}_{4}\bar{\sigma}_{2}^{2}}{4 - \bar{\sigma}_{2}^{2}}, \\ o_{3}^{(1)} &= \frac{1}{4(1 - \bar{\sigma}_{3}^{2})} \Big(3\mathbf{d}_{11} - \mathbf{d}_{12} - 4\mathbf{d}_{13}o_{2}^{(0)} - \\ &- (\mathbf{d}_{13} + 4\mathbf{d}_{14} - 2\mathbf{d}_{15})o_{2}^{(2)} - \\ &- (3\mathbf{g}_{6} - \mathbf{g}_{5}(4o_{2}^{(0)} + o_{2}^{(2)})\bar{\sigma}_{3}^{2}) \Big), \end{split}$$

$$o_{3}^{(3)} &= \frac{1}{4(9 - \bar{\sigma}_{3}^{2})} \Big(\mathbf{d}_{11} + \mathbf{d}_{12} - \\ &- (\mathbf{d}_{13} + 4\mathbf{d}_{14} + 2\mathbf{d}_{15})o_{2}^{(2)} - \\ &- (\mathbf{g}_{6} - \mathbf{g}_{5}o_{2}^{(2)})\bar{\sigma}_{3}^{2} \Big), \end{split}$$

$$\bar{\sigma}_m^2 = \frac{\sigma_m^2}{\sigma^2}, \qquad m = 0, 1, 2, 3.$$

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

62

Коэффициенты C_i в выражениях (33) определяются соотношениями

$$\begin{split} C_{1} &= \gamma_{0}^{(1)} \delta_{1}^{(1)} - \frac{1}{2} \gamma_{0}^{(3)} \delta_{1}^{(2)} - \gamma_{2}^{(1)} \delta_{2}^{(1)} - \frac{1}{2} \gamma_{2}^{(3)} \delta_{2}^{(2)} + \bar{\lambda} \left(\mathbf{d}_{1} - 2\delta_{0}^{(3^{+})} + \frac{1}{2} \mathbf{d}_{56} \gamma_{0}^{(4)} + \frac{1}{2} \mathbf{d}_{34} \gamma_{2}^{(4)} \right); \\ C_{2} &= \bar{\lambda} \left(\mathbf{d}_{2} - 2\delta_{0}^{(3^{-})} - \mathbf{d}_{3} \gamma_{2}^{(2)} + \frac{1}{2} \mathbf{d}_{34} \gamma_{2}^{(4)} \right) = \frac{1}{2} \gamma_{2}^{(3)} \delta_{2}^{(2)}; \\ C_{3} &= \frac{1}{2} \gamma_{0}^{(3)} \delta_{1}^{(2)} + \frac{1}{2} \gamma_{2}^{(3)} \delta_{2}^{(2)} + \bar{\lambda} \left(-\mathbf{d}_{1} + 2\delta_{0}^{(3^{+})} + \mathbf{d}_{5} \gamma_{0}^{(2)} - \frac{1}{2} \mathbf{d}_{56} \gamma_{0}^{(4)} - \mathbf{d}_{3} \gamma_{2}^{(2)} - \frac{1}{2} \mathbf{d}_{34} \gamma_{2}^{(4)} \right); \\ C_{4} &= -\gamma_{2}^{(1)} \delta_{1}^{(1)} - \frac{1}{2} \gamma_{0}^{(3)} \delta_{1}^{(2)} - \gamma_{2}^{(1)} \delta_{2}^{(1)} + \chi_{2}^{(3)} \delta_{2}^{(2)} + \bar{\lambda} \left(\mathbf{d}_{1} - 3\mathbf{d}_{2} - \mathbf{d}_{3} \gamma_{2}^{(2)} + \frac{1}{2} \mathbf{d}_{56} \gamma_{0}^{(4)} - \mathbf{d}_{34} \gamma_{2}^{(4)} \right); \\ C_{5} &= -\gamma_{0}^{(1)} \delta_{1}^{(1)} - \frac{1}{2} \gamma_{0}^{(3)} \delta_{1}^{(2)} - \gamma_{2}^{(1)} \delta_{2}^{(1)} + \chi_{2}^{(3)} \delta_{2}^{(2)} + \bar{\lambda} \left(\mathbf{d}_{1} - 3\mathbf{d}_{2} + \mathbf{d}_{3} \gamma_{2}^{(2)} + \frac{1}{2} \mathbf{d}_{56} \gamma_{0}^{(4)} - \mathbf{d}_{34} \gamma_{2}^{(4)} \right); \\ C_{5} &= -\frac{1}{2} \gamma_{0}^{(3)} \delta_{1}^{(2)} + \gamma_{2}^{(1)} \delta_{2}^{(1)} + \gamma_{2}^{(3)} \delta_{2}^{(2)} + \bar{\lambda} \left(\mathbf{d}_{1} - 3\mathbf{d}_{2} + \mathbf{d}_{3} \gamma_{2}^{(2)} + \frac{1}{2} \mathbf{d}_{56} \gamma_{0}^{(4)} - \mathbf{d}_{34} \gamma_{2}^{(4)} \right); \\ C_{7} &= \frac{3}{4} \left(\bar{\lambda}^{2} - 2 \right) \mathbf{d}_{1} - \left(\bar{\lambda}^{2} - 1 \right) \mathbf{d}_{50} \gamma_{0}^{(0)} - \left(\bar{\lambda}^{2} - 1 \right) \mathbf{d}_{30} \gamma_{2}^{(0)} + \frac{1}{4} \gamma_{0}^{(2)} \delta_{1}^{(1)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} - \frac{1}{4} \gamma_{0}^{(2)} \delta_{1}^{(1)} + \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} + \frac{1}{4} \gamma_{0}^{(2)} \delta_{1}^{(0)} - \frac{1}{2} \gamma_{2}^{(4)} \delta_{1}^{(2)} - \frac{1}{2} \gamma_{2}^{(4)} \delta_{1}^{(2)} + \frac{1}{4} \gamma_{0}^{(2)} \delta_{1}^{(0)} + \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} + \frac{1}{4} \gamma_{0}^{(2)} \delta_{0}^{(0)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} + \frac{1}{4} \gamma_{0}^{(2)} \delta_{0}^{(0)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} + \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} - \frac{1}{2} \gamma_{0}^{(4)} \delta_{1}^{(2)} - \frac{1}{2} \gamma_$$

Здесь введены следующие обозначения:

$$\begin{aligned} \mathbf{d}_{34} = \mathbf{d}_3 - 4\mathbf{d}_4 & \mathbf{d}_{56} = \mathbf{d}_5 - 4\mathbf{d}_6; & \delta_0^{(0^+)} = 4o_0^{(0)} + o_0^{(2)}; & \delta_0^{(0^-)} = 4o_0^{(0)} - o_0^{(2)}; \\ \delta_0^{(2^+)} = 4o_2^{(0)} + o_2^{(2)}; & \delta_0^{(2^-)} = 4o_2^{(0)} - o_2^{(2)}; & \delta_0^{(3^+)} = \mathbf{d}_5o_0^{(0)} + \mathbf{d}_3o_2^{(0)}; & \delta_0^{(3^-)} = \mathbf{d}_5o_0^{(0)} - \mathbf{d}_3o_2^{(0)}; \\ \delta_1^{(0)} = \bar{\lambda}^2\mathbf{d}_5 + \mathbf{d}_{56}; & \delta_2^{(0)} = \bar{\lambda}^2\mathbf{d}_3 + \mathbf{d}_{34}; & \delta_1^{(1)} = \bar{\lambda}^2\mathbf{d}_6 + \mathbf{g}_1\bar{\sigma}_1^2 - \mathbf{d}_5; & \delta_2^{(1)} = \bar{\lambda}^2\mathbf{d}_4 + \mathbf{g}_2\bar{\sigma}_1^2 - \mathbf{d}_3; \\ & \delta_1^{(2)} = \bar{\lambda}^2\mathbf{d}_6 + \mathbf{g}_1\bar{\sigma}_1^2 + \mathbf{d}_{56}; & \delta_2^{(2)} = \bar{\lambda}^2\mathbf{d}_4 + \mathbf{g}_2\bar{\sigma}_1^2 + \mathbf{d}_{34}. \end{aligned}$$